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Zusammenfassung

In dieser Arbeit wird eine vereinheitlichte mathematische
Herleitung des dem Anfangsrandwertproblem £iir elasto-visko-
plastische Korper bei groBSen Deformationen entsprechenden
Minimum-Prinzips vorgestellt. Eine integrale Formulierung

des Problems wird vorgeschlagen. Das Materialverhalten wird
mittels interner Parameter beschrieben. Diskontinuit&iten der
Verschiebungen iiber interne Oberfldchen sind zugelassen. Eine
Konstruktion der dualen R&ume der Dehnungs- und Spannungs-
funktionen wird angegeben. Das resultierende Minimum-Prinzip,
das der gesamten Geschichte des Deformationsprozesses ent-

spricht, wird diskutiert.

Summary

The paper presents a unified mathematical derivation of the
minimum principle corresponding to the initial-boundary value
problem of large deformation of elastic-viscoplastic solids.
An integral formulation of the problem is proposed. The
material behaviour is described in terms of the internal
parameters. Discontinuities in the displacements across
internal surfaces are admitted. A construction of the dual
spaces of strain and stress functions is given. The resulting
minimum principle, corresponding to the entire history of

the deformation process, is discussed.
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1. INTRODUCTION

This work presents a unified mathematical derivation of
the minimum principle corresponding to the initial-boundary
value problem of large deformations of elastic-viscoplastic
solids. Although the presented description of the deforma-
tion and the material behaviour is based on the classical
concepts of the theory of plasticity, it represents a con-
siderable departure from the usual approach used in the
literature. The essential features of the proposed des-
cription are:

-~ The definitions of the strain and stress tensors are
based on the integral relations for the regular subregions
of the considered region. Similarly the equilibrium equa-
tions for the continuous body take the primary form of the
requirement of equilibrium for every regular subregion of
the body. '

~ The concept of the generalized standard material pro-
posed by NGUYEN and HALPHEN [3],[4] is used to describe
.the material behaviour. A modified form of this concept,
whére the internal and external parameters are related by
the appropriate balance equations, is proposed. According
to this modification the stress tensor represents the
external loading of the material while the internal stress
tensor represents the state of forces in the material
structure. Similarly the strain tensor represents the
external energy supplied to the material while the total
internal strain tensor represents the energy absorbed in
the structure. It should be noted that the internal stress
and strain tensors are defined in the system of coordinates
connected with the material structure.

= In contrast to the geometrical concept of the plastic
deformation proposed by GREEN and NAGHDI [l] or LEE and
GERMAIN [ 2] and commonly used in large deformations theory
the plastic and elastic components of the internal strain
are defined here as the representatives of the mechanical
energy dissipated and stored in the material structure,

respectively. Due to this definition the total internal



strain tensor is additively decomposed into the elastic and
plastic part.

- In contrast to the restricted variational principles for
the "rate problem" existing in the literature [11] we con-
struct here the minimum principle for the entire history of
the elastic-viscoplastic process, represented by the stress
and strains functions defined in the space-time region.
Similar construction of the minimum principle for small de-
formations of elastic-viscoplastic solids was presented in
[14],[15]. The functional to be minimized is expressed in
terms of tﬁe integrals over the considered space-time
region. Due to the properties of the prescribed weight fun-
ction of time, appearing in the integrands, the plastic
strain function is integrable provided that the rate of

this function is integrable. It should be emphasized that
the rate of plastic strain is here a primary notion. The
plastic strain function is uniquely determined by its rate
and the initial value.

- 1In contrast to the dual spaces of tensor functions used
in the mathematical theory of plasticity (such as the space
of bounded deformations [12],[13] ) the dual spaces construc-
ted in the work are determined by the constitutive relations.
This original construction, which ensures the reflexivity

of the dual spaces, was already announced in [16],[17]. It
should be noted that the reflexivity of the dual spaces is
of fundamental importance in a proof of the existence of the
solution of the problem.

The formal mathematical description of the problem and
the construction of the corresponding minimum principle is
based on the theory of the measure and the integral [7],[8],
theory of the duality [6]1,[7]1,[9]1,[10] and the convex analysis
[51,[61,[9]1,[10]. To provide a self-contained presentation
of the work the main mathematical ideas and principles used

in the derivations are exposed in the text.

In section 2 we introduce the concept of the regular
region. The set of all regular regions of positive volume
is used in the work to describe the continuous compatible



deformation of the body. In order to generalize the consi-
derations onto discontinuous compatible deformations we
also introduce the additional set of all regular regions
of volume zero. Such regions are identified with the slip

surfaces,

The idea of continuous and discontinuous displacement
function is presented in section 3. A particular construc-
tion of the continuous compatible displacement function is
given in section 4. The concept of subdivision of the consi=-
dered body into the regular regions subjected to the homo-
geneous deformation is similar to the finite element dis-
cretization and can be directly used to obtain the appro-
ximated solution.

In section 5 attention is confined to a regular region
subjected to the homogeneous deformation. For such region
the concept of the strain and stress, which will be used in

further consideration, is defined.

Section 6 presents an attempt to provide a comprehensive
material model based on the concept of the internal parame-
ters. Extending the idea of the "generalized stress" and the
"generalized strain", presented by NGUYEN in [3], to large
deformations we introduce the "internal stress tensor" which
determines the internal forces in the hypothetical material
structure. Consequently the "elastic strain tensor" and the
"plastic strain tensor" are interpreted as the internal
deformations of the elastic and plastic components of the
material structure.

The constitutive relations for the elastic~viscoplastic
material described in section 7 are based on the theory of
the "generalized standard materials” where one postulates
the existence of convex free energy function and convex
dissipation potential. The relations are postulated in the
unified form of multi-valued functions and expressed with

the standard notions of the convex analysis.

It is shown in section 8 that the descriptions of the



plastic flow named after HUBER-VON MISES or TRESCA may be
regarded as special cases of the general relations assumed
in this work.,

The idea of integral formulation of the kinematical and
statical relations for the continuous body is presented in
section 9. Here we introduce a family of space-time regular
subregions of the considered region. The tensor fieids defi~-
ned on this family are represented by the corresponding
space-time tensor functibns.

The construction of the dual spaces determined by the
constitutive law is presented in section 10. For the sake of
simplicity the derivations are restricted here to the conti-
nuous deformations of the body. Analogous construction for
the discontinuous deformations is given in section 14.

Finally, using the concepts introduced before, we present
an original formulation of the initial-boundary value problem
(where only continuous deformations are admitted) in section
11. This formulation leads directly to the corresponding
minimum principle, which is established in section 12. The
problems of existence and uniqueness are briefly discussed
in section 13.

The approach described in the work can easily be genera-
lized to cover a case when the displacement discontinuities
are admitted. The modified formulation of the problem, where
the internal slip surface constitutes an additional unknown,
is presented in section 14, Now the global functions and the
bilinear form, used to construct the minimum principle,

include additional surface integral over the slip surface.

Finally the solution of the problem can be obtained by
‘minimization of the appropriate function defined on a class
of sufficiently regular internal surfaces. Every internal
surface from this class determines the set of kinematically
admissible displacement functions in which the subsequent

minimization is carried out.



2. REGULAR REGIONS

In this section we shall introduce the concept of a regu-
lar region in the space R3. This concept will be used
throughout the work to formulate the kinematical and sta-
tical relations for the continuous body. The qualification
"regular", explained below, is introduced in order to res-
trict a variety of all possible sets contained in R3 to the
regions V having the boundary B such that the appropriate
volume integrals over V and the surface integrals over B

can be defined.

A region V will be called regqular if:
(i) V is an open bounded set in the space R3 having two-di--
mensional boundary B. The volume |V| of the set V, identi-
fied with the Lebesgue integral over V, is finite

vl = I dV < o . (2.1)
v
(ii) The Lebesgue surface measure is defined on the boundary
B of the set V. The surface measure |A| of an open two-dimen-
sional set AcB will be referred to as the area of this set.
This property enables us to define the surface integral over
the boundary B. In particular we have

= [as . (2.2)
A
(iii) The unit vector m, normal to the boundary B and taken
as positive outwardly, is defined almost everywhere (with
respect to the surface measure) on B. Namely, the normal
unit vector m is represented by the vector function wv(A)

J n dB = v(A) (2.3)
A
which is determined by the approoriate orthogonal projec-
tion of the set A onto the planes x1=0, x2=0 and x3=0.

Here it is necessary to explain more precisely certain

notions appearing in the above definition.



