Mitteilungen aus dem Institut für Mechanik

Olaf Schilling

Über eine implizite Partikelmethode zur Simulation von Umformprozessen

Heft Nr. 139

RUHR-UNIVERSITÄT BOCHUM

RUHR-UNIVERSITÄT BOCHUM Institut für Mechanik

Olaf Schilling

Über eine implizite Partikelmethode zur Simulation von Umformprozessen

Mitteilungen aus dem Institut für Mechanik Nr. 139

Herausgeber:

Institut für Mechanik — Schriftenreihe — Ruhr-Universität Bochum D-44780 Bochum

ISBN 978-3-935892-14-8

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

©2007 Institut für Mechanik der Ruhr-Universität Bochum

Printed in Germany

Über eine implizite Partikelmethode zur Simulation von Umformprozessen

Vorgelegte

Dissertation

zur

Erlangung des Grades Doktor-Ingenieur (Dr.-Ing.)

 der

Fakultät für Bauingenieurwesen der Ruhr-Universität Bochum

von

Olaf Schilling

Bochum, im Oktober 2005

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe *Numerische Mechanik und Simulationstechnik* am Institut für Mechanik der Ruhr-Universität Bochum.

Für die Anregung zu dieser Arbeit, die Betreuung und die Übernahme des Hauptreferats danke ich Frau Prof. Dr.-Ing. Reese herzlich. Herrn Prof. Dr.-Ing. Hartmann danke ich für sein Interesse und seine freundliche Bereitschaft zur Übernahme des Koreferats.

Bei allen Mitarbeitern der Arbeitsgruppe bedanke ich mich für das angenehme und produktive Arbeitsklima.

Mein besonderer Dank gilt meiner Familie für Ihre Unterstützung.

Bochum, 21.10.2005

Olaf Schilling

Dissertation eingereicht am:21.10.2005Tag der mündlichen Prüfung:27.02.2006

Erster Referent:Prof. Dr.-Ing. S. ReeseZweiter Referent:Prof. Dr.-Ing. D. Hartmann

Übersicht

Die Eignung einer Gruppe netzfreier Methoden für die numerische Simulation von Umformprozessen wird untersucht. Den Methoden ist gemeinsam, dass Körper durch Lagrangesche Partikel diskretisiert werden, denen Zustands- und Geschichtsvariable angeheftet sind. Die schwache Form des Impulssatzes wird auf temporären Netzen oder ohne Netz gelöst. Wie bei der FEM sind die Ansätze lokal. Materialgesetze und das implizite Zeitschrittverfahren werden wie in der Finite-Elemente-Methode implementiert. Einer gesonderten Behandlung bedürfen die wesentlichen Randbedingungen und Kontaktbedingungen. Da die Eigenschaften der Ansatzfunktionen der meisten netzfreien Methoden einen direkten Einbau dieser Bedingungen nicht erlauben, werden diese über ein Strafverfahren erzwungen. Die Gemeinsamkeiten zwischen der untersuchten Gruppe netzfreier Methoden und der Finite-Elemente-Methode überwiegen die Unterschiede, sodass alle Methoden effizient innerhalb eines Programmsystems umgesetzt werden können. Abschließend wird das Programmsystem anhand einiger numerischer Beispiele aus dem Bereich der Umformsimulation überprüft und ein Vergleich zwischen einer vollständig netzfreien Methode und der Finite-Elemente-Methode vorgenommen.

Abstract

The applicability of a group of meshfree methods for the numerical simulation of forming processes is investigated. The common attribute of the used methods is that bodies are discretised by Lagrangian particles which carry all information. The differential equations in their weak form are solved on temporary meshes built of standard elements or without mesh. Like in the FEM the shape functions are defined locally. Material laws and the implicit time integration scheme are implemented in the usual way. Essential boundary conditions and contact conditions need a special treatment. In most meshfree methods the direct introduction of inhomogeneous displacement conditions is not possible due to the properties of the shape functions. Essential boundary conditions and contact conditions are enforced using a penalty method. The similarities between the group of meshfree methods and the FEM outbalance the differences so that all methods can be implemented efficiently in one programme system. Finally the programme system is proved on the basis of some numerical examples which deal with forming processes and a direct comparison between a completely meshfree method and the FEM is drawn.

