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zZusammenfassung

Fir eine Klasse von elasto-viskoplastischem Material wird das Rand-
wertproblem mit Methoden der konvexen Analysis beschrieben. Ein
allgemeines Minimalprinzip wird aufgestellt. Die Ldsung wird sowohl
fir das Anfangs-Randwertproblem als auch fir das Zuwachs-Randwert-
problem konstruiert. Die Eindeutigkeit der Spannung als Funktion
der Zeit wird bewiesen. Eine spezielle Klasse reguldren Materials,
fir welche die Dehnung als Funktion der Zeit eindeutig ist, wird
eingefihrt. Ein Beispiel der Anwendung des Minimalprinzips zur

numerischen Losung des Problems wird vorgestellt.

Summary

Convex analysis approach to the boundary value problem for a class
of elastic-viscoplastic materials is given. A general form of the
minimum principle is established. The solution is constructed both
for the initial-boundary value problem and for the rate boundary
value problem. The uniqueness of stress history is proved. A
particular class of regular materials, for which the strain history
is unique, is introduced. An example of application of the minimum

principle to a numerical solution of the problem is presented.
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1. INTRODUCTION

The present work is an attempt to give a uniform mathematical
approach to the elastic-viscoplastic boundary value problem. Here

we assume small deformation of the body and we confine our conside-

rations to the generalized standard material model, formulated by

NGUYEN [8] and HALPHEN [10]. The model is based on the concept of

the generalized strain and generalized stress introduced by NGUYEN

in [8] and on the hypothesis of normal dissipation postulated by

MOREAU [5] and ZIEGLER [3].

Making use of assumed existence and convexity of the plastic
potential in the generalized stress space we formulate the plastic

flow law in terms of fundamental concepts of convex analysis, using

the approach presented by EKELAND and TEMAM in [13].

Taking advantage of the assumed linear relation between the

generalized elastic strain and generalized stress we construct the

Hilbert space of admissible fields in which the solution is to be

found. The principles of such construction are described by MAURIN

in [4]. The concept of finitely-valued function is presented by

yosipa in [14].

We solve parallely the primary initial-boundary value problem

and the simplified rate boundary value problem using the methods of

convex analysis in the Hilbert space. The minimum principles for

stress derived here follow directly from the construction of solution
in the Hilbert space. In the particular cases we obtain the minimum

principles already existing in literature.

Since the fundamental works of HILL [1,2], where he established
the first variational principles in plasticity, the important results

obtained in this field concern the rate boundary value problem. The

Hill's principle has been generalized by MROZ and RANIECKI [9,11] for
the thermoplastic boundary value problem. The results of MOREAU [5]
and MANDEL [6] concerning the existence and uniqueness of solution
for the elastic-perfectly plastic body had been extended by NGUYEN
[8], FRELAT and ZARKA [12] onto the case of generalized standard

material.



The minimum principles corresponding to the initial-boundary problem

for the generalized standard material have been established by RAFALSKI
in [15,16,17,20,21]. The functional constructed there depends on the
history of plastic deformation. The uniqueness of the stress field in

the space-time region is proved. The regular material model, which

assures the uniqueness of strain field, is introduced.

Other attempts to include the history of plastic deformation into
a minimum principle can be observed in works of HALPHEN and NGUYEN

[9] and NAYROLES [18,19].

An application of the minimum principles to the numerical calcula-
tions has been described by NGUYEN in [22]. The existing algorithms
are based on the principle for the rate problem. Consequently one uses
step-by~-step numerical technique based on the finite element geometri-
cal I1dealization. To improve the convergence of solution the implicit
scheme of calculation was introduced. It was shown by NGUYEN in [22]
that the particular implicit scheme proposed by MOREAU assures the
convergence and stability of solution. This scheme reduces the pro-

blem to the convex programming in every time step.

It is shown in the present work that the application of global
minimum principle, corresponding to the initial-boundary value pro-
blem, leads in the particular case to the implicit scheme proposed

by MOREAU in [7].

1.1 Notation

In the present work vectors and tensors are denoted either by a

symbol with subscripts tij or by the same bold type symbol without
subscripts t. In general subscripts i, j, k, 1 run over integers

1, 2, 3. For these subscripts the summation convention is used, e.g.

f,'}&, = fiui = flu1 +f2u2+f3u3.

Differentiation with respect to Cartesian coordinates x = Xg is

indicated by subscript i preceded by the comma. Differentiation with

respect to time t is indicated by the dot above the symbol.

Throughout the work we shall distinguish between the tensor t
and the tensor field t. In the case of possible confusion we shall

indicate the domain of definition of the field t writing explicitly

its arguments t(x,t).



2. BASIC ASSUMPTIONS

We shall consider three-~dimensional bounded region V in three-

3
dimensional space R . We assume that the boundary B of the region V
is composed of surfaces, which have the normal unit vector n taken as

positive outwardly. We shall assume that the boundary B consists of

the part Bk

, where the displacement p is prescribed and the part Bs'

where the boundary force‘£ is prescribed. The body force B'is prescribed

in the volume V in such a way that the entire body is in equilibrium.

The boundary value problem is represented by

Constitutive relations describing the elastic-plastic behaviour in

Equilibrium eguation .. . = Db, in
a2 4 13,J 1
Boundary force condition cg,.n, = £ on
i35 i
1
‘Compatibility equation €,.. =% (u, . +u, . inv
£ L o8s ij 2 i3 J:l)
Boundary displacement condition u, =p,; on

which should be satisfied for every to¢>0 together with

I
| Initial conditions Oij =0 and Eij =0 at t =0 in

l

where g is the stress tensor field,‘g is the total strain ténsor field

(2.1)

(2.2)

and u is the displacement vector field defined in the space-time region

v=vx [o,m.

"~

The three-dimensional boundary B =Bx [0,) is, in general case,

composed of two arbitrary disjoint, sufficiently regular space-time

parts Es and.Ek



Fig. 1. Four-dimensional space-time region

The derivatives appearing in the equilibrium equation and
the compatibility equation have the generalized sense, as we
assume neither differentiability nor continuity of the stress or
displacement fields. The physical interpretation of those equations

follows from the primary concepts of equilibrium and compatibility.