' Three-dimensional set V of points # in the space R3 is
called open if and only if for every point xoev the set V
contains a three-dimensional sphere Kp=[x:|x-xo|<p] with

the centre xo and positive radius p.

Condition (i) states that the boundary B of the region V
is a two-dimensional set in the space R3. Roughly speaking
this set can be obtained by taking pieces of a plane, defor-
‘ming them continuously and arranging them in such a way that
the resulting boundary is a closed surface, which has no
self-intersections. According to condition (iii) the surface
B is oriented in the space R3, i.e. the inner and outer
faces of this surface are uniquely determined. This property
follows from the assumption that B separates the interior of
the region V from the exterior.

Two-dimensional set A of the pointé # contained in the
surface B is called open if and only if for évery xOEA the
set A contains the intersection BnKp of the surface B and
the sphere Kp (see Fig.l).

Fig.l. An open set A on two-dimensional surface B in R3.

The vector function v(A) defined for every open set A
contained in the surface B is introduced here as a primary
notion, which will be used to define the surface measure |A|
and the normal unit vector n. The construction of this funct-

ion is presented below.



Let us determine the first component vl(A) of the funct-
" ion v(A). We decompose the set A into two disjoint parts: A+
and A as follows: the point a—[xl,xz,x JEA belongs to the set
AT if there exists a positive real number s such that the
segment [xl-c,xz,x3], O<csco is contained in V (see Fig.2).
If this condition is not satisfied then x belongs to A .

PLANE

proj A+

1]

Fig.2. The orthogonal projection of the open set A con-
tained in the boundary B of the region V onto the
plane xl=0 in the space R3.

Assuming that the orthogonal projections proj At ana
proj A  onto the plane xl=0 are measurable (in the sense of
the Lebesgue measure in the space Rz) we have

vi(8) = Iproj A¥I-Iproj A~ | (2.4)

where |proj A+I denotes the area of the set proj A+.

Analogously, repeating the above construction for the
axes X, and x5 we obtain the remaining components vz(A) and
v3(A) of the vector v(a).

To determine the surface measure |A| of the open set A
we shall use the family of all sequences of disjoint open
sets Al'
defined as the upper limit of the function Iv(Al)|+|v(A2)|+...

AZ"" which are contained in A. The measure |A| is

defined for every sequence from this family



A= sup[lv(Ai) I+Iv(A2) I+...:A1,A2,..CA,AinAj=¢ i*j]  (2.5)

Qhere Iv(A) | denotes the length of the vector w(A) in R3.

It should be noted that the positive number |A| can be
obtained as the limit of a seguence of the functions corres-
ponding to an ascending sequence of the subdivisions of A
into open sets. Such ascending sequence is constructed by
consecutive subdivisions of the open sets into smaller parts.
The corresponding sequence of functions is non-decreasing,
what implies the existence of the limit.

Indeed, taking into account the additivity of the vector
function w(a),i.e.

V(A])+V(B)) = V(A UA,) (2.6)

for arbitrary disjoint open sets A,,A.cB, we obtain

17772

Iv(Al)|+Iv(A2)I 2 Iv(A1UA2)|. (2.7)

The vector function w(A) and the resulting surface mea-
sure |A| determine on B the normal unit vector n. Namely,
every function n(x) mapping the points » from B into unit
vectors n, which satisfies the integral relation

J n dB = v(3) (2.8)
A
for every open set AcB will be called the function of unit
vectors normal to the boundary B.

It should be noted that the above definition does not
ensure the uniqueness of the function n on the boundary B.
More precisely, there exists a class of functions n defined
on B satisfying the relation (2.8). Two arbitrary functions
from this class are equal almost everywhere on B with respect
to the surface measure (they may differ in a set of measure

zero) .



Making use of the above definitions we can prove the fol-
lowing identity

J x® n dB = |V| 1 (2.9)
B
where the vector x denotes the coordinates of a point on the
boundary B of the regular region V, the symbol ® denotes the
tensor multiplication of two vectors

Xl nl X.-n X, n Xln3
X, ® [ny| = |Xyn Xon, X,n, (2.10)
X3 n3 x3n1 X3n2 x3n3

and 1 is the unit tensor

1 00
L =0 1 of - (2.11)
0O 0 1

Indeed, integrating arbitrary diagonal component of the
tensor function #®n, for example Xyn,, over the surface B
we obtain the volume |V]|. This result follows from the fact
that the integral over B may be presented as the integral
over the orthogonal projection B(l) of the region V onto the
plane xl=0 (see Fig.3)

lenl dB = Jl(xz,x3) dB(l) = |V| (2.12)
B B(1)
where 2(x2,x3) denotes the total length of the intersection
of the line [c,xz,x3],—m<c<m and the region V. The infinite-
simal surface dB(l) is heie defined as the orthogonal pro-
jection of the surface dB cB (or the corresponding surface

dB cB) onto the plane x.=0

1

aB = vl(dB+) =-v, (dB7). (2.13)

(1)

Integrating arbitrary non-diagonal component of the tensor

function #®@n, for example Xon,, we obtain
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[xny @8 = %, tv @ +v @7 = 0. (2.14)
B B(l)
PLANE xl=O
B
A"
4 +

By [T Al 5

- +

b 4 x

.Vi—“xz"%)—" |

Fig.3. Geometrical interpretation of the identity (2.9).

In the sequel we shall also use the concept of regulaf
region of volume zero in the space R3. Such region V can be -
obtained by continuous deformation of arbitrary regular
region in such a manner that the outer face of its boundary
remains outside, the limit of the volume |V| is equal to
zero and the final surface B is measurable and has the nor-
mal unit vector (in the sense presented above). It follows
from the above definition that the region V of volume zero
has the surface measure determined by the measure of the
corresponding set a’ (or A”) on its bourndary B (see Fig.4).

- 3
e \

Fig.4. Region V of volume zero in the space R3. It may be
identified with the interface between disjoint regular regions.
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3. CONTINUOUS AND DISCONTINUOUS DEFORMATION

Let us consider three-dimensional connected body in the
space R3, which occupies the closure Vo of a regular region.
The boundary of the region V0 is denoted by B,.

The region V0 will be referred to as the initial confi-
guration or the reference configuration of the considered
body. The deformation of the body is described in terms of
the displacement function u: VO»R3, which maps every_point
x =[xl,x2,x3] from Vo into a vector u =--[ul,uz,u3] from the
space R”.The displacement function u determines the trans-
formation of the initial configuration Vo into the actual
(or deformed) configuration VO, which is defined as the
set of all points X = x + u(x) such that X€V .

We introduce a class of the displacement functions which
satisfy the following requirements:
(i) The displacement function u determines a one-to-one
mapping VO«VO of the region Vo onto the set VOER3.
(ii) The mappings Voavo and VO»VO both map open sets onto
open sets, i.e. the image V of arbitrary open set V con-
tained in Vo is an open set contained in Vo and the inverse
image V of arbitrary open set VEVO is an open set contained
in Vo‘
(iii) The mappings VO»VO and VO»VO both map regular regions

onto regular regions (see Fig.5)

Fig.5.Continuous deformation of the region V.
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It should be noted that the requirements (i), (ii) imply
the continuity of the deformation. This property ensures
the compatiblility of the deformed body and excludes a
possibility of appearance of the slip surfaces in the consi=-
dered body.

Due to the property (iii) one can define appropriate sur=-
face integrals over the boundary of the regular region both
in the reference and the actual configurations of the body.
These surface integrals are used throughout the work to
formulate the kinematical and statical relations for the

considered body.

In order to admit the surfaces of the displacement dis-
continuity we modify the conditions (i)}(ii),(iii) assuming
that they concern the points and open sets which do not
intersect certain regular region Ve'of zero volume contained
ip VO. It is assumed that the region Ve' called the slip
surface or the internal surface of the displacement discon-
tinuity, is transformed during the deformation of the body

into a regular region Ve of volume zero (see Fig.6).

It should be noted that the modified set of the require-
ments, which is less restrictive than the original one,

also assures the compatibility of the deformed body.

R3

% v
z V€ ®x o

v
x

0

Fig.6. Discontinuous deformation of the region VO.
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4. SECTIONALLY HOMOGENEOUS DEFORMATION

In section 5 we shall introduce the idea of strain and
stress based on the assumption of homogeneous deformation
of the regular region. The purpose of this section is to
show that there exists a wide class of continuous deforma-
tions of the body Vo resulting from the homogeneous defor-
mation of its regular subregions. We shall present here one
possible method of decomposition of Vo into reqular sub-
regions and we shall describe a compatible deformation of
the body in terms of the homogeneous deformation of the

subregions.