Inhaltsverzeichnis

1	Ein	eitung	1
	1.1	Motivation	1
	1.2	Gliederung	2
	1.3	Notation	3
		1.3.1 Tensorschreibweise	3
		1.3.2 Matrizenschreibweise	4
		1.3.3 Formelzeichen	5
2	Net	freie Methoden	7
	2.1	Definition	7
	2.2	Geschichtliche Entwicklung	8
		2.2.1 GFDM, DEM, EFG und FPM	8
		2.2.2 SPH, RKPM und MLSRK	.0
		2.2.3 Hp-Clouds und PUFEM	.0
		2.2.4 PIC, FLIP und MPM	.1
	2.3	Randbedingungen	2
3	Imp	ementierte Methoden 1	5
	3.1	Programmkonzept	.5
	3.2	Methodenüberblick	.7
		3.2.1 Methoden 1a (FEM) und 1b (FPM)	.7

		3.2.2 Methoden 2a (MPM) und 2b	18
		3.2.3 Methoden 3a und 3b	19
	3.3	Berechnungsablauf	20
	3.4	Formelzusammenstellung für die Methoden 1 a $({\rm FEM})$ und 1b $({\rm FPM})$	21
4	Kor	ntinuumsmechanische Grundgleichungen	25
	4.1	Bilanzgleichungen	25
	4.2	Kinematik	26
	4.3	Materialgesetze	26
		4.3.1 Rheologische Modelle	26
		4.3.2 Viskoelastisches Materialverhalten	27
		4.3.3 Elastoplastisches Materialverhalten	28
		4.3.4 Allgemeine Form	31
	4.4	Schwache Form der Bilanzgleichungen	31
	4.5	Randbedingungen und Kontakt	32
5	Ans	sätze zur räumlichen Diskretisierung	39
	5.1	Allgemeine Form	40
	5.2	Elementansätze	41
		5.2.1 Natürliche Elementkoordinaten	42
	5.3	Punktzuordnung	45
		5.3.1 Konvex polygonal berandete Elemente	45
		5.3.2 Krummlinig berandete Elemente	46
	5.4	Inverse Elementansätze	48
		5.4.1 Herleitung über Pseudoinverse	48
		5.4.2 Herleitung über <i>Partition of Unity</i> -Forderung	51
	5.5	Ansätze für Punktnetze	52
		5.5.1 Wichtungsfunktionen	52

		5.5.2	Basisfunktionen	61
		5.5.3	Approximation über Methode der bewegten kleinsten Fehler- quadrate	62
	5.6	Vergle	eich der in der FPM und der FEM genutzten Ansätze	64
6	Dis	kretisi	erung, Linearisierung und Lösung	67
	6.1	Überg	ang zur Matrizenschreibweise	67
	6.2	Räum	liche Diskretisierung der Bilanzgleichungen	70
	6.3	Räum	liche Diskretisierung der Kontaktoberflächen	73
		6.3.1	Hermite-Interpolation	74
		6.3.2	Kontaktlinien	78
		6.3.3	Kontaktgeometrie	81
	6.4	Zeitlic	he Diskretisierung	85
		6.4.1	Zeitliche Diskretisierung der Entwicklungsgleichungen	86
		6.4.2	Zeitliche Diskretisierung der Bilanzgleichungen	87
	6.5	Linear	risierung und Lösung	88
		6.5.1	Linearisierung und Lösung der Materialgleichungen	88
		6.5.2	Linearisierung und Lösung der Bilanzgleichungen	91
		6.5.3	Erweiterung auf große Verformungen	94
7	Alg	orithm	nen	95
	7.1	Lösun	g linearer Gleichungssysteme und linearer Ausgleichsprobleme .	95
		7.1.1	Lösung linearer Gleichungssysteme mit quadratischer und re- gulärer Koeffizientenmatrix	96
		7.1.2	Lösung linearer Ausgleichsprobleme	96
		7.1.3	Singulärwertzerlegung	98
		7.1.4	Matrixkondition	99
	7.2	Iterati	ive Lösung nichtlinearer Gleichungssysteme	99
		7.2.1	Newton-Raphson-Verfahren	100

		7.2.2	Modifiziertes Newton-Raphson-Verfahren	101
		7.2.3	Gauß-Newton-Verfahren	101
		7.2.4	Diskretisiertes Newton-Verfahren	101
	7.3	Zeitscl	hrittverfahren	102
		7.3.1	Zeitschrittverfahren erster Ordnung	102
		7.3.2	Zeitschrittverfahren zweiter Ordnung	103
	7.4	Zeitscl	hrittsteuerung	104
8	Rec	henreg	geln	107
	8.1	Voigts	che Notation	107
	8.2	Einhei	tensysteme	110
9	Beis	spiele		111
	9.1	Übersi	\mathbf{cht}	111
	9.2	Zeitme	essungen	112
	9.3	Quadr	atscheibe unter Teillast	113
		9.3.1	Wichtungsfunktionsausdehnungen	115
		9.3.2	Konvergenzverhalten FPM / FEM	122
		9.3.3	Zeitmessungen	124
	9.4	Extrus	sion	129
	9.5	Tiefzie	ehen	136
	9.6	Aufpra	all	142
10	Zus	ammei	nfassung	149
\mathbf{A}	Eing	gabeda	atei	151
	A.1	Dateif	ormat	151
	A.2	Einteil	lung der Befehle	153
	A.3	Syntax	k der Befehlsbeschreibungen	153