Namely, the equilibrium equation in generalized sense is equivalent

to the requirement of force equilibrium for arbitrarily chosen,

sufficiently regular three-dimensional subregion Vn of the region V

[o, .n.dx = Jb. dx for every V. <V (2.3)
i) 3] ~ 1 o~ n

B \Y%
n n



Fig. 2. Regular subregion and regular section
of the region V

The compatibility equation in the generalized sense is equivalent

to the requirement of compatible displacement of arbitrarily chosen,

sufficiently regular two-dimensional section Sn of the region V.

)[ u,dx = [u.dx for evexry S_cV (2.4)
i~ i~ n

Sl sll
n n

where Slf1 and S;_'! denote the surfaces resulting from the section of

the region V.



3. CONSTITUTIVE RELATIONS

3.1 Basic concepts

We shall consider behaviour of an element of material assuming
the uniform strain and stress distributions represented by tensors
g and g, respectively. Let at the initial moment the element be at
the natural, undeformed state (o). Let us apply an external loading

g to the element and let us consider its actual state (a) at the

moment to. The deformation of element is represented by total strain

tensor £. Now, if we unload the element then it relaxes either
p

immediately or asymptotically in time. The tensor £ representing

the deformation in the relaxed state (r) is called the permanent

or plastic strain. In this work we shall consider materials which

give immediate response to unloading. Thus we shall call

e . N
tensor ¢ = ¢ - ep the elastic strain.
~ "~ ~

~\

Fig. 3. Elastic and plastic strain components

To describe behaviour of the elastic-viscoplastic body we shall
use the concept of internal parameters. We shall assume that the

material properties can be fully described by the free energy Y and

the plastic potential . Free energy function is used to describe

the elastic behaviour of the material, while the plastic potential

characterizes the visco-plastic behaviour.



3.2 Elastic behaviour

We assume that the free energy Y depends on the elastic strain

tensor €
w ,n=1,2,..., p. The couple sé = [E?,g] will be called the generalized

elastic strain. We shall assume that the function W(g?) is strictly

and a p-dimensional vector of elastic internal parameters

convex, differentiable and that it attains minimum at the origin of

(6 + p)-dimensional space T= R6+p. The scalar product in this space

is defined by
e-e*¥ =¢g _.e* + o w* e,e¥ €T (3.1)
~ o~ ijTij nn e ~

The generalized stress tensor s = [2,3] corresponding to the generalized

elastic strain se is defined as the gradient of ¥ at gé.

£=i‘*ig (3.2)
de

The above stress-elastic strain relation describes the elastic

behaviour of material. The first component of s is the symmetric stress

tensor ci. and the second will be called the vector of internal force

T, =1,2,...,p.

Making use of the convexity and differentiability of free energy Y

we can construct the complementary (dual) energy ¥* in the generalized

stress tensor space T. The complementary energy is obtained by

¥*(s) = max [5-5 - ‘P(l:‘)] (3.3)
teET

Now we can express the generalized elastic strain in terms of

genexalized stress

*
e _ a7 (3.4)

o
!




Fig. 4.  Construction of the complementary free energy

3.3 viscoplastic behaviour

We assume that the plastic potential ¢ is a lower-semicontinuous,

convex function, defined in the generalized stress tensor space T,

which attains its minimum at the origin s = O.

The viscoplastic flow is characterized by the rate of plastic

strain tensor ep

o~

and the rate of plastic internal parameter vector

Kp+ D = 1,2,...,p. The couple sp = [E,p',‘f.] will be called the

generalized plastit strain. The plastic flow law is based on normal

dissipation hypothesis and can be formulated with the relation

&P € dp(s) (3.5)

where aw(i) is the subdifferential of the plastic potential ¢ at s.

The subdifferential a(p(s) is defined as the set of all subgradients
of ¢ at s. The generalized tensor é € T is called the subgradient

of(patf)if



Fs -0 = o (3.6)

where w*(é?) is the polar potential defined by

o*(¢F) = sup [P -t - o(p)] (3.7)
€z

The product ef

~

the plastic flow.

* 8 represents the rate of energy dissipation during

It follows from the above considerations that we can express the

plastic flow law in the dual form

s € aqy*(gp) (3.8)

It should be noted that the subdifferential is always defined in

every point of the space T. We shall distinguish four particular cases:

(1) subdifferential is identical with the entire space T
(ii) subdifferential is a convex region in the space T
(iii) subdifferential consists of one tensor from T only

(iv) subdifferential is the empty set.

Fig. 5. Construction of the polar potential
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3.4 Relation between internal parameters

We postulate that the rate of total work done on the element of

the body is expressed by the product s - é where e is the generalized

total strain tensor

e = se + 39 {3.9)

On the other hand the rate of total work is equal to g - ’g as the
energy is supplied to the element by the external forces only. It
follows from g -é =g -'é that ’03 + 5 = 0. Hence, if we assume that

B =K = O at the initial moment, we obtain
w+K=0 (3.10)
~e ~

i. e. the elastic and plastic internal parameters are coupled.

3.5 Standard material model

In the present work we shall consider the GENERALIZED STANDARD

elastic-viscoplastic MATERIAL model. Such material is characterized

by the quadratic form of the complementary free energy
* — 1
?%)—Egﬁg (3.11)

where G is the generalized matrix of elastic coefficients which

consists of matrix Lijkl of elastic coefficients and the matrix

Zmn' m, n=1,2,...,p of internal elastic coefficients. The product

Gs is defined by

ZzZ w1 if s = [g7] (3.12)

£g = [Lijklokl' mn n ~ ot~

Hence the stress-strain relation assumes the form of generalized

Hooke's law

7 g =Lg
lﬁe =Gs | or (3.13)
| ' w=2z
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We shall distinguish the particular case of GENERALIZED STANDARD
elastic-plastic MATERIAL where the plastic potential is prescribed

in T in the form of indicator function, i. e. it assumes only two

values: O and + «. It follows from the properties of the plastic
potential that the region r%t’ where ©(s) = O, is convex and contains

the origin of T. The region is called the elastic region in the

Ee
stress space T.