We introduce a regular region U composed of a number of
open tetrahedrons Ui,i=l,2,..,io in such a way that:
(i) Every tetrahedron Uy has positive volume IUil.
(ii) Admissible connections of two distinct tetrahedrons
are: common side (triangle), common edge (segment of the
straight line), common corner (point) or no connection.
The set of all points, in which the tetrahedrons have their
corners, will be denoted by x(k),k=l,2,..,ko and referred '
to as the set of nodes.
(iii) The considered region v, is contained in U in such
a manner that every tetrahedron intersects VO (see Fig.7)

VO c U where U = UlUUZU"'UUiO (4.1)

v, nu, # @ for i=1,2,..,1 (4.2)

Fig.7. Sectionally homogeneous deformation of body Vo‘
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The construction of the region U determines a decomposition
of the body VO into the finite number of the regular sub-
regions Vi,i=1,2,..,iO defined by

Vi = Ui n VO for 1=1,2,..,1O (4.3)

Indeed, every region Vi is regular as it is either a
tetrahedron (internal subregion) or the intersection of a
tetrahedron with the regular region VO (boundary subregion).
It follows from the above construction that these subregions
are disjoint and the sum of their closures is equal to Vo‘

Let the deformation of the auxiliary region U be deter-
mined by the displacements u(k)’k=l'2""ko of the nodal
points x(k)’k=l'2""ko as follows:

(i) For every tetrahedron Ui the corresponding nodes x(k),
x(l),x(m),x(n) do not change their relative orientation in
the deformed configuration (see Fig.8)

X
bx X(k) (k)
3
b 4
(m) ﬁi
x
- (m)
21 |
X _ ~
(1) % X(n)
(n) - xl

)

Fig.8. Homogeneous deformation of the tetrahedron Ui‘

This requirement can be written in the form of the

inequality
il(k) ;2(]() %3 (x)
1 X
1(m) “2(m) “3(m)
1 X () X2(n) 2‘3(n)d
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provided that the initial orientation of the nodes (presen-
ted in Fig.8) is such that

L X m 20 X3
1 X X X
get |, LW 2 3Ly 50 . (4.5)
1(m) *2(m) *3(m)
|1 X1y *2(n) *3(n)

(ii) The displacement of a point x from the tetrahedron Ui
is expressed by the linear form

u = u® + g(x-x°) (4.6)

where uo is the displacement of the centre of volume %x° of
this tetrahedron

o _ 1
x =7 (x(k)+x(l)+x(m)+x(n)) (4.7)
u® = % (# 1y ¥ (19 ) Py ) (4.8)

and the tensor q, called the displacement gradient, can be
obtained from the system of linear equations

8%y 1y A5 2300 1911 921 931] AUk AYa(x) A“s(kﬂ
BXy 1y 8%y (1) 8X3(1y] (912 F22 I32|[AY1(1) AY2(1) AY¥3(1)
%1 my B%2(m) 23| (913 923 933) [2Y1(m) A%2(m) Au3(m)J

(4.9)
where Ax(])— x(k) * and Au(])— u(]) u .

(iii) The boundary of the deformed region U does not inter-

sects itself.

The deformation described above will be called sectionally
homogeneous. From the definition it transforms every tetra-
hedron Ui into tetrahedron ﬁi' The homogeneous deformation
of every tetrahedron is represented by the appropriate dis-
placement gradient g. One can easily show that such defor-
mation satisfies the requirements listed in section 3 for
the continuous displacement function. The same requirements

are satisfied for the considered region Vo as it is a regular
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region contained in U.

The concept of sectionally homogeneous deformation of the
body constitutes the basis for the description of the material
behaviour presented in sections 5,6 and 7. The constitutive
law is formulated there for an elementary subregion (in general

infinitesimalv small) subjected to the homogeneous deformation.

5., STRAIN AND STRESS TENSORS

Let us consider a regqular region V subjected to the homo-
geneous deformation (4.6) represented by the displacement
gradient g. Then arbitrary point = from V will be transfor-
med into a point % determined by

%-%° = (L+g) (x-2°) (5.1)

where x° = x%+u® and u°® is the displacement of the point x°.

It follows from the orthogonal decomposition theorem that
the tensor l+g can be uniquely decomposed into a symmetric
tensor L+h and the orthogonal tensor r

l+g = (L+h)r . (5.2)

Here we recall that the tensor h is called symmetric if
T . B
h=h , i.e.

h h h h h h

11 P21 P3p| [Py Pyp By
hy, hyy hypi=[hyy hyy hog (5.3)
hy3 hy3 hysl |h3y hyy hay

and the tensor r is orthogonal if rTr =1 ,i.e.

r11 T21 T31|[F11 T12 Fi13 1 00
T1p Tap T3||F21 F22 T231 = |0 1 O (5.4)
o o0 1

13 Y23 T33||¥31 T32 F33
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The tensor r may be interpreted as the rigid rotation of
the region V with respect to the point x°. Indeed, the trans-
formation ='-x° = r(x-2°) does not change the distance

between arbitrary points of the region V.

The tensor l+h determines the deformation of the tensor V.
The transformation x"-x° = (L+h) (x'-x°) maps the sphere
|lx'-x°|=p >0 into an ellipsoid in such a way that the point
®' on the principal axis of the ellipsoid moves along this

axis (see Fig.9)

Fig.9. Trajectory of a point = during the rigid rotation
(1), the deformation (2) and the rigid translation (3).

The vector u® represents the rigid translation of the body.
It shouldbe emphasized that the tensor h does not depend on
the choice of the reference point x°.

Let us consider a particular homogeneous deformation of
the region V described in terms of the scalar parameter ),
which increases monotonously from O to 1

~ ~0Q

%-%° = [L+h'+) (h"-h") 1r (x=-x°) (5.5)

where h' and h" are prescribed symmetric tensors and r is
prescribed orthogonal tensor. For the sake of simplicity we

assume that the reference point #«° is fixed along the con-

sidered deformation path, i.e. that %° = »°.
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According to the formula (5.5) the considered path starts
(A=0) from the configuration determined by the tensor
(L+h')r and finally assumes (A=1) the configuration determi~
ned by (L+h")r. The rigid rotation tensor r remains constant
along this path. The trajectory %()) of a point » during. the
considered deformation takes the form of the segment of the
straight line (see I'ig.1l0).

(L+h") £ (x-x°) % (0)

%) .
(L+h") r (x-x")

N\ x(1)

Fig.10. Trajectory =()), Osi<l.
Let V(\) denote the actual configuration of the region V
corresponding to the parameter A. The increment du of the

displacement vector u corresponding to the point = is
expressed by

du = dx =dx (h"~h')r . (5.6)

We introduce the symmetric tensor €, which satisfies the
eguation

exp € = L+h'+)\ (h"-h") (5.7)
where the exponential function is defined by
= 1 1
exp € = L + ¢ + 5yee + Fyeee +... (5.8)

and the logarithmic function, inverse to the exponent, by
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In(L+h) = h - %hh + %hhh -.. (5.9)

Making use of the definition (5.7) of the tensor ¢ and
the following property of the exponential function

d(exp €) = de exp ¢ (5.10)
we can express the relation (5.6) in the form
du = de (x(\)-x°) . (5.11)

Indeed, substituting (5.5) into (5.7) we obtain

i

da = de exp ¢ r (x-x°) d (exp e)r(x-x°) =

dx (h"-h")r(x-x°) . (5.12)

Let us denote by T the surface force applied to the
boundary B()) of the regular recion ¥(\) and by b the body
force defined in V()). Assuming that T and b are integrable
we can express the increment dw of the external work

supplied to the considered region in the form

dw = J Tedu 4B + J bedu aV . (5.13)

B Yo
Substituting the relation (5.11) into (5.13) we obtain

dw = de e J T® (x-x°)a8 + J b® (x-2°%)a%) . (5.14)
B(x) v

Assuming that the tensor ¢ defined as

(A)

=

g =
I

<

r J T® %-»°)d8 + I b ® (%x-x°)a% (5.15)
B

()) T

remains constant along the deformation path we obtain the
external work w supplied to the considered region expressed
in terms of ¢' = 1ln(L+h') and €" = 1ln(L+h").
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w = dw = V| ae(e"-¢") . (5.16)
A=0

Here it is convenient to discuss the properties of the
tensor ¢ introduced above. Let us observe that if the for-

ces applied to the region V()A) are in equilibrium

J T a8 + J b avV = o (5.17)
B(n) ()

then the tensor ¢ does not depend on the choice of the re-
ference point x°. If the moments (with respect to xo)
applied to the region V(A) are in equilibrium

\

m = J ¥ x (%-x°)dB + J B x (%-x2)a¥% = o (5.18)
B(2) )

where symbol x denotes the vector product, then the tensor
¢ is symmetric. Indeed, the skew-symmetric part of ¢ can
be expressed in the form

(0] m3 -m

=1 1 |_
-m o)

m, M

are the components of the moment of force m.