A.4	Befehls	beschreibungen
	A.4.1	Befehl titel
	A.4.2	Befehl aus_dat_gid154
	A.4.3	Befehl aus_dat_gnupl
	A.4.4	Befehl obj_ausdat
	A.4.5	Befehl stw_berechverf
	A.4.6	Befehl stw_dimension
	A.4.7	Befehl stw_zeitschrittverf
	A.4.8	Befehl stw_m
	A.4.9	Befehl stw_strafverf
	A.4.10	Befehl stw_kontakt
	A.4.11	Befehl stw_nummattangente
	A.4.12	Befehl stw_wolken
	A.4.13	Befehl stw_bneuberech
	A.4.14	Befehl stw_uebtragrichtstart
	A.4.15	Befehl stw_numplus
	A.4.16	Befehl stw_t
	A.4.17	Befehl stw_zstrg
	A.4.18	Befehl stw_t_aus_dat
	A.4.19	Befehl stw_t_aus_ktr
	A.4.20	Befehl stw_autodtparam
	A.4.21	Befehl stw_gleichloes_bil
	A.4.22	Befehl stw_gleichloes_mat
	A.4.23	Befehl stw_gleichloes_ans
	A.4.24	Befehl stw_bilanzit
	A.4.25	Befehl stw_matit
	A.4.26	Befehl stw_schrankefliess

A.4.27	Befehl mat		 	 	 	 	 	170
A.4.28	Befehl mpu		 	 	 	 	 	171
A.4.29	Befehl kno		 	 	 	 	 	172
A.4.30	Befehl eletyp .		 	 	 	 	 	173
A.4.31	Befehl ele		 	 	 	 	 	175
A.4.32	Befehl ele_c .		 	 	 	 	 	175
A.4.33	Befehl pu_u		 	 	 	 	 	175
A.4.34	Befehl pu_ut .		 	 	 	 	 	176
A.4.35	Befehl pu_utt .		 	 	 	 	 	176
A.4.36	Befehl pu_z		 	 	 	 	 	177
A.4.37	Befehl pu_c		 	 	 	 	 	177
A.4.38	Befehl punktlas	t	 	 	 	 	 	178
A.4.39	Befehl konlin .		 	 	 	 	 	179
Abbildungsve	rzeichnis							181
Tabellenverze	ichnis							185
Literaturverz	eichnis							187

Kapitel 1

Einleitung

1.1 Motivation

Ziel ist die Simulation von Umformprozessen. Beispiele für kontinuierliche und diskontinuierliche Umformprozesse zeigt die Abbildung 1.1.

Insbesondere die Simulation von kontinuierlichen Umformprozessen ist aufwändig, da große Bereiche zu diskretisieren sind und gleichzeitig in kritischen Bereichen eine feine Diskretisierung notwendig ist. Außerdem sind teils längere Zeiträume zu berechnen, und die Prozesse können hochdynamisch sein.

Netzfreie Methoden bieten sich als mögliche Lösung an, da Vernetzungen und ggf. Neuvernetzungen weniger aufwändig sind als in der FEM, h-Adaptivität einfach implementiert werden kann, die Punktnetze wenig empfindlich hinsichtlich Netzdegeneration sind und schließlich Unstetigkeiten einfacher als in der FEM repräsentiert werden können.

Da kein Programmquellcode aus dem Bereich netzfreier Methoden zur Verfügung stand, war eine Eigenentwicklung notwendig. Ziel bei der Gestaltung des Programmsystems war es, eine möglichst hohe Flexibilität zu erhalten. Das Programmsystem soll als Testumgebung zur Überprüfung und Entwicklung von Methoden dienen.

Einige Abstraktionen machten es möglich, eine Gruppe netzfreier Methoden gemeinsam mit der Finite-Elemente-Methode zu implementieren. Die gemeinsame Implementierung bot den Vorteil, dass der Teil des Quellcodes, der von allen Methoden genutzt wird, mit der Finite-Elemente-Methode überprüft werden konnte, deren Verhalten bekannt ist. Außerdem ist ein direkter Vergleich der Methoden hinsichtlich Genauigkeit und Geschwindigkeit möglich.

Abbildung 1.1: Beispiele für kontinuierliche (a), (c), (e) und diskontinuierliche (b), (d), (f) Umformprozesse

Die in Umformprozessen eingesetzten Werkzeuge sind in der Regel infolge der Materialwahl und ihrer konstruktiven Ausbildung wesentlich steifer als die umzuformenden Körper. Es ist daher in guter Näherung möglich, die Werkzeuge als starre Körper bzw. ihre Oberflächen als starre Kontaktoberflächen zu beschreiben.