Now the plastic flow law may be formuiaﬁe’d in terms of the
elastic region. Namely, the tensor s of generalized stress and the

tensor ép of plastic strain rate satisfy the plastic flow law if

5= 04D | (3.14)

Here w*(ép) represents the rate of energy dissipation during the

plastic flow. The plastic flow law can be also presented in the form

of inequality

ép -5 2 'ép -t for every t € 'E::'t (3.15)

SUPPORTING
HYPERPLANE

&t =9™(ef)

Fig. 6. Plastic flow law for the elastic-plastic model
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The subdifferential 3¢(s) can be now interpreted as the cone of

all generalized tensors ép which determine a hyperplane 'ép -t =
w*(ép ) supporting the region E_ at the point s.
It can be shown that during the plastic deformation
(i) plastically admissible rate of generalized
stress tensor § belongs
to the polar cone [39(s)]* defined by
[dw(s)]* = [t*: t¥-t <0 for every t € 39(s)] (3.16)

(ii) the generalized plastic strain rate is always orthogonal to the

generalized stress rate.

f.s5=0 (3.17)
In the particular case, when the free energy Y and the plastic
potential @ do not depend on internal parameters we arrive at the

STANDARD elastic-perfectly plastic MATERIAL. In this case all

generalized tensors are replaced by the corresponding six-dimensional
symmetric tensors defined in the space T = RG, and the matrix G is

replaced by L.

3.6 Regular standard material

In our considerations of standard material models we shall

distinguish the reqular material which is characterized by particular

- properties of the plastic potential . Namely, the material will be

called regular if for every generalized stress tensor g € Et and
for every k satisfying the relation
[P,k] € 30(g) (3.18)

the intersection 1"(;%1) N 3@(g) consists of one generalized strain
rate tensor only. Here 1(’@) , defined for every 9 € rP , is the set
of all generalized tensors t = [1,9] which have the second component

equal to §



1@ = [t t=[1,8],1€r" (3.19)
It follows from the above definition that in the case of regular

material the plastic strain rate tensor &F

~

is uniquely determined
by the generalized stress tensor s ard by the rate of plastic (or
elastic) internal parameter vector £ (oxr Q). We shall use this

property to discuss the uniqueness of strain.

It should be mentioned that the standard elastic-perfectly plastic
material is not regular as the intersection 1(C) N Bw(g) contains

entire cone Bw(g)

d¢(s)

[ (%) INTERSECTION

Fig. 7. Cone of plastic strain rates for the regular

material
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3.7 Examples of standard materials

The one-dimensional model of generalized standard elastic-visco-
plastic material can be constructed of springs, slides representing
dry friction and dashpots representing viscous damping. Simple one-

parameter one-dimensional material models are presented below

ELASTIC ELASTIC ELASTIC

-VISCOPLASTIC -PLASTIC - PERFECTLY
PLASTIC

Fig. 8. One-parameter one-dimensional standard material

models

It should be noted that the slide is characterized by the plastic
potential wl, which has the form of indicator function while the
dashpot is characterized by the viscous potential wz in the form of
differentiable function. The behaviour of parallely connected slide
and dashpot is represented by the viscoplastic potential ¢ = w1-+w2.

3
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We can give the mechanical interpretation of internal parameters
and internal forces considering displacements and forces in the

elements of the one-dimensional structure.

Fig. 9. Internal parameters and internal forces for

one-dimensional material model.

In the case of elastic-plastic material the elastic region takes

the form of diagonal strip in the generalized stress space
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Fig. 10. Elastic region for one-dimensional elastic-plastic
material

More complex, multiple parameter one-dimensional standard models’
can be constructed of dashpots, slides and springs connected parallely

or in series.

The generalized standard material model includes also three-dimen-
sional elastic-plastic models used for pratical calculations. Namely,
using the internal parameter concept we can describe the Mises work-

hardening material

= = e ' - = =
Ee=lg=loml: g -8l <m 8 =7, 8y ="y
(3.20)
Byy =Ty v Byy = Mg v By = Mgy Byy =]
where g' is the deviator of the tensor g
{ 1 if i=3j
o', =0,. - (0,./3)8,. §,, = (3.21)
i3 43 S 13 0 if i # i

the internal force ™ represents the yield limit and the symmetric

tensor E’denotes the displacement of the center of elastic region

during the plastic flow. The internal parameter w is defined by

t
- ([P _ P _ P _ P
w, f,e Idt ¢ Wy =€ w €51 uh €3p ¢
: o p p P (3.22)
Wg = €py r Wg = €39 1 Wy = €55
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The relation between the internal parameter and internal force is

determined by a positive definite matrix Z such that

z,, =k 2,.=2,,=0 i=2,...,7. (3.23)

11 1i il

Similarly we can describe the Tresca work hardening material in

terms of generalized standard material concepts

(3.24)

= = . i ' ' - ' - =
E . =Is [g,g].;a;nl,c @ " % BII<TF1,I 1,2,3,
By =Ty ¢ By =y, By =]
where 021) denotes the I-th principal value of the stress deviator
g'. Now the internal parameter w is defined by
t
= P = p = P = p .2
Wy [ ]5 lat , Wy = gy ¢ Wy = Eoy 4 By = €4, (3.25)
o
and a positive-definite matrix Z satisfies the relations
Z =k Z = Z =0 i=2,3,4. (3.26)

11 11 i1



- 18 -

4. BOUNDARY VALUE PROBLEM

Primarily we formulate the elastic-viscoplastic boundary problem
in four-dimensional space-time region V. We shall assume, for
simplicity, that all fields defined in ¥V are smooth (i. e. they have
all derivatives with respect to x and t) and that they vanish at

t =0.