2

1 (5.19)

Lis-
5060
where ml,mz,m3

Now let us consider the increment dw of the external work
supplied to the considered region during the rigid rotation
with respect to the reference point #°. Now the increment

du can be expressed by
du = dr (%-x°) (5.20)

where skew-symmetric tensor dr is determined by the rotation

vector dw

dr = | ~dw 0 dwl (5.21)
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Substituting (5.20) into (5.13) and making use of the defi-
nition (5.15) we obtain

dw = |V] oedr = O . (5.22)

Indeed, the scalar product of the symmetric tensor e and
the skew-symmetric tensor dr always vanishes.

Similarly for the rigid translation of the considered
region, assuming the equilibrium of forces (5.17), we obtain
directly from (5.13) that the external work supplied to the
~region is equal to zero.

Finally we conclude that the external work w supplied to
the material contained in a regqular region V subjected to
the homogeneous deformation composed of finite or infinite
number of pure deformations (5.5), rigid rotations aﬁd
rigid translations depends only on the initial and the
final states of deformation

w = |V] age(e"¢€") (5.23)

provided that the region V is in equilibrium and that the
tensor ¢ remains constant along the deformation path. The
symmetric tensors €' and ¢" are uniquely determined from
the orthogonal decompositions: exp e€'r'=l+g' and

exp e"r"=1L+g" of the initial and final displacement
gradients g' and g".

The tensor g, appearing in the above derivations, will
be called the strain tensor representing the deformation

of the regular region V. Taking into account the linear
form (4.6) of the displacement function uw and the identi-
ty (2.9) we can express the relation between the deforma-

tion and the displacement in the integral form

|[V| (exp ¢ £ - 1) = J u®ndB . (5.24)
B
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The tensor ¢, defined by the relation (5.15), will be
called the stress tensor corresponding to the region V. It

is convenient to express the stress tensor by appropriate
integrals in the reference configuration. Namely, we intro-
duce the reference boundary forces f defined on B and the
reference body forces b defined in V, which satisfy the

relations
Jf de=J¥a§ (5.25)
A X

for every corresponding open sets AcB and AcB (Fig.ll)

and ’
jde=JEdV (5.26)
U 3

for every corresponding reqular regions UcV and UcV.

[£as

Fig.ll. Concept of the reference forces.
Now we can express the stress tensor by

6 = —( J f ® (x+u)dB + J b x (x+u)dv ) (5.27)

V1
B \
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6. INTERNAL PARAMETERS

We shall consider the homogeneous deformation of the regu-
lar region V. We assume that the material contained in V is
a homogeneous structure. For simplicity the initial confi-~
guration of the body V is assumed to coincide with the
natural state of the material. Consequently we shall refer
the deformation of the body to the initial configuration.

We shall describe the loading and the deformation of the
body V in the system of coordinates ii,ia,ig , which is
obtained by the rotation r of the system xyr Xy Ry about
the origin. The rotation tensor r results (5.2) from the

actual displacement gradient g.

It follows from the above construction that in the trans-
formed coordinate system the body V is subjected only to
pure deformation and uniform translation. The strain and
stress tensors ¢ and ¢, defined in the system XKy Xg s
are expressed in the form rTcr and rTer in the rotating
system ii,ié,?; (see Fig.12)

§|
X 2

(L+h)  (x-x°)

-

Fig.1l2, The rotating system of coordinates determined by
the deformation of the body V.
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To describe the material behaviour we shall use the con-
cept of the internal parameters. Namely, we introduce the
notions of the internal stress s = [sl,sz,..,sn] and the

internal strain e = [el,ez,..,en] , where the components

si,ei,i=l,2,..,n are symmetric tensors defined in the co-
ordinate system §i,§é,§§ rotating with the body V. Here
we assume that these tensors describe the forces in the
material structure and the internal deformations of this
structure, respectively.

Here it is convenient to introduce the notation of the
tensor spaces which are used throughout the work. The space
of all symmetric tensors will be denoted by TS and the spaci
of all orthogonal tensors by Tr- We shall denote by T and T
the dual spaces of all internal stress tensors s and all
internal strain tensors e, respectively. These spaces are
provided with the scalar nroduct defined by

see = syce; + s5,c€, t...t S c€ (6.1)
which represents the work of the forces s on the displace-
ment e. The above definition implies that, from the mathe-
matical point of view, the space T may be identified with
T* and they are the Hilbert spaces. Formally we can present

these spaces as the cartesian product of n spaces T

*
T=T = TSxTSx...xTS.

g’ i.e.

We assume that the relation between the internal stress
s, representing the forces in the material, and the stress
6, representing the external loading of the material, is

established by the following equilibrium condition

s; = rer . (6.2)

It is also assumed here that the external loading is uniformly
distributed in the region V, i.e. that the tensor ¢ corres-
ponds not only to the region V but also for every regular
subregion V' contained in V. In general such condition is

supposed to be satisfied for an infinitesimal regular region V.
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The relation between the internal strain e and the strain
¢ follows from the balance of mechanical energy

s+de = ¢.de for every s€T (6.3)

where ¢-de is the energy supplied to the material (see
section 5) and s.de is the energy absorbed by the material
structure. The balance of energy (6.3) in conjunction with
the equlibrium condition (6.2) implies that

del = erc r , de2 =0 400y den =0 . (6.4)

Now we shall assume that the energy se+de absorbed in the
material can be decomposed into the energy s.de® stored in
the material and the energy s.def dissipated in the material

s.de = s+de® + s.deP for every seT . (6.5)

*
The tensors of elastic strain e“€T and plastic strain

*
ePET introduced here characterize the internal state of

the displacements in the material structure.

It should be noted that the elastic and plastic strains
represent, by the definition, the fractions of the mechani-
cal energy absorbed in the material and they have no direct

geometrical meaning on the macroscopic level.

Assuming that in the initial configuration the elastic
and plastic strains vanish and taking into account (6.4) we

obtain

(6.6)

Finally the material behaviour will be described in

terms of the internal stress tensor in the. form

s = [rTur,sz,...,sn] €T (6.7)
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and the following strain tensors

T *
[t7¢r,0,...,0] €T

e’_'
e e e e *
e = [el,ez,...,en] €T (6.8)
%
eP = [eﬁ,eg,...,eil €T
where
e = e + &P, (6.9)

One can try to give a physical interpretation of the
internal stress introduced in this section. Namely, we
shall suppose that the considered material structure con-
sists of a number of elementary components. The elementary
component is assumed to be either purely elastic or purely
viscoplastic, i.e. the entire mechanical energy absorbed
by the component is either stored or dissipated. All com-
ponents are assumed to be uniformly distributed in the
considered regular region V, i.e. they interpenetrate each
other.

Let the hypothetical material structure consist of m
distinct elementary components and let the loading of an
individual component of the structure be represented by
the symmetric tensor Ty where lgism. In other words the
real surface force fi applied to the i-th component of
the structure on the plane cross section, determined by

the normal unit vector n, is expressed by
f. = v.n | (6.10)
i

To describe the material structure we shall postulate
the particular interactions between the components. For

example one can connect a part of the components in series

Ty Seee= T = 8 where k = m-n >0 (6.11)

and the remaining parts of the components in parallel
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Tl = 5y —(sz+s3+..+sm_k)

=S S3 reeer T Spk - (6.12)

Tk+2” 52 7 Tx43”
The equations (6.11),(6.12) may be interpreted as the equi-
librium equations for the elements of the structure, by ana-
logy to the one-dimensional system presented in Fig.1l3,
where ti,i=l,2,..,m denote the axial forces in the elements.
The set S)rSyreesS, of auxiliary forces, independent of
each other, uniquely determines the state of the forces in

the system. T
: r or

Tk+l 'l'k+2=52 v oo _T_m=5m_k

7777777777 7777 77777777777 777777777
Fig.1l3. One-dimensional analogy of the material structure.

Using the above analogy we may interprete the internal
stress tensor s = [sl,sz,..,sn] as a system of auxiliary
stress tensors, independent of each other, which in con-
junction with postulated internal connections (6.11),(6.12)
between the components of the material structure uniquely
determines the loading 1i,i=l,2,..,m of these components.