Um auch gekrümmte Werkzeug
oberflächen einfach und zutreffend diskretisieren zu können, werden C^1 -stetige, auf einer Hermite-Interpolation basierende, Kontaktelemente verwendet.

1.2 Gliederung

Die vorliegende Arbeit ist wie folgt gegliedert: Das 2. Kapitel liefert zunächst einen Überblick zu netzfreien Methoden. Eine Beschreibung der implementierten Methoden erfolgt im 3. Kapitel. Die benötigten kontinuumsmechanischen Grundgleichungen werden im 4. Kapitel zusammengestellt. Da die Ansätze zur räumlichen Diskretisierung wesentlich die Berechnungsmethoden charakterisieren, ist diesen Ansätzen ein eigenes, das 5. Kapitel, gewidmet. Die Grundlgleichungen werden im 6. Kapitel räumlich und zeitlich diskretisiert, linearisiert und gelöst. In Kapitel 7 und 8 sind Algorithmen und Rechenregeln beschrieben, auf die im vorderen Teil der Arbeit Bezug genommen wird. Es folgen im 9. Kapitel die numerischen Beispiele zur Verifikation des Programmcodes. Anhand der in den Eingabedateien möglichen Befehle wird im Anhang A der Funktionsumfang des Programmsystems dargestellt.

1.3 Notation

Die kontinuumsmechanischen Grundgleichungen in Kapitel 4 werden in Tensorschreibweise angegeben. Im Kapitel 5 wird zur Matrizenschreibweise übergegangen, die für die restliche Arbeit beibehalten wird.

Soweit wie möglich sind die Bestimmungsgleichungen so formuliert, dass sie unabhängig von der räumlichen Dimension ($N_D = 1, 2$ oder 3) gültig sind. Werden Matrizengleichungen ausgeschrieben, so erfolgt dies in der Regel für den dreidimensionalen Fall, da die Beziehungen für den ein- oder zweidimensionalen Fall einfach durch Streichen von Zeilen und Spalten erhalten werden können. Der C^1 -stetige Kontakt lässt sich im Zweidimensionalen einfacher formulieren und darstellen. Daher beschränkt sich das Programmsystem zur Untersuchung von Partikelmethoden zunächst auf zwei Dimensionen.

1.3.1 Tensorschreibweise

Skalare werden durch schräge Buchstaben und Vektoren und Tensoren zweiter Stufe durch gerade fette Buchstaben dargestellt. Bei Tensoren höherer Stufe wird die Stufe angegeben.

s	Skalar
u	Vektor
\mathbf{A}	Tensor 2. Stufe
$\overset{(4)}{\mathcal{C}}$	Tensor 4. Stufe

Groß- und Kleinschreibung und die Wahl griechischer Buchstaben richten sich nicht nach der Stufe tensorieller Größen, sondern nach dem üblichen Gebrauch.

Bei skalaren Produkten gibt die Punktanzahl die Anzahl der Basisvektorüberschiebungen an. In der Literatur findet man unterschiedliche Definitionsvarianten der mehrfachen skalaren Produkte. Entweder werden die Basisvektoren der am Produkt beteiligten Tensoren "über Kreuz" oder "von innen nach aussen" überschoben. ¹ In dieser Arbeit wird die erste Definitionsvariante (Überschiebung der Basisvektoren "über Kreuz") verwendet, da sie weiter verbreitet ist

1.3.2 Matrizenschreibweise

Skalare werden durch schräge Buchstaben und Vektoren und Matrizen durch schräge fette Buchstaben dargestellt. Da sich in der Matrizenrechnung die Matrixdimensionen nicht zwangsläufig wie in der Tensorrechnung aus der Stufe und der räumlichen Dimension ergeben, werden die Matrizendimensionen meist zusätzlich angegeben.

$$\begin{array}{ccc} s & {\rm Skalar} \\ {\color{black} \boldsymbol{u}} & {\rm Vektor} \\ {\color{black} \boldsymbol{A}} & {\rm Matrix} \end{array}$$

Es wird nur ein einziges Produkt, das *Matrizenprodukt*, verwendet, das sich über ein einfaches Rechenschema ausführen lässt. Als Operanden für das Matrizenprodukt kommen ausschließlich Vektoren und maximal zweidimensionale Matrizen in Frage. Zwischen Spalten- und Zeilenvektoren ist zu unterschieden. Ist ein Vektor nicht gekennzeichnet, so handelt es sich um einen Spaltenvektor.²

Auf diese Art und Weise kann mit Hilfe des Matrizenproduktes sowohl ein "dyadisches" Produkt

$$\boldsymbol{u} \quad \boldsymbol{v}^{\mathrm{T}} = \boldsymbol{A}_{\langle \mathsf{N} \times \mathsf{M} \rangle} \tag{1.1}$$

als auch ein "skalares" Produkt

$$\boldsymbol{u}_{(\mathsf{N})}^{\mathrm{T}} \boldsymbol{w} = a \tag{1.2}$$

ausgedrückt werden.