4.1 Smooth kinematically and statically admissible fields

We introduce the kinematically admissible stress field p which

satisfies the compatibility equation

=1
Yij =3 (Vi,j + vj,i) iny (4.1)
Yij = Lijkl”kl iny (4.2)

(i. e. there exists the displacement field vy defined in ¥V such that

1
= - + 1
Lijklukl 5 (vi,j vj,i) in V) and vanishes on the boundary Bi
v, = (o] on Bk (4.3)

~ We shall also use the concept of statically admissible stress

field p which satisfies the equilibrium equation

. =0 inv 4.4
piJrj L ( )

" and vanishes on the boundary 59

pijnj =0 on E-s (4.5)

It can be shown that for every symmetric tensor field j satisfying
(4.1), (4.2) and for every differentiable symmetric tensor field o)

we have

injLijklukldo}é = injnjvid5 - inj,jvid;s (4.6)

\Y B v
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Hence if p is statically admissible and j is kinematically admissible

then the scalar product

asg
(g.)g,)L = injLijklukldz =0 (4.7)
v
i. e. every kinematically admissible field p is orthogonal, with
respect to the L-scalar product to every statically admissible field
X

In further considerations we shall use the concepts of generalized

statically admissible field r and generalized kinematically admissible

field m. The field r = [R',‘?.,] is called statically admissible if p is
statically admissible. The field m = [u,v] is called kinematically
admissible if u is kinematically admissible and y = O in V. The
G-scalar product of two generalized fields k= [L ,2] and

t* = [1*%,9*%] is defined by

~ ~

as
(Et¥ . = [,E-Gt*dx = J(;-g *+9.29%) dax (4.8)

It follows from the definitions that every generalized statically
admissible field r is G-orthogonal to every generalized kinematically
admissible field m.

(£I£)G =0 (4.9)

The above scalar products are defined for fixed time to and they

will be used to describe the rate boundary value problem.

We shall also introduce the G-scalar product constructed with
space-time integration over region V appropriate to the initial-

boundary value problem

~e~y G ~

£ -
RS 75 L Jt.gg* axe tat (4.10)

\Y
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Let us observe that the integration over time does not change the

properties of statically and kinematically admissible fields, i. e.

we have

< > =
Eﬁgrg 0

(4.11)

for every statically admissible r and kinematically admissible m.

The function e_t appearing in the definition of the scalar product

provides us with a simple relation between the field t and its time

derivative t.
"~

2<t,t> = ﬁE’E?G

provided that the initial valué of the fieldlg‘vanishes.

4.2 Perfectly elastic solution

(4.12)

In the sequel we shall assume that the solution 2? of the perfectly

elastic boundary value problem is known, i. e. we can find the stress

field ¢° which satisfies

Equilibrium equation

Boundary - rce condition

Compatibility equation

Boundary displacement conditions

Hooke's law

1

i
i
o (e}
u +u, .
¢ i,J Jed
i
OO
ijkl k1l

in

on

on

in

< 4&? <

=< *P

The perfectly elastic solution g? represents all external loading

applied to the body i. e. boundary force f boundary displacement p

and body force b.

(4.13)

Consequently we introduce the concept of generalized perfectly elas-

tic solution g? = [g?,g] which will be used to construct the actual

generalized stress field s.
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4,3 Initial-boundary value problem

Now the initial-boundary value problem can be formulated as

follows:

Find the generalized stress field g = [g,1#] and the generalized
total strain field e= [g,g], defined in the space time region ¥

and vanishing at the initial moment, such that

(1) the generalized residual stress field

r =g - S is statically admissible

~ o~

1

(ii) the generalized stress field m = g{ e - E? is kinematically

admissible

P

(1i1) the generalized plastic strain rate field & = G(f + m) and

the generalized stress field g satisfy the plastic flow law.

It should be noted that the fields s and ¢ at a given moment to
depend not only on loading represented by g? at to' but also on the
history of viscoplastic deformation in the time interval [O,to]. For
that reason the initial-boundary value problem is considered in four-
dimensional space-time region V. The solution of the ihitial-boundary
value problem represents the entire history of generalized stress

and strain in the region V.

4.4 Rate boundary value problem

The majority of works on the variational approach to the elastic-
viscoplastic problem, which have appeared till now concern the rate

boundary value problem. The solution of the rate boundary value

problem gives us only the rates of generalized stress and strains

at the moment tb provided that all fields at to are known and are

not subjected to any variation. Consequently we consider both the

field rates and the field values at time to as tensor functions
defined in three-dimensional region V. The other necessary assumption
is that the time derivatives of fields exist in every moment to 2 0.
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The rate boundary value problem can be formulated as .follows:

The generalized stress field s = [g,m] and the generalized total
strain field g = ['g ,g] defined in the region V at given moment to
are known. Find the rate of generalized stress field é’ = ['c:r,,ir'] and
the rate of generalized total strain field & = [g,0] defined in the

region V such that

(1) the rate of generalized residual stress field £ =s - 5 is
statically admissible

(ii) the rate of generalized stress field ig = G_lé - é'o is kine--

matically admissible

(iii) the generalized plastic strain rate field ép = G(r +m) and
the prescribed generalized stress field s satisfy the plas-
tic flow law.

The solution of the rate boundary value problem can be directly
used to construct a numerical solution with the step-by-step (in
time) method. In this case the history of plastic deformation is
represented by the generalized stress and strains at the considered

moment t .
o)
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5. SOLUTION OF THE INITIAL-BOUNDARY VALUE PROBLEM

5.1 Construction of the space of admissible fields

To complete the formulation of the initial-boundary value problem
given in the previous section we shall define the space of generalized
stress field where the solution of the problem is to be found. Namely,
we shall construct the Hilbert space H of all generalized tensor fields

1:' which have finite G-norm

|H b Hlé = IE'QE dx e Tat < + o (5.1)

~

\'4

~e

We shall call H the space of admissible fields and we shall seek our

solution in this space.