Similarly,. using the one-dimensional analogy, one can
interprete the equilibrium of the internal and external
_forces $; = rTsr. It should be noted that the internal
forces can not be measured on the macroscopic level and
the equations (6.11),(6.12) are not sufficient to determine
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these forces unless the structure is statically determined.

Following the idea presented above one can construct a
variety of material structures postulating distinct systems
of elementary components connected in parallel and in series.
Some typical material structures, used in the literature,
are presented (with the formalism proposed in this section)

in section 8.

7. CONSTITUTIVE RELATIONS

The elastic behaviour of the material structure is des-
cribed by the relation between the internal stress tensor
. . e
s and the elastic strain tensor e

s = A e . (7.1)
Taking into account the assumption that the tensor e® re-
presents the deformation of the elastic components of the
material structure (see section 6) we formulate the basic
postulate of the elastic behaviour as follows:

*
The mapping Ae: T -T (not necessarily one-to-one) has a
* * -
potential ¢ : T »Rl, i.e. there exists the scalar function
*
) (ee) such that the integral over a path C, connecting

*
the points e' and e" in the space T , is expressed by

J ae®en_e® = y"(em) - y (") . (7.2)
C
In other words the mechanical energy stored in the material
structure is uniquely determined by the actual strain

e
tensor e .

The potential y* introduced above is called the free
K
energy function. We shall assume that the function ¢ is

lower—-semicontinuous, convex and it attains its minimum

*
equal to zero at the origin of the space T .



- 29 -

Here it is convenient to recall the mathematical concepts
. . * . . .
used in this section. The function ¢y , defined in T*, is

called lower-semicontinuous if for every real number c the

* *

set of all tensors e° from T satisfying ¢ (ee)gc is closed.
*

The function ¢ is called convex if

* ] * " * 1] ”
cy v (e )+c2 vV (e") 2 ¢ (cle +c2e ) (7.3)

*
for arbitrary e',e" €T and Ogclsl , where c, = l—cl.
*

The tensor s is called the subgradient of the function y at

the point e® if the inequality
% *
(e-e%)es < ¥ (&) - ¥ (&) (7.4)
*
holds true for every tensor e from the space T . The set of

all subgradients at the point e® is called the subdifferen-
% %
tial of ¢y at € and is denoted by 3y (e®).

It has been shown in [15] that if the function w* is
lower-semicontinuous and convex then the mapping A is the

subgradient of w* in the space T
* e
s € 3y (e7) (7.5).

In the particular case the free energy function is de-

termined by a set L L2,..,Ln of positive definite tensors

ll
of fourth rank

V) = 2 (51 eSreS n 5. . +eSiL ef) L (7.6)

The quadratic form (7.6) can be also denoted by
*
] (ee) = % e€.1e (7.7)

where L denotes the diagonal tensor composed of the set of
elastic moduli Ll’Lz""Ln‘ The constitutive relation (7.5)

takes now the linear form

s =1L e° (7.8)
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equivalent, by the definition, to the set of relations

s, = Llef ) S, = Lzeg SRR Lnei (7.9)

which may be referred to as the ageneralized Hooke's law.

The viscoelastic behaviour of the material structure
will be described in this work by the relation between the

P

rate of the plastic strain tensor e and the internal

stress tensor s
P =n s . (7.10)
Following the idea presented in [3],[4],([5],[6] we shall

assume that the function Ap is the subgradient of the
dissipation potential ¢ prescribed in the space T of all

internal stress tensors s
eP € s0(s) . (7.11)

It is assumed that the function ¢ is lower-semicontinuous,
convex and it attains its minimum equal to zero at the ori-

gin of the space T.

The constitutive relation (7.1l1l) postulated above can
describe both viscous and plastic behaviour of the material.
Some particular cases of such visco-plastic behaviour is

presented in section 8.

It should be noted that the postulated constitutive re-
lation ensures that the dissipation rate s-ef is always
non-negative. Indeed, taking into account the definition
(7.4) of the subgradient and the assumption ¢ (s)>¢(0) we
obtain

s.&f > @(s)-p(0) 2 O . (7.12)

The constitutive relations (7.5) and (7.11) can be also

presented in the form

e € Y(s) (7.13)
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s € 30 (eP) (7.14)

where the polar function Yy of the free energy function is

defined in the space T by

: *
V(s) = sup [s.e-y (e)] (7.15)
*
e€ET
*
and the polar function ¢ of the dissipation potential is

%
defined in the space T by

0 (&P) = sup [s.&P-o(s)] . (7.16)
SET

8. EXAMPLES OF ELASTIC-VISCOPLASTIC MATERIALS

We shall discuss two particular material structures re-
presented by one-dimensional models given in Fig.l4. The
springs in the picture represent the elastic components
of the material structure characterized by Young moduli
Ll and L2, the slide represents the perfectly plastic com-
ponent characterized by the yield stress 6 and the dashpot
represents‘the viscous component characterized by the posi-
tive constant yu.

LLLLLLLLLLL L L LLLLLLLLLLLLLL LS

Fig.l4. One-dimensiocnal models of elastic~-viscoplastic

materials.
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The external loading of the system is represented
by the tensor rTur and the deformation of the system is

represented by the tensor rTcr.g t.

Let us consider the first system presented in Fig.14.
Let the internal stresses s, and S, be interpreted as the
forces in the springs L1 and LZ' respectively, and let €,
represent the deformation of the spring L,. Making use of
the results presented in section 6 we can express the
internal stress and strains in terms of the tensors S115,/
6,:2 as follows

s = [sllsz] e = [e"'tzrtz]
(8.1)
e = [£,0] ep = [82'-‘:2] .
The free energy function is defined as the quadratic form
* e, _ 1 a_ . ~_ 1
y (e7) = 2(: cz) Ll(c c2)+ Sty le, . (8.2)
Because the plastic component and the viscous component

are connected in series the dissipation potential is

expressed as the sum of the plastic and viscous part
w(s) = cop(s)+ 0, (s) . (8.3)
The viscous potential is defined as the guadratic form

0, (s) = 2(s,-5,)eu(s -5, (8.4)

and the plastic potential is defined as the indicator
function determined by the convex region E contained in
the space T of all internal stress tensors

_ o if scE
¢_(s) = (8.5)
p + o if s¢E .
The set E, referred to as the plastically admissible region,

is defined either with Huber-Von Mises criterion
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E = [s: sS€T , |s'-sé|$6] (8.6)

1

where si and sé denote the deviators of the tensors s1 and

Sy or with Tresca criterion
- . ‘. =
E [s: seT , I(s -s % ) (sl 2% )Ige for m,n=1,2,3]
(8.7)
where (s -s ) ),m 1,2,3 denotes the principal components

]
of the tensor sl 52‘

The second system presented in Fig.l4 is characterized
by parallel connection of the viscous and plastic components.
In this case the dissipation potential is determined by its

polar function expressed in the form
(p(e)=w(ep)+cp(e)- (8.8)

The plastic behaviour of the material structure deter-
mined by the region E in the form (8.6) or (8.7) may be
identified with the kinematic work hardening model common-
ly used in applied plasticity, where the tensor S, is
interpreted as the centre of the yvield surface in the

space of all tensors Sq- According to such interpretation
the yield surface is subjected to rigid translation during
the plastic process.

More general model, frequently used in plasticity,
admits the isotropic expansion of the yield surface in the
space of all tensors S;- One can easily extend the descrip-
tion given in this section to include this general model
of work hardening materials. Namely, introducing additio-
nal component of the internal stress, which represents an

isotropic expansion of the yield surface

=71 (8.9)
one can express the material behaviour in terms of

1752153] ' ee = [3'52152153]
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e = [%,0,0] , €= lc,,~¢c,,-c;] (8.10)

where the strain tensor €3y corresponding to Sy takes the
form
€ =% wl (8.11)
3 3 . L ]
Now the free energy function is defined by
* e __ln_ . -~ 1 1
Y (e7) = 2(c c2) Ll(c c2)+ €, L6t 5€3°Lat, (8.12)

where L3 is a positive constant, and the definitions (8.6)
and (8.7) assume the form

E = [s: SeT , |Si-sé|59+ﬂ] (8.13)

E = [s: S€eT , l(si—sé%m)-(si-sékn)'se+“ for m,n=1,2,3] .