¹Die erste Variante liefert im Vergleich zur zweiten unübersichtlichere Rechenregeln für gemischte Produkte aber einfachere Ableitungsregeln.

²Diese Art der Matrizenschreibweise erscheint etwas "altmodisch", wird aber verwendet, da sie weit verbreitet ist.

Sobald in einem tensoriellen Ausdruck Tensoren von höherer als zweiter Stufe auftreten, muss bei dieser Variante der Matrizenschreibweise in der dazugehörigen Matrizenformulierung auf eine Hypermatrixdarstellung oder, wenn Symmetrieeigenschaften das erlauben, auf die Voigtsche Notation ausgewichen werden.

1.3.3 Formelzeichen

Gleiche Symbole kennzeichnen gleiche physikalische Größen und nicht gleiche Funktionen. Wenn bei der gleichen physikalischen Größe zwischen unterschiedlichen Funktionen unterschieden werden muss (z.B. bei Ableitungsprozeduren), werden zur Kennzeichnung alle Funktionsparameter explizit angegeben.

Alle verwendeten Formelzeichen werden an der Stelle ihres ersten Auftretens erklärt. Einen zusätzlichen Überblick gibt die folgende Aufstellung.

Dimensionen

Für Dimensionsangaben wird der Buchstabe N in serifenloser Schrift verwendet.

$N_{\rm D}$	räumliche Dimension
$N_{\rm V}$	Dimension der Voigtschen Vektoren
$N_{\rm B}$	Basisfunktionsanzahl
N_{G}	Polynomgrad
$N_{\rm E}$	Anzahl Elemente
$N_{\rm K}$	Anzahl Knoten
N_{P}	Anzahl Punkte
N_{RP}	Anzahl Randpunkte
N_{MP}	Anzahl Materialpunkte
N_{IP}	Anzahl Integrationspunkte

Indizes

Für Laufindizes werden Kleinbuchstaben ebenfalls in serifenloser Schrift verwendet. Wenn möglich werden für bestimmte Zwecke einzelne Buchstaben bevorzugt verwendet. 3

 $^{^3}$ Mathematisch gesehen besteht kein Unterschied zur Wahl beliebiger anderer Buchstaben. Die Darstellung gewinnt aber an Übersichtlichkeit.

$(\cdot)^{k}$	Materialiterationsindex (oben)
(•) ^j	Bilanziterationsindex (oben)
$(\cdot)_n$	Zeitschrittindex (unten)
$(\cdot)_{p}$	Punktindex
$(\cdot)_{k}$	Knotenindex
$(\cdot)_{e}$	Elementindex
$(\cdot)_{d}$	Dimensionsindex

Summation und Assemblierung

$\sum_{p=1}^{N_{\rm P}}(\cdot)$	Summation (es wird keine Summenkonvention verwendet)
$A_{p=1}^{N_{\mathrm{P}}}(\cdot)$	Assemblierung (im Gegensatz zur Summation sind Größen nicht
F -	nur zu addieren, sondern lokale Größen sind an den richtigen Stellen
	globalen Größen hinzuzufügen)

Symbole über Größen

$(\tilde{\cdot})$	volumenbezogene Größe
$\hat{(\cdot)}$	deviatorischer Anteil
$(\overline{\cdot})$	interpolierte oder approximierte Größe
(\cdot)	Voigtsche Notation

Kapitel 2

Netzfreie Methoden

Zusammenfassende Darstellungen und Klassifizierungen netzfreier Methoden finden sich u. a. in DUARTE & ODEN (1995a), BELYTSCHKO ET AL. (1996), GRIEBEL & SCHWEITZER (2002b) und FRIES & MATTHIES (2004).

In diesem Kapitel werden zunächst mögliche Definitionen des Begriffes der *Netzfreiheit* angegeben. Es folgt ein Überblick zu der geschichtlichen Entwicklung netzfreier Methoden. Abschließend werden Verfahren aufgeführt, mit denen sich wesentliche Randbedingungen in netzfreien Methoden berücksichtigen lassen.