To construct the Hilbert space H it is‘ convénient to start with
the space gm(x) of all smooth (having all derivatives with respect
to Cartesian coordinates and time) generalized tensor fields bounded
in the space-time region V and vanishing at t = O. The norm in the
space C°(V) is given by

Igl12% swp t-t<+o (5.2)

The space gm(z) provided with the G-norm is called the unitary
space. It follows from the fact that the matrix G is positive definite

that
Helllgselll gl selv lglly exo (5.3)
where
af -
g ll? S «we =fj’g-5 dx e " at (5.4)
v

i. e. the G-norm exists for every field from the unitary space.
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The sequence {t .} of fields from unitary space is called the

(n)
Cauchy sequence if for every real c > O we can find such integer k

that

|1 - <
I"-E(n) 4E(k)|]|G c for every n > k (5.5)
The limit t= n%}g E(n) of Cauchy sequence in general does not belong

to the unitary space. All limits of the Cauchy sequences can be

divlded into classes of equivalence. Two limits t and Eﬁ belong to

the same class of equivalence if the corresponding Cauchy sequences

satisfy the relation

lim

_ g% -
dim gy - gy lllg=o (5.6)

The Hilbert space H is defined as the set of all classes of equiva-

lence, which can be constructed of fields from unitary space with the
G-norm. It should be noted that the space H provided with the G-norm
is complete as it was constructed by completion of the unitary space
with respect to that norm. The class of equivalence is fully deter-

mined by one field belonging to that class called the represehtative

of the class.

The above construction of the Hilbert space H provided with the

G-norm is not unique. We could alternatively start from other unitéry

space which assures the existence of the G-norm. For example we can

consider the unitary space of all finitely-valued generalized fields

defined in the space-time region V.

To define the finite valued field we introduce the family M of

all subregions xn of the space-time region ¥V such that

(1) vV EM
(ii) if VvV €EMthenV -V €M
ﬁlrl o~ '\Irl
) o
(iii) if v _€ M for n=1,2,... then the union U V_€ M
~n n=1"n

.

!

We shall construct the subregion Xﬂ of disjoint four-dimensional
space-time parallelepipeds Al
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t, +Q,

0 Y

Fig. 11. Four-dimensional space-time parallelepiped

The measure m(A,) of such parallelepiped is defined by

m(A) = [All [exp(-t ) - exp(-t; - a))] (5.7)

The measure m(gh) of the subreéion xn composed of disjoint parallele-

pipeds Al’ 1=1,2,... is defined by
m(y ) =) mh) (5.8)
1

Now we can assign a tensor En from T to every subregionz’n from

the family M. Such correspondence is called the tensor field t

defined on the family M.




- 26 -

The tensor field t is called finitely - valued if it

assumes a finite, non - zero value on a finite number k
of disjoint subregions Vn from M and zero value on the

remaining subregions from M.

The G-norm of the finitely - valued generalized stress

field t is defined by

k
- af
Mg llZ=[e-staze™ae T goaemyy - 9
\' n=1 '

~

If follows from the definition of the finitely - valued
field that the G - norm of such field always exists.

1 by the
completion of the space of finitely - valued generalized

Now we can construct the Hilbert space H

stress fields with respect to G - norm. It can be shown

that in our case the spaces H and El are equivalent.

The exact solution of the boundary problem can be
approximated by the fields from arbitrary unitary space
which was used to construct the Hilbert space. The space

of smooth fields implies polynomial approximation while

the space of finitely - valued fields implies one of

the finite - element approximations.

It follows from the definition of the admissible field

t from the space H that its value at a given point (5,t)

in the region ¥ 1s not determined. Namely, two represen-

tatives of the class of equivalence t may be different on

the set which has the measure zero.
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To determine the local properties of the admissible field we

shall use the mean-value operator L based on the finitely-

valued field concept

t+a
t

where the field t is assumed to vanish outside the region ¥V, the

m t(x,t) =£
~ o

ral Jw (x - y) tly,7) dye 'dr (5.10)
R

3

function w is defined by

3/(anrd) if x| < x
wix) = (5.11)
o if x| 2 ¢

and

a = exp (-t) - exp (-t - a) (5.12)

The mean-value operator mra determines the mean value of the

admissible field t in four-dimensional cylindrical neighbourhood

of the point (x,t) defined by the radius r and the time interval a.

t+a

0

Fig. 12. Four-dimensional space-time cylinder
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To define the derivatives of the admissible field we use the

unitary space of smooth fields. Namely, the field 4 is called the

time derivative of the admissible field E if

<t,t* >G = -<g,'g*>G + <,E'.E* >G for every t* €g°°(x) (5.13)

The vector field ¢ is called the divergence of the tensor field T

if the relation

<t,grad y> = - <c,v> (5.14)

is satisfied for every smooth vector field v vanishing on the

boundary B.

5.2 Kinematically and statically admissible fields

We define the subspace K of generalized kinematically admissible
fields as the completion of the unitary subspace of all smooth
kinematically admissible fields with respect to the G-norm. It
follows from the above definition that every field m from K
satisfies the compatibility equation, as all terms of the Cauchy

sequence are compatible.

Consequently the subspace S of generalized statically admissible
ftelds is defined as the completion of the unitary subspace of
‘smooth statically admissible fields with respect to the G-norm.
Since every field of the Cauchy sequence is in equilibrium then
every field form S satisfies the equilibrium equation.

It follows from the equation (4.6) that the space E is the
orthogonal sum-of the subspaces K and S, i. e. every admissible
field t from H can be uniquely decomposed into the sum of kinemati-
cally admissible field m and the statically admissible field r.

H=S6eK (5.15)
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Geometrical interpretation of the orthogonal decomposition of

the space H is presented in Fig. 13. The horizontal plane represents
the infinite-dimensional subspace X of kinematically admissible fields,
while the vertical axis represents the orthogonal subspace S of
statically admissible fields. The vector t represents the admissible

generalized stress field.

0

Fig. 13. Orthogonal decomposition of the space H
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The components r and m of the field Lt can be obtained by G-ortho-

gonal projection of the field t onto the subspaces S and K, respec-

tively.

5.3 Time-differentiable admissible field

The generalized stress field t is called time differentiable if

there exists the admissible field g such that

t
t(x,t) = J d(x,t")at (5.16)

~

o]

where the time integral is defined as the limit

t t

{ d(x,t')dt' = lim Jg (x,t') 4at' (5.17)
J n-o ~

o

where {Qf(n)} is the sequence of smooth fields convergent to g .

Making use of the equation (4.12) and the Schwarz inequality we
obtain for every smooth generalized stress field t vanishing at

t=20

' .
Ul e IHg=2 [ITE I, (5.18)

Hence every time differentiable field is admissible.