(8.14)

It follows from the constitutive relations (7.5),(7.1l1l)
that for such material model we have ’

ro= % L. u (8.15)

t
w = Jliz|dt . (8.16)
O

9. STRAIN AND STRESS FIELDS

In order to formulate the initial-boundary value problem
for the elastic-viscoplastic body we shall use the concept
of the strain and stress fields defined in four-dimensional
space-time region. Namely, we shall assume that the state
of deformation of the considered body is determined by a
tensor function e(x,t): VOAT*, which maps every point x,t
from the space-time region V_ = Vox[o,tO] into a strain

x ©
tensor e from the space T .
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The relation between the strain function e(x,t) and the
strain tensor e (which was introduced in section 5 as a
primary concept) corresponding to the space-time region
v = Vx[tl,tz] is here established by

t)
e (V) =ﬁ J J e(x,t) h(t) dv dt (9.1)
v tl

where V is a regular region contained in Vo’ Ogt1<t25to '
h(t) is a non-negative decreasing function prescribed in
thé_considered time interval [O,to] and the volume measure
of the region V is defined by

t,

mv) = (V| {h(t) at . (9.2)
t

1
The family of all space-time regions V of positive
measure m(V) contained in VO will be denoted by M. In
section 14 we shall also use the family M° of all space-
time regions V of volume measure zero, i.e. the regions
v = Vx[tl,tzl where V is a reqular region of volume zero
contained in Vo’

Now we can introduce the concept of the strain field
e(V): M»T*. This field is defined as the mapping, which
establishes the strain tensor e from T* for every space-
time region V from the family M. It is assumed here that
there exists an integrable function e(®,t) which determines
thé strain field e with the relation (9.1).

Let us denote by C the set cf all continuous (see
section 3) displacement functions w(x,t): Vo-rR3 defined

in the considered space-time region.

We shall express the relation between the displacement
function and the internal strain function in the integral
form. Namely, the strain function

e(x,t) = [£(x,t)e(x,t)r(x,t),0,..,0] (9.3)

determined by the functions ¢(x,t): VO»T and r(x,t): VoaT

S R
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will be called continuous and compatible if there exists
the displacement function u(x,t)€ C such that the egquation
t t

2 2
J Ju(x,t)xn(x) h(t)dB dt = J I[exp ce(x,t)r(x,t)-Llh(t)av dt
Bty VY (9.4)

holds true for every region V from the family M. Here B
denotes the boundary of the regular region V and n(x%) is

the unit vector normal to B.

In the sequel we shall use the simplified notation of
the surface and volume integrals in the space-time. Accor-
ding to this notation the equation (9.4) takes the form

J uén de = J (exp £ r-1L) dm (9.5)
B v

where B = Bx[tl,tz], my is the surface measure defined by

t

mB(B) = |B]| J h(t) dt (9.6)

Y

and m is the volume measure defined by (9.2).

It is assumed in the work that the surface Bo =Box[0,to]
of the region VO is composed of the measurable part Bg,
where we prescribe the boundary displacement uo(x,t) and
the remaining part Bg where we prescribe the boundary
force f_(x,t)

B =B_UB . (9.7)
For every fixed continuous compatible strain function
e(x,t) we shall define the family of all statically admis-
sible internal stress functions s(x,t): VoaT. Let N denote
the unit sphere |x|=1 in the space R3. The stress function

s(x,t) = [rT(x,t)a(x,t)r(x,t),sz,..,sn](9.8)

will be called statically admissible if there exists the
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surface force function f(m,x,t): NxVo-vR3 such that the equa-

tions
J f®(x+u) de+ Ib@(x+u) dm = Jo dm (9.9)
B8 v v
[ £ dmy+ J bdn =0 (9.10)
B v

hold true for every V from the family M. Here o¢(x%,t): VoaTS
denotes the stress function and b(x,t): VO-aR3 denotes the
prescribed body force function in the reference configura-

tion.

The equation (9.4) expresses the compatibility condition
for the functions ¢(x,t) and r(x,t), which represent the
deformation of the body. The equation (9.10) expresses
the equilibrium of forces for the deformed body. The equi-
librium of moments for the deformed bcdy

[fx(x+u) de+ Pbx(x+u) dm = 0O (9.11)
B v
is implied by the assumption that the function a(x,t) maps
the region VO into the space of all symmetric tensors TS.
The function of the plastic strain rate ép(x,t): VO»T*
is here introduced as a primary concept. We assume that
the plastic strain function is determined by its rate
with the relation
t
eP(x,t) = Jép(x,t') ac’ (9.12)
o
which implies that the initial value of the plastic strain -

function is assumed to vanish

eP(x,0) =0 . (9.13)

Now we shall prove that if the prescribed function h(t)
has the following property: h(to)=0 and there exists ¢>0
such that

h(tl)—h(tz) > € h(tl) (tz—tl) (9.14)
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holds true for every o<t <t25t0, then the existence of the

1
integral

{ &P (x,t) dm (9.15)

o
implies the existence of the integral

J eP(x,t) dm . (9.16)
v, -
Indeed, taking into account the definition of the measure

m(V) and integrating (9.15) by parts we obtain

tO tO
I I eP(x,t) h(t)av dt = J J eP(x,t) dn(t) av . (9.17)
v, 0 Vo

Using the inequality (9.14) we conclude that the measure
dh dV bounds from above the measure dm. Hence the integral
(9.16) exists.

It should be noted that the function h(t)= exp(-t)-exp(-to)

satisfies all requirements postulated above.

It is assumed in the sequel that all functions e(xz,t),
ép(x,t), ee(x,t), s(x,t) are integrable in the sense of the
integral (9.15). The integrability of the function ep(x,t),
. defined by (9.12), follows from the particular properties
of the prescribed function h(t).

10. DUAL SPACES

Let Ll(VO) denote the space of all stress tensor functions
s(x,t): VoeT which are integrable in the space-time region

v , i.e.
o _

l[ s dam| < 4w . (10.1)

v
o

We shall use the same notation Ll(VO) for the space of all

*
integrable strain tensor functions e(x,t): VoaT .
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We introduce the notion of the global functions defined

. *
in the space Ll(Vo) by the free energy function ¥ (e®) and
the dissipation potential ©(s)

¥(s) = J (s, E)) dm (10. 2)
VO

v* (e8) = J v (e2(x,t)) dm (10.3)
VO

O(s) = @(s(x,t)) dm (10.4)
;,O

o (&P) = J o (&P (x,t)) dm . (10.5)
vO

It follows from the convexity of w* and ¢ that the glo-
bal functions defined above exist. Indeed, every such space-
time integral can be obtained as the 1limit of the sequence
of approximations corresponding to an ascending sequence of
'subdivisions of the region Vo into disjoint subregions.

Such sequence is always non-decreasing as

1 1 1
P ( Js dm)m (V. ) +y ( Js dm)m (V) 2y ( Is dm) m (V)
mZVl) 1 mivzs 2 m(V)
vy v, v (10.6)
for every disjoint Vl and V2 contained in Vo, where
v = VlUVZ' Hence the 1limit (finite or infinite) always
exists and may be expressed by

(<<

1 .
y(s) = supl E ‘DQFTVITJS dm)m(vi): Vicvo,1=1,2,... »
vinvj=¢ for i*j] . (10.7)

The set of all functions s from Ll(VO) for which the
global function yY(s) is finite is called the effective

domain of y and denoted by dom VY

dom v(s) = [s: sELl(Vo) , ¥(s)<to] . (10.8)
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The effective domain of the qlobal function ¥ determines
the subspace P 1n the space L (V ). Namely, the stress fun-
ction s from L (V ) belongs to the set P if there exists
a positive number ¢ such that c s is contalned in dom VY

Pe = [s: sELl(VO) , there exists ¢>0 such that Y(cs) <+x]
(10.9)

Since the effective domain is convex and its interior con-
tains the origin of Ll(VO) the set Pe has all properties
of the functional subspace.

Similarly the effective domain of the global function W*
determines the subspace P; in the space Ll(Vo)
P: = [e: eELl(Vo) , there exists ¢>0 such that W*(ce)<+m] .
(10.10)
Now we shall prove the following theorem:
For every stress function s from the space P and every

strain function e from the space P the billnear form

(s,e) = J s(x,t)ee(x,t) dm (10.11)

\'4
(@

exists and ig finite.