2.1 Definition

DUARTE & ODEN (1995a) betrachten Methoden als netzfrei, wenn die diskreten Gleichungen des Randwertproblems nicht von einem eindeutig definierten (Element-) Netz abhängen. Eine schwache Abhängigkeit von einem Hintergrundnetz zur numerischen Integration wird zugelassen, sofern keine festen Knotenzusammenhänge genutzt werden.

Eine ähnliche Definition findet sich in ONATE ET AL. (1996a), wonach eine netzfreie Methode folgende Bedingungen erfüllen sollte: Die Ansatzfunktionen und Ansatzfunktionsableitungen dürfen nur durch Punktpositionen und an den Punkten gegebenen Parametern definiert sein, und die Wichtungsfunktionen und ihre Ableitungen dürfen nur von den Punktpositionen abhängen. Es wird keine (explizite) Volumenoder Oberflächenintegration benötigt, oder eine Volumen- oder Oberflächenintegration ist unabhängig von der gewählten Interpolationsmethode. Die letzte Bedingung bedeutet, dass Hilfsnetze zur numerischen Integration zulässig sind. Häufig werden in der Literatur abweichend von den obigen Definitionen Methoden auch dann noch als netzfrei bezeichnet, wenn temporäre Hintergrundnetze zur Bildung der Ansatzfunktionen genutzt werden.

2.2 Geschichtliche Entwicklung

Es werden im Folgenden auch Methoden beschrieben, die nach den obigen Definitionen nicht netzfrei sind, sofern ihre Entwicklung im unmittelbaren Zusammenhang mit netzfreien Methoden erfolgte.

2.2.1 GFDM, DEM, EFG und FPM

Eine der ersten netzfreien Methoden beruht auf einer Abwandlung der *Finite Difference Method* (FDM). Der Anwendungsbereich der ursprünglichen Finite-Differenzen-Methode ist beschränkt, da die Knoten ein orthogonales Raster bilden. Erweiterungen auf Diskretisierungen mit unregelmäßig angeordneten Knoten wurden von PERRONE & KAO (1975), GIRAULT (1974), PAVLIN & PERONNE (1975), LISZKA & ORKISZ (1977,1980) LISZKA (1984) und SNELL ET AL. (1981) unter der Bezeichnung Generalized Finite Difference Method (GFDM) vorgenommen. Wie in der FDM werden Sterne aus den Knoten gebildet und FD-Approximationen über Taylorreihenentwicklungen gebildet. Im Unterschied zur FDM stehen die einen Stern bildenden Knoten nicht von vorneherein fest, sondern es werden mit geeigneten Algorithmen Knoten aus der Umgebung des zentralen Knotens ausgewählt.

KROK (1989) und NAY & UTKU (1972) setzten davon abweichend *Least Square* (LS) Approximationen an den Knoten ein. Die LS Approximation ist unstetig.

Kontinuierliche Funktionen werden mit der *Moving Least Squares* (MLS) Approximation erhalten, die ursprünglich von SHEPARD (1968), MCLAIN (1974), GORDON & WIXOM (1978) und LANCASTER & SALKAUSKAS (1981) zur Oberflächenerzeugung aus Datenpunkten verwendet wurde. CLEVELAND (1993) liefert zu dieser Problemklasse eine ausführliche Darstellung.

Im Rahmen netzfreier Methoden wurde die MLS Approximation erstmals durch NAYROLES ET AL. (1992) in der *Diffuse Element Method* (DEM) eingesetzt. Die Ansatzfunktionswerte an den Integrationspunkten werden bei diesem Verfahren über eine MLS-Approximation berechnet. Bei der Bildung der Ableitungen der Ansatzfunktionen werden einzelne Terme vernachlässigt, was die Genauigkeit der Methode beeinträchtigt. Die numerische Integration erfolgt auf einem die Knoten verbindenden Elementnetz oder ohne Elementnetz.

In der von BELYTSCHKO ET AL. (1994) und LU ET AL. (1994), beschriebenen *Ele*ment Free Galerkin Method (EFG) erfolgt hingegen die numerische Integration stets über ein Elementnetz. Dabei bilden die Elemente ein gleichmäßiges Hintergrundnetz und werden als Zellen bezeichnet. Außerdem sind die Ableitungen der Approximationsfunktionen im Gegensatz zur DEM vollständig. Wesentlichen Randbedingungen werden über Lagrangesche Multiplikatoren eingebracht.

Die EFG wurde besonders von BELYTSCHKO ET AL. (1995a,1995b,1998,2000) umfangreich zur Beschreibung von Rissen und Rissausbreitungen genutzt. In der EFG können Rissausbreitungen wesentlich einfacher beschrieben werden als in der FEM, da die Wichtungsfunktionen so gestaltet werden können, dass sie nicht über Unstetigkeitsstellen hinwegreichen.