We shall denote by H', X' and S' the subspaces of all fields from
H, K and S, respectively, which are time-differentiable. We have
'I;I" c H, '13' < K and S' © 8. The properties resulting from differen-
tiation with respect to coordinates x, are preserved in the new

subspaces. Namely, if the field t from H is G-orthogonal to the sub-

space S' then the field t belongs to K'. We shall use this property

to construct the generalized strain field in the space H.
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5.4 Global plastic potential

To define the global plastic potential we introduce the auxiliary

function we(E) defined in the space T of generalized tensors by

O(t) 1f @) < + o

e (8) = (5.19)
c if Q@) =+

where c is positive real number. Now the global plastic potential of
the field t, which is the limit of Cauchy sequence {t(n)} is defined
as

®(t) = lim 1lim I(p (t .. (x;t)) dx e © at (5.20)
~ Cor® N c ~(n) ~ ~

Y

It follows from the properties of ¢ that the plastic potential ¢Q§)

is lower-semicontinuous, convex and it attains the minimum at the

origin of the space H.

The plastic flow law is formulated in the space H by the relation

g P ey (5.21)
which is equivalent to the requirement

<P s>- o(g) = o*(g &P (5.22)

~

where the dual plastic potential ¢* is defined by

0*(G"'eP) = sup [ <gP,t>- 0(t)] (5.23)
133

The above definition of subdifferential in the space H is based

on G-scalar product in the stress space. Alternatively we would

consider the dual strain space, which is obtained by multiplication

of stress fields by matrix G

<G'1ép,g> =<ép,5> (5.24)

~ o~ G ~
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We can show, that the plastic flow law established in the space H
is compatible with the formulation given for a space-time element of
material. Namely, for every point (;50 'Ato) € V we can construct space-
time cylindrical neighbourhood 'Yo of radius r and length a, which is
enclosed in the region V. Then we introduce the finitely-valued
stress fields l:‘ and s which assume the non-zero values 1;0 and 5o
respectively, in the subregion 'Y'O only. Substituting such fields to

the plastic flow law formulated in the space H we obtain the relation

..p.' - . '_ _ -p . _
m_ & (X ,t) 5~ 0(s) —tsuepT [mra,g (%,rt) - &g ‘9(130)] (5.25)
~NO O A~

which expresses the plastic flow law formulated in section 3.3.

5.5 Minimum principle

The initial-boundary value problem is formulated in the space of
admissible fields H as follows:

Find the field x from §' ' and the field m from
5' such that

o . (5.26)
r+m € 9% ¢( - r)

~ ~e

where the perfectly elastic solution 30 is given

The minimum principle follows directly from the definition of sub-

differential. Namely, for every r from S' and m from K' we have

Mzm) =0(s° - p) -<g’ -,z +m> + ¢¥(z +m 20 (5.27)

The functional A is convex and it attains the minimum (equal to zero)

if the plastic flow law is satisfied.
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Let us consider the functional Ao defined in the subspace E' by

Ao(g)

[
L=l
—~
4]

|
[a]
S

{
A
/]

_r,£>

o~ ~ ~o ~

.
o+ D) (5.28)

Q(’E) for all fields 'E from the plane 3 = 30 + S' and

where & (t)
ON

2; is the polar potential defined by

*(y) = © _ x5 - O _ .x .
*(x) = sup [<g™ - xr*, 1>, -8 (57 - ] (5.29)

rres’

It follows from the equation (4.12) that the functional A0 is

strictly convex. Hence it attains an absolute minimum (equal to

zero) at the unique field X, This fact assures uniqueness of the

stress field.

Making use of the inequality

sup [<m*,m>. - ¢(s” - z* + m¥] 2 - o(s’ - £¥) (5.30)

and the G-orthogonality of fields from K and S we obtain

A(EJE) > Ao(£) : (5.31)
in the plane P.

Now we can establish the MINIMUM PRINCIPLE for the residual

stress fields.

The functional Ao(zf) defined for prescribed

perfectly elastic solution 5? and for all differentia-
ble statically admissible generalized stress field Ef
attains an abscolute minimum (equal to zero) if and only
if £f is equal to the actual generalized residual stress
field x.
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Fig. 14. Minimum principle for residual stress

The construction of the kinematically admissible generalized

field é,is not always unique. Hence the generalized strain field

may be not unique.

Taking into account the property of the regular standard model
we conclude that in this case the strain field g is always uniquely

determined. Hence for the regular standard material the solution of

the initial-boundary value problem is unique.

It follows from the above consideration that the solution exists
if the plastic potential $ in the plane P assumes at least one

finite value. Hence we establish the necessary and sufficient

condition for the existence of solution:

The intersection EC of the plane P = s + S' and the effective

~

domain E of the potential ¢ is not empty
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where the effective domain of the potential 2 in the space H is

defined by

E = [5 : 0 (t) <+ ] (5.32)

5.6 Minimum principles for the elastic-plastic model

In the particular case of the generalized standard elastic-plastic
material we can express the minimum principle in terms of the elastic

region E which is defined in the space H by

"

E = [5 : 9 (t) 0] (5.33)

We introduce the yield function determined in the space H by

the elastic region E

F(t) = inf [c > 0 : t/c € E] (5.34)

We construct in the subspace Ef the set E determined by the

perfectly elastic solution 5? and the intersection E?.

U=lt:c<g’ - g k> 20k

| * >
c 2<I>o(t)] (5.35)

Where the polar potential ¢g in the subspace S' is defined by

fb:({:) = sup <s® - t*, > (5.36)
LFEE

It follows from the construction that the closed set U is strictly

convex and contains origin on its boundary.
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Fig. 15. Construction of the set U

We also introduce the functional W defined in the space §' deter-

mined by the region U
Ww(t) = inf [c > 0 : t/c € U] (5.37)

The complementary principles for the stress field are based on
o}
the fact that the sets g? - U and E have only one common field s,

which is the solution of the problem. Thus we have

MINIMUM PRINCIPLE for residual stress

The yield functicon F(so - r*) defined for prescribed perfectly

~

~ ~~

minimum (equal to 1) if and only if r* is equal to the actual

elastic solution so and for all fields r* from U attains an absolutei
{
generalized residual stress field r. |

] |




and MINIMUM PRINCIPLE for stress

o'
The functional Wis - gf) defined for prescribed perfectly elastic
mum (equal to 1) if only if g* is equal to the actual generalized

[ o .
solution so and for all fields s* from E attains an absolute mini-
!
|
| stress fiesld s- i

Fig. 16. Construction of the stress field for elastic-

plastic material
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5.7 oOther constructions of the scalar product

The space-time scalar product based on the function e-t is not

unique. We can repeat our derivations for the scalar product

~

<£,~*>G = [t .55* dxh(t)dt (5.38)

\

~

provided that the non-negative function h(t) defined for t > O assures

the existence of the measure of the region Vv

(=~}
m(v) = |v| [ h(t)dt < + o (5.39)

[e]

and assures that the product < ‘5,'1::’ >1is strictly convex in the space H.