Proof: For every stress tensor s€T and every strain tensor

*
ecT we have the inequalities

see < y(s)+y (e) (10.12)

IA

—see < P(-s)+y (e) (10.13)

IA

which follow directly from the definition of the polar
function (7.15). Integrating the functions s(x,t) and
e(x,t) from Ll(VO) over the region v, and taking into
account (10.12),(10.13) we obtain

[|s-e|dm < max[w(s)+w*(e),W(-s)+w*(e)] . (10.14)

Yo
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Hence the bilinear form (s, e) exists provided that
e € dom ¥ and seQ , where the set Q is defined by

Q=[s: s € dom¥y , -s € dom V] . (10.15)

It follows from the above definition that the set Q
absorbs the space P , i.e. for every SEP' there exists
1)0 such that c seQ Slmllarly it follows dlrectly from
the definition of the space P that for every eEP there
exists c2>0 :uch that c,e € dom W* Hence for arbltrary
sePe and eePe we can calculate the bilinear form as

1

(s,e) = E—E—(cls,cze) o (10.16)
172

The bilinear form (s,e) places the spaces Pe and P; in

duality. This duality is supposed to be separating, i.e.

two functions s' and s" from Pe aie identical if and only
if (s'-s",e)=0 for every e from P . Similarly two functions
e' and e" from P are identical if and only if (s,e'-e")=0
for every sePe.

%
Following the idea of the free energy function ¢ and
the relation (7.5) we postulate the elastic deformation law

s € 3v (%) (10.17)

i.e. the internal stress functlon s(x,t)eP and the elastic
strain function e® (x, t)€P satisfy the inequality

(e-e%,s) < ¥" (e)-v" (&%) (10.18)

*
for every e(x,t)eP .

Similarly we construct 1n the space L (V ) second pair
of the dual spaces Pp and Pp, determined by the global
dissipation potential &(s)

PP = [s: seLl(Vo) , there exists ¢>0 such that ®(cs) <+w]
_ (10.19)
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* %k
P = [e: eELl(VO) , there exists ¢>0 such that ¢ (ce) <+=]

P
(10.20)
In an analogous way, following the relation (7.1l1l) we
postulate the plastic flow law in the global form

eP € 20(s) (10.21)

i.e. the internal stress function s(x,t)eP_ and the plastic
. * '
strain rate function’ep(x,t)EPp satisfy the inequality

(s'-s,&P) < ®(s')-0(s) (10.22)

for every s'(x,t)EPp.

The polar functions satisfy the following relations

¥(s) = sup [(s,e)=¥" ()] (10.23)
E 3
e€Pe
o (&P) = sup [(s,eP)-a(s)] . (10.24)
SEPp

11, INITIAL-BOUNDARY VALUE PROBLEM

Making use of the concepts introduced in previous sections
we can formulate the initial-boundary value problem for the
elastic-viscoplastic body as follows:

Find the displacement function w(x,t): VO->R3 from the set C
and the surface force function f(m,x,t): NxVO+R3, vanishing
at the initial moment

u(x,0)

I
Qo

(11.1)

f(n,x,0)

0 (11.2)

and satisfying the boundary conditions

u(x,t) = uo(x,t) on the boundary Bg (11.3)
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f(n,x,t) = fo(x,t) on the boundary Bg (11.4)

such that the following requirements are satisfied:
1L.There exist the strain function g(x=,t): VO»TS and the
rotation function r(x,t): VO»TR which satisfy the relation

J u®n de = I (exp ¢ r = 1) dm (11.5)
B v

for every subregion V from the family M,

2.There exists the stress function e(x,t): VO»TS which

satisfies the stress-~force relation

J O (x+u) dm+ J b®(x+u) dm = J ¢ dm (11.6)
8 v v
for every subregion V from the family M,

3.The surface force function f(n,x,t) and the prescribed

3

body force function b(x,t): VR satisfy the equilibrium

of forces

J f de+ J b dm =0 (11.7)
e v
and the equilibrium of moments

{ fx (x+un) de+ J bx (x+u) dm = © ' (11.8)
B v
for every subregion V from the family M.

4,There exists the plastic strain rate function
R *
éP(x,£): V_»T which is plastically admissible

o (&P) = [ w*(ép(x,t)) dm < +o . (11.9)

Yo

The plastic strain function ep(x,t): VO»T* is determined
by the plastic strain rate function
t
eP(x,t) = [ eP(x,t") dat’ (11.10)
0]
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and, according to this definition, is assumed to vanish at
the initial moment.

sk
9 .There exists the elastic strain function ee(x,t): VoeT
which is elastically admissible

v*(e®) = J v¥ (€S (x,t)) dm < 4o . (11.11)

Yo

6.There exists the internal stress function s(x,t): VO»T
which is both elastically and plastically admissible

o(s) = ( p(s(x,t)) dm < += (11.12)
~vo
V(s) = | P(s(x,t)) dm < +o . (11.13)
v, '
7.The internal stress function s = [sl,sz,..,sn] is in

equilibrium with the stress function ¢

sl(x,t) = rr(x,t)s(x,t)r(x,t) . (11.14)
, . . . e _ e e e
8.The elastic strain function e = [el,ez,..,en] and the

plastic strain function eP = [e?,eg,..,qﬁl satisfy the
relations resulting from the balance of the internal and
external work

rT(x,t)t(x,t)r(x,t)

vei(X,t)+e§(X,t)

ej(x,t)+e§(x,t) 0 for i=2,3,..,n . (11.15)

9, The elastic strain function and the internal stress fun-
ction satisfy the elastic deformation law

e% € av(s) . (11.16)

10.The plastic strain rate function and the internal stress
function satisfy the plastic flow law
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eP € do(s) (11.17)

. . ’ . * e * 1
provided that the free energy function ¢ (e”): T -»R™ , the
dissipation potential @(s): T—»Rl , the boundary displacement
function uo(x,t): Bg»R3

3
£ (x,t): B(f)-»R

and the boundary force function
are prescribed o

Assuming that the continuous displacement function u,
the internal stress function s and the plastic strain rate
function &P are basic unknowns we shall compress the formu-
lation of the problem presented above.

Let us obsérve that the auxiliary unknowns can be simply
determined by the basic ones. Namely, the total internal
strain function e = [rTcr,O,..,O] is determined by the dis-
placement function u with the relation (11.5). The elastic
strain function is determined by ¢® and u with the relations
(11.5),(11.10) and e = e-e€P.

For every displacement function u from the family C we
define the set S4 of all internal stress functions s which
are statically admissible (see section 9) and satisfy the
initial (11.2) and the boundary (11,4) conditions.

We denote by K the set of all displacement functions u
from the set C, which are integrable over the surface B of
arbitrary region V from the family M and satisfy the initial
(11.1) and the boundary (11.3) conditions.

The initial-boundary value problem may be now expressed
as follows:

Find the displacement function w€K, the internal stress fun-

ction s € Su N dom & N dom ¥ and the plastic strain rate
. %
function éP € dom ® such that

(i) The elastic strain function €%, determined by u and &P,

%
belongs to dom ¥ and satisfies the elastic deformation law

*
e € Y (s) in the dual spaces Pe’Pe . (11.18)
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(ii) The plastic strain rate function satisfies the plastic

flow law

- *
eP € 30(s) in the dual spaces P ,P_ - (11.19)

12, MINIMUM PRINCIPLE

In order to formulate the minimum principle corresponding
to the considered initial-~boundary value problem we shall
use the basic property of the sub-differential calculus.
Namely, it follows directly from the definition of the sub-
gradient and the polar function in the dual spaces (for exam-
ple Pp and P;) that the statements:

. * o
(i) Non-negative function @(s)—(s,ep)+® (ep) defined for

. *
every sEPp and ePEPp is equal to zero.

. *
(ii) The elements s€Pp and ePGPp satisfy the relation
ePeso(s) .

are equivalent. Hence non-negative functional
. * ., *
o(s)-(s,&P)+o (&P)+¥(s)-(s,e®)+y (e®) (12.1)

attains its absolute minimum equal to zero if and only if

eP € 30(s) ana e € ay(s) . (12.2)

Taking into account that the function e is uniguely
determined by u and éP (see section 11) we establish the

minimum principle in the form:

The non-negative functional

Fu,s,eP) = o(s)-(s,eP)+0" (&P)+¥ (s)-(s,eS)+¥ (e%) (12.3)

e * .
defined for all ue€k, sEPpnPe and ePEPp attains, under the

constraint sesu, its absolute minimum egual to zero if and

only if the functions u, s, &P represent the solution of

the initial-boundary value problem.
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The form of the constraint implies a convenient sequence
of the minimization process. Namely, for every u€K one can
calculate G(uw), which is defined as an absolute minimum of
the function F(u,s,ép) in the corresponding domain of the

~stress and strain functions

. . %*
G(w) = min [F(u,s,eP): SES NP NP epepp] ) (12.4)

In order to investigate the properties of the function
G(u) we introduce the set Dp of all functions eP which are
derived with (11.10) from plastically admissible strain
rate function eP € dom Q*. It has been shown in section 9
that the set DP is contained in Ll(Vo). Hence the set
e-Dp ; Wwhere the total internal strain function e is deter-
mined by u, represents the admissible domain for the elastic
strain function €. On the other hand the elastic strain
function must be elastically admissible, i.e. e® € dom W*.
Finally our requirement concerning e® takes the form
eeEDe, where the intersection

*
D, = (e—Dp) N dom VY (12.5)
represents the set of all functions ee, which are kinemati-
cally, plastically and elastically admissible.