Da die MLS-Ansatzfunktionen auch höhere Stetigkeitsanforderungen erfüllen, wurde die EFG zur Umsetzung von Materialmodellen eingesetzt, die höhere Ableitungen von Zustandsvariablen enthalten. ASKES ET AL. (2000) behandeln ein gradientenerweitertes Schädigungsmodell, ASKES & AIFANTIS (2002) Gradientenelastizität und PAMIN ET AL. (2003) Gradientenplastizität.

Im Bereich der Fluidmechanik wurde die EFG von HUERTA ET AL. (2004b) zur Beschreibung der Strömung eines inkompressiblen Fluides verwendet.

Eine vollständig netzfreies Verfahren ist die von ONATE ET AL. (1996a, 1996b) und MENDEZ & VELAZQUEZ (2004) im Zusammenhang mit fluidmechanischen Problemen beschriebene *Finite Point Method* (FPM). Es wird eine *Weighted Least Square* (WLS) Approximation über eine variable Anzahl von Punkten um jeden Auswertungspunkt durchgeführt. Die Approximation wird in den oben angegebenen Artikeln als *Multiple Fixed Least Square* (MFLS) bezeichnet. Die numerische Integration erfolgt direkt über die Punkte ohne Hilfsnetz.

Eine vom eingesetzten Berechnungsverfahren unabhängige Beschreibung der *Least Square* (LS), *Weighted Least Square* (WLS) und *Moving Least Square* (MLS) Approximationen findet sich z.B. in ZIENKIEWICZ & TAYLOR (2000a) oder ONATE ET AL. (1996a).

Die MLS Approximation ist auch geeignet um die Genauigkeit von FE-Berechnungen zu erhöhen (TABBARA ET AL. (1994)). FASSHAUER (2004) beschreibt eine vereinfachte Berechnung der MLS-Funktionen.

2.2.2 SPH, RKPM und MLSRK

Ein anderer Entwicklungszweig beruht auf *Kernschätzungen* (kernal estimates) zur Bestimmung der Ansatzfunktionen. Das ursprünglich aus dem Bereich der Signalanalyse stammende mathematische Verfahren wird auch als *Integrale Fenstertransformation* (Integral Window Transformation) bezeichnet.

Der älteste Vetreter dieser Verfahrensklasse ist die von GINGOLD & MONAGHAN (1977) und MONAGHAN (1982,1988,1995) beschriebene Smooth Particle Hydrodynamics Method (SPH), die auch als Free Lagrange Method bezeichnet wird. Es ist eine netzfreie Methode, die speziell im Bereich der Astrophysik zur Beschreibung von Problemen ohne ausgeprägte Ränder eingesetzt wurde. Ableitungen werden in der SPH auf Ableitungen der Fensterfunktion zurückgeführt. Die Ansatzfunktionen bilden besonders am Rand keine Partition of Unity. (Der Begriff wird im nächsten Abschnitt erklärt.) SWEGLE ET AL. (1995) wiesen in einer Stabilitätsanalyse nach, dass hierin die Ursache für die Zuginstabilität der Methode liegt. BONET & KULASEGARAM (2000) zeigen Möglichkeiten zur Korrektur und Stabilisierung.

Weiterentwickelt wurde die Methode von W. K. LIU (1995, 1996, 1997) unter der Bezeichnung *Reproducing Kernel Particle Method* (RKPM).

Den Zusammenhang zu Verfahren, die MLS-Approximationen verwenden, stellen LIU ET AL. (1997) her. Sie leiten MLS-Ansatzfunktionen über Kernschätzungen her und bezeichnen die resultierenden Verfahren als *Moving Least-Square Reproducing Kernel Methods* (MLSRK).

CHEN ET AL. (2003) stellen eine RKPM vor, deren Ansatzfunktionen die Knotenwerte interpolieren und nicht nur approximieren, sodass hier die wesentlichen Randbedingungen wie in der FEM direkt berücksichtigt werden können.

Die Konstruktion von höherwertigen Ansatzfunktionen für die FEM über Kernschätzungen wird in LIU ET AL. (2004) vorgestellt. Das Verfahren wird als *Reproducing Kernel Element Method* (RKEM) bezeichnet.

2.2.3 Hp-Clouds und PUFEM

Ein übergeordnetes Konzept ist die Forderung der *Partition of Unity* (PU), die besagt, dass die Summe der Ansatzfunktionen an allen Orten gleich 1 sein muss. Mit der *Partition of Unity* wird sichergestellt, dass konstante Funktionen exakt vom Ansatz wiedergegeben werden (siehe Abschnitt 5.1).