The scalar product based on function

1 t < to
h1 (t) = (5.40)

o] t>t
(o}

does not assure the second requirement as
2<t,£>, = [t -Gtdx

G

If we introduce the scalar product based on the function h2(t) =
h1 (t)e“t then we have

G ~ ~ ~

v t=t

. -t
2<l:’,£> = <£,£>G +e © [t «Gtdx

and all requirements are satisfied.
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6. SOLUTION OF THE RATE BOUNDARY VALUE PROBLEM

6.1 Construction of the space of admissible fields

To construct the space of admissible fields H we shall use the

space c®(V) of all smooth generalized tensor fields‘s, defined in

three~-dimensional region V at time to' as a unitary space provided

with the scalar product

(8" = [t serax (6.1)
v

The space H is defined as the completion of the unitary space.

To determine the local properties of the admissible fields from H
we shall use the concept of fields from alternative unitary space of
all finitely-valued fields defined on the Lebesque-measurable family

of subsets Vn cv

mr'g(;\g,to) = J(“’(E—X),E(Z,’t
v

The subspace K of generalized kinematically admissible fields is

o) dz (6.2)

defined as the completion of the subspace of all smooth kinematical-

ly admissible fields with respect to the G-norm.

Consequently the subspace S of generalized statically admissible
fields is obtained by completion of the unitary subspace of smooth

statically admissible fields.

The plastic potential ¢ of the field t = r}im t(n) from the space
~ oo™
H is defined by
¢(t) = lim 1lim [(p (t, . (x,t)) dx (6.3)
C+e Nyl € ~(MN) ~ 0 ~
\'

The plastic flow law in the space H has the form

g 1P € 20(s) (6.4)

where the subdifferential is determined by prescribed generalized
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stress field s-

Analogously to the considerations in section 5.4 we can show that
the above plastic flow law is compatible with the primary formula-
tion for the small element of the body.

6.2 Minimum principle

To formulate the rate boundary value problem in the space H we
introduce the functional x which is defined in the space H as the

indicator of subdifferential 8¢Q§)

(6.5)

o if  t € 3%(s)
x(t) =
+

= if t € 3d(s)

The polar functional x*(é) represents the rate of plastic potential

® due to the stress rate’é

x*(g) = sup [(8,8) . - x(t)] (6.6)
t€H

The rate boundary value problem can be formulated as followé

Find the field é from S and the field é from K such that

PeRe - b

(6.7)
where the rate é? of the perfectly elastic solution is
given
Indeed, the above relation written in the form
*' O - e} . . o - oy
X8 -x) - (8T -z.r+m .+ X(x+m) =0 (6.8)

is directly equivalent to the plastic flow law at the moment to
r +m € 3%(s) (6.9)

and the compatibility of the rate of plastic potential with the rate

of stress field
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= x*(g) (6.10)

~y

Now, repeating the derivations from the previous chapter we
introduce the functional AO defined in the subspace S of statically

admissible fields

A(Z) = x*¥(s"-0) - (S-z.D) *+x @ (6.11)

where Xg<£) = x*(g) for all fields t from the plane P = é? + S and

X, is its polar potential defined by

x () = suwp [(8°-1* 2 - x*(s°-£%] (6.12)
O ~ i*ES ~ ~ ~ G fo)

Since the functional Ao is strictly convex in P then the uniqueness

of the generalized stress rate‘é is assured. The construction of

the kinematically admissible field é’resulting from the minimization
of the functional

Mzm = x*(8°-1) - (8-, L+m)  +X(L+m) (6.13)

in the space H may be not unique. Hence the rate of generalized

plastic strain é? is, in general, not unique. Uniqueness of strains

is assured in the case of regular materials.

The MINIMUM PRINCIPLE for the rate of generalized residual stress
field takes the form

The functional Ao(éf) defined for the prescribed perfectly elastic
solution 5? and its rate é? and for all statically admissible

fields éf attains an absolute minimum (equal to zero) if and only
if if is equal to the actual rate i of generalized residual stress

field.

The necessary and sufficient condition for the existence of

gsolution can be presented in the form
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The intersection Ao of the plane P = é? + S and the effective

domain A of the potential x* is not empty.

6.3 Minimum principle for the elastic-plastic model

In the particular case of the generalized standard elastic-plastic
material the subdifferential BQ(E) is a cone in the space H. Then

the effective domain A of the potential y* is identical with the

polar cone [38(s)]*, i. e.
A=[t: (’E"E’*)G <0 for all t* € 3@(5)] . (6.14)

and the potential x* is the indicator of the domain A. The domain A

represents the set of all plastically admissible generalized stress

rates.

Now the minimum principle is equivalent to the minimization of

functional

A (x)
°~

sup (£ -r*, (6.15)

r)
i*e,éo‘Ao G
in the domain é? - 2°. It follows from the convexity of the region
a° that A, reaches minimum at the unique field r, which represents
the shortest distance between the field é? and the domain A° in

terms of the G-norm.

The gecmetrical representation of the mathematical objects dis-

cussed above is given in Fig. 17. Here the elastic region E is the

effective domain of the plastic potential ¢ and the yield surface Y

is the boundary of E. The intersection of plane P and the region
E is denoted by EC.
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Fig. 17. Construction of the solution in space H.