Similarly we introduce the domain Ds of all internal
stress functions s which are statically, plastically and
elastically admissible

DS = Su N dom ® N dom ¥ . (12.6)
It should be noted that G(u) assumes the value +e if
the set De is empty or the set DS is empty. In the remai-
ning cases G(u) is finite. According to the convention
used in the work the set of all displacement functions u
from the set K for which G(u)<+» will be denoted by dom G.

Now the problem is reduced to the minimization of the

function G(u) in the set K., The function G(u) attains an
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absolute minimum equal to zero if and only if the displa-
cement function u represents the solution of the problem.
If the absolute minimum of function G(u) is positive then
the solution of the initial-boundary value problem does
not exist.

13. EXISTENCE AND UNIQUENESS OF SOLUTION

It follows from the formulation of the initial-boundary
value problem that the prescribed input data must satisfy
the following requirements:

(i) The boundary displacement function uo(x,t) is integrable
on Bg and there exists w€K such that u(x,t)=uo(x,t) on Bg.
At the initial moment uo(x,0)=0.

(ii) The boundary force function fo(x,t) is integrable on

f -
BO and fo(x,o)—o.

(iii) The body force function b(x,t) is integrable in v,
and b(x,0)=0.

It is simple to show that the condition dom G * @ is
necessary but not sufficient for the existence of a solu-
tion. The solution exists if and only if the minimum value

of the function G(u) is equal to zero.

It should be noted that the statement "the solution does
not exist" means that for the prescribed loading trajectory,
represented by the functions U, fo’ b, the reaquirements
L+10 listed in section 11l can not be satisfied simultaneou-

sly. Such situation may occur for a variety of reasons.

For example, solution does not exist if the elastic-
perfectly plastic material is too weak to support the
imposed loading. An other example may be given for purely
elastic material, where the equilibrium of forces (in the
frame of the quasi-static approach assumed throughout the
work) can not be satisfied along the entire deformation
path.
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An illustration of the second example is given in Fig.15.
Let the surface force fo applied to the shell increase
monotonously in time until the shell attains the final shape
presented in the picture. |

Fig.15. An example of the shell subjected to the surface
force fo.

It is clear that the equilibrium of forces (11.7) and
moments’?ll.S) along the entire deformation path can not
be satisfied. Hence G(u) can never become zero. It should
be noted that the dynamic analysis, where the inertia terms
are not neglected, would have ensured the existence of a
solution. However, in the quasi-static approach applied
here, the result min G(m) > O may be considered as a
suitable criterion for the stability of the deformation
process.

In general the solution of the initial-boundary value
problem is not unique. There may exist a set of distinct
displacement functions u, for which the function G(u)=0.

In other words one can obtain two or more distinct defor-
mation paths for the body subjected to the prescribed
external loading represented by the functions b, u and fo.
All deformation paths corresponding to the prescribed
loading have the common segment, which includes the pre-
scribed initial state. The last point of the common seg-

ment may be referred to as the first bifurcation point.
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14. DISCONTINUOUS SOLUTION

The formulation of the initial-boundary value problem
presented in section 11 admits only continuous deformation
cf the body. Namely, it is assumed there that the displa-
cement function u(x,t) is continuous in the considered

space-time region VO, i.,e. it belongs to the set C.

Due tc the above assumption the strain-displacement
relation (11.5) for a region V of volume measure zero from
the family M° (see section 9) does not lead to a contra-
diction. Indeed, for every uw€C and veM® the surface inte-
agral over the surface B of the region V vanishes

J u®n de =0 (14.1)
e

and the egquation (11.5) holds true for arbitrary functions
¢ and r, as m(V) = O,

In the present section we shall relax the restriction
of continuity of the function u without violating the
requirement of the compatibility of deformation. Namely,
we introduce the set CE of all displacement functions u
which are continuous in the region VO with the exception
of certain region V€ of zero volume measure from the family
M°. It follows directly from this definition that CcCE.

We shall identify the region V_ with the internal sur-
face of the‘displacement discontinuity and we shall call
it the slip surface. In our considerations the slip sur-
face V. constitutes an additional unknown of the initial-
boundary value problem.

In order to modify the formulation of the problem given
in section 11 we introduce the family M of regular
regions, which consists of two sub-families M! and M{.

Here the family Mé is the set of all reagular regions V from
M which do not intersect v

M! = [V: VEM , VNV = B] (14.2)
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and the family Mg is the set of all reaqular reaions V of
volume measure zero, which are contained in V€
Moo= [v: veM® , vev 1 . (14.3)
Now the fields of strain and stress are defined on the

family M of the regular regions. For example the strain
*
field e(V): M -T is determined by (9.1) for V€Mé and by

m_ (V)
v

e(V) = J e(x,t) de for VEME . (14.4)

Similarly, following the construction given in section
10 we introduceAthe modified dual spaces Pe,P; and PP,P; '
determined by the modified global functions (14.8),(14.9),
(14.10),(14.11) and provided with the bilinear form

(s,e) = Is(x,t)-e(x,t) dm + Js(x,t)-e(x,t) de (14.5)

Yo Ve

‘Making use of the concept .introduced above we formulate
the initial-boundary value problem in which allowance for
possible discontinuities in the displacements is made:

Find the slip surface VaeMo, the displacement function

w(x,t): VO—»R3 from the set C€ and the surface force function
f(n,x,t): NxVO»R3 satisfying the initial conditions (11l.1),
(11.2) and the boundary conditions (11.3),(11.4) such that
appropriately modified requirements L:l@, listed in section
11, are satisfied.

The modifications consist in adding to the appropriate
volume integrals the surface integrals resulting from the
discontinuities and in replacing the family M of the regu-
lar regions by the family Me' Namely:

1. The equation (11.5) (reguirement l) is replaced by

I u@n dm, = J(exp e r - 1l) dm+ J(exp er-1) de.(14.6)
8 v VﬂVE
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2., The equation (11.6) (reqguirement 2) is replaced by

Jf@(x+u) de+ Jb@(x+u) dm = Ju dnm+ Ja de (14.7)
8 v v ans

3. The definition (11.9) (reguirement 4) is replaced by
X o *x .
o (eP) = Jw (&P) am + Iw*(ep) dmg, . (14.8)

v v
o €

4, The definition (11.11) (requirement 5) is replaced by

*
v* (&%) = Jw (e®) dm + Jw*(ee) dm,, . (14.9)
VO VE
5. The definitions (11.12),(11.13) (reguirement 6) are

replaced by

o(s) = ] o(s) dm + J o(s) dmy (14.10)
VO Ve

¥(s) = J o(s) dm + [ v(s) dmy (14.11)
VO VE

Let K€ denote the set of all displacement functions u
from the set Ce’ which are integrable over the surface B
of arbitrary region V from the family ME and satisfy the
initial condition (11.1) and the boundary condition (11.3).

Making use of formal similarity of the modified problem
with the original one we can repeat the construction of the
minimum principle, presented in section 12, As a result we
obtain for every slip surface V8 from the family M° the
non-negative function Gl(VE,u) defined on the set KE of
the displacement functions w. Minimizing the function G1

in Ke we obtain the non—negative function H
H(VE) = mln[Gl(VE,u): uGKE] (14.12)

which is to be minimized in the family M° of all possible

internal slip surfaces Ve.



- 53 -

From the construction of the minimum principles it is
clear that if there exists w€K satisfying G(u)=0 then
H(V€)=0 for every VEEMO. In other words a continuous solu-
tion of the problem may be considered as the particular
discontinuous solution. This statement holds true for
arbitrary VEGMO as the function uw is continuous every-

where in Vo.

On the other hand there exists a class of prescribed
loadings for which the continuous solution does not exist,
i.e. min[G(u): weK]>0 while there exists the slip surface
VEEMo and the discontinuous displacement function uEKE
which are the solution of the problem, i.e. Gl(Ve,u)=O.

Hence the result min[G(u): u€eK]>0 excludes the existence
of a continuous solution but does not exclude the existence

of another types of solution.
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