Laut BELYTSCHKO ET AL. (1998) ist es schwierig, die Konsistenz¹ eines Verfahrens nachzuweisen. Stattdessen wird vorgeschlagen, als notwendige Bedingung für die Konvergenz eines Verfahrens dessen Vollständigkeit zu überprüfen. Ein Verfahren heißt vollständig bis zu einer Ordnung, wenn Funktionen bis zu dieser Ordnung exakt reproduziert werden. Die Reproduktionsbedingung für konstante Funktionen und damit die Reproduktionsbedingung niedrigster Ordnung ist die Partition of Unity.

Basierend auf der PU-Forderung wurden sowohl netzfreie Methoden entwickelt als auch die FEM erweitert. Es entstanden Verfahren, die neben der h-Adaptivität auch die Möglichkeit einer p-Adaptivität beinhalten. Als vollständig netzfreie Methode wurden die *hp-Clouds* von DUARTE & ODEN (1995b,1996) und LISZKA ET AL. (1996) eingeführt. Als Erweiterung der FEM entwickelten MELENK & BABUSKA (1996,1997) und TAYLOR ET AL. (1998) die *Partition of Unity Finite Element Method* (PUFEM).

2.2.4 PIC, FLIP und MPM

Eine Stellung zwischen netzfreien Methoden und der FEM nehmen die von HAR-LOW (1964) mitbegründeten *Particle In Cell Methods* (PIC) ein. Mit dem Fluid oder Körper fest verbundene Lagrangesche Partikel tragen alle Informationen (Zustandsgrößen und ggfs. Geschichtsvariablen) mit sich. Die Berechnung wird in jedem Zeitschritt in eine Lagrangesche und eine konvektive Phase unterteilt. Während der Lagrangeschen Phase erfolgen die Berechnungen auf einem FE-Netz. Anschliessend werden in der konvektiven Phase die Partikel weiterbewegt. Das Netz wird durch ein unverformtes Netz ersetzt.

Für den Bereich der Fluidmechanik und der Magnetohydrodynamik entwickelten BRACKBILL ET AL. (1986,1987,1988,1991) *FLIP* (Fluid-Implicit-Particle).

SULSKY, SCHREYER, YORK ET AL. (1995,1996,1999,2000) begründeten die Material Point Method (MPM) zur Berechnung von Problemen der Festkörpermechanik. Das ursprünglich explizite Zeitintegrationsverfahren wurde von GUILKEY & WEISS (2003) und SULSKY & KAUL (2004) durch ein implizites ersetzt. BARDENHAGEN ET AL. (2000) wendeten die MPM auf granulare Materialien und MORESI ET AL. (2003) auf die Berechnung von Geomaterialien an.

¹In der Finite-Differenzen-Literatur wird die Konsistenz einer Approximation als ihre Fähigkeit definiert, eine Differentialgleichung exakt abzubilden, wenn die Anzahl der Netzknoten gegen Unendlich und der Abstand zwischen benachbarten Netzknoten gegen Null strebt.

2.3 Randbedingungen

Die Ansätze der meisten netzfreien Methoden interpolieren Knotenwerte nicht, sondern approximieren diese nur, da die Ansatzfunktionen an den Knoten im Allgemeinen nicht den Wert 0 oder 1 annehmen. Eine direkte Behandlung von wesentlichen Randbedingungen ist daher nicht möglich

Eine Übersicht über Verfahren zur Berücksichtigung der Dirichletschen Randbedingungen liefern GRIEBEL & SCHWEITZER (2002a) und FERNÁNDEZ-MÉNDEZ & HUERTA (2004).

FERNÁNDEZ-MÉNDEZ und HUERTA unterscheiden zwischen Methoden, die die schwache Form, und Methoden, die die Ansatzfunktionen verändern. In die erste Kategorie fallen die *Methode der Lagrangeschen Multiplikatoren*, das *Strafverfahren* und *Nitsches Methode*; in die zweite Kategorie die *Kopplung mit finiten Elementen* und die Verwendung spezieller *Randansatzfunktionen*.

BABUSKA (1973a) beschreibt die Methode der Lagrangeschen Multiplikatoren im Zusammenhang mit der FEM. Die Anwendung im Rahmen netzfreier Methoden unterscheidet sich hiervon nicht. Nachteilig an der Methode der Lagrangeschen Multiplikatoren ist, dass die Anzahl der Unbekannten vergrößert wird und dass das Gleichungssystem eine besondere Struktur hat und indefinit ist. Zur effizienten Berechnung sollten daher spezielle Löser eingesetzt werden. Außerdem ist die Wahl der zusätzlichen Freiheitsgrade nicht unproblematisch, da die Ansatzfunktionsräume im Inneren und auf dem Rand zusätzlich die *Babuska-Brezzi-Bedingung* (siehe BREZZI (1974)) erfüllen müssen.