Hence we can establish the MINIMUM PRINCIPLE for the stress rate

The functional !é?-—éf’h; defined for the prescribed rate é? of
the perfectly elastic solution and for all stress fields éf from
the domain A° attains an absolute minimum if and only if éf is

equal to the actual rate‘é of generalized stress field
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Fig. 18. Construction of the stress rate
field for elastic-plastic material

6.4 Minimum principle for the regular point of plastic

potential

We shall call the stress field s the regular point of the plastic

potential ¢ if the subdifferential 3%¢(s) consists of one field g
only. In this case we obtain directly the fields é,and é’by G-ortho~

gonal decomposition of the field é into statically admissible and

kinematically admissible component

(6.16)

=2

s .

r +
~

Since such decomposition is unique we obtain unique rates of genera-

lized strain and stress ficlds,
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Hence, if 8@(3) then we have the MINIMUM PRINCIPLE for

il
Q-

residual stress

'[

|
|

The functional || g - f*llG defined for the prescribed field g
and for all fields i form S attains an absolute minimum if
and if éf is equal to the actual rate i of generalized resi-

dual stress field.

L

and the complementary MINIMUM PRINCIPLE

The functional |[é - éf|h3 defined for the prescribed field g
and for all fields m* from K attains an absolute minimum if
and only if g - m* is equal to the actual rate i}:fgeneralized

residual stress field.

The above minimum principles are equivalent to the orthogonal

projections of the field é onto subspaces S and K, respectively.

~
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7. NUMERICAL APPROACH

7.1 Finite element idealization

Let us apply the minimum principle derived in Section 5.5 to obtain

approximated solution of the elastic-viscoplastic initial-boundary

value problem. It is convenient to construct the approximate solution

in the form

n
£(x,t) =Zek(t> £ @ (7.1)
k=1

resulting from the finite element idealization of the space~time

region V.

o)

Fig. 19. Space-time finite element idealization of the

region V
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Here Ek(ﬁ) represents the generalized stress field at the moment
tk. Sectionally linear function Ok(t), defined in the time interval
[O,tn], is presented in Fig. 20. The form (7.1) expresses the assump-
tion of sectionally linear distribution of stress field with respect

to time.

ol ¢ b, bt bt t
Fig. 20. Sectionally linear time function

The perfectly elastic solution E?Qﬁ't) is represented by the set

of fields gigg) +k=1,2,...,n, which correspond to the loadings at

time t t2,...,tn, respectively

1'
n
% (x,t) = E 0, (t) sz(x) (7.2)

Here we assume that the fields si(g) ,k=1,2,...,n have been already
obtained by the standard finite element technique for linear, elastic

boundary value problems at times tl' t2,...,tn.

Consequently the statically admissible field £j§Jt) will be

presented in the form

=

rix,t) = Z 0, (t) x, (x) (7.3)
k=1
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7.2 Construction of statically admissible field

To construct the statically admissible field Eng) we start from
arbitrary system of forces applied to an element of the structure
at its nodal points, which assures the equilibrium of the element.
The set of such forces corresponding to all elements of the structure

will be called the primary vector of free forces. Then we reduce the

number of free forces by introducing the system of linear algebraic

equations representing the force equilibrium in every node in the

interior of the region V and on the boundary BS. Eventually we ob-

tain m-dimensional vector of free forces which determines arbitrary

statically admissible field Ek(ﬁ) in the region V.

Fig. 21. Primary vector of free forces
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According to the formula (7.3) the statically admissible field

r(x,t) is represented by (mx n)-dimensional matrix of free forces,
which will be denoted by 5 = Xlk s1=1,2...,m,k=1,2,...,n. The
k-th column of the matrix X represents the state of stress at the

moment tk'

Let the function h(t) appearing in the definition (5.38) of the
scalar product assume the form h2(t), described in Section 5.7,

where to = tn' and let us denote the product mxn by N.

Now the set of all N-dimensional matrices X determines the sub-
space E&, contained in the subspace S' of all statically admissible

fields.

7.3 Numerical technique

Substituting the forms (7.2) and (7.3) into (5.28) we can approxi-
mate the polar functional @; by

* = o
e ¢ sup [<s

-
3 '
r
€S

i

(%) >, - o_(s” - 9] (7.4)

G

Since we are restricted to the subspace Sy then ¢;

]
£'€ EN'

< p*
NS @o for every

The initial-boundary value problem is now reduced to the minimiza-

tion of the functional

- - o _ y *
/\oN(}é) = ¢0N(§) <s r(X) , x(X) >G+ ¢0N(£) - (7.5)

) It follows from the

fo)
in th b S'. H = -
in e subspace Sy ere q)oN(')é) Qo(fw 5(3\(,
<

).
evaluation of the polar functional that AoN Ao in the subspace E&.

Geometrical interpretation of the numerical minimization is given
in Fig. 23. The horizontal plane represents the subspace 8' of all
statically admissible fields. Our numerical minimization is restricted
to the subspace E&, represented by the horizontal axis. The approxi-

mated solution is represented by vector £(N)'
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S g P
0

Fig. 23. Numerical minimization in the subspace g&.

7.4 Relation to the implicit technique

Let us consider the particular case of the elastic plastic material.

Then we can reduce our numerical problem to minimization of the

functional
(X) = sup  <x(X) - r*,z(X)> (7.6)
ON r*eso_Eo G

in the region E? - g;, where E; is the intersection of the plane

f? + §& and the elastic region E.

In the particular case of time idealization, where the set of

time nodes tl’ t2

r can be expressed in the form
~

,...,tn is reduced to one node tl’ the stress rate



é@s) =r(X)/t (7.7)

~

Substituting the above relation into (7.6) we conclude that the

functional AoN attains an absolute minimum if and only if the

distance I[L£[!!G from the origin of the subspace §& to the convex

o . . .
set s - E; attains an absolute minimum. The last statement coin-
cides with the notion of the implicit technique proposed by MOREAU
in [7].

0

Fig. 24. 1Implicit technique in the subspace E&.

It should be noted that in the considered case of one time step
we can also construct the scalar product using the function hl(t)

described in Section 5.7. Since the value r, (x) at time t, uniquely

1
determines the history of r(x,t) then the form hl(t) assures that

the scalar product <£"%'>G is strictly convex.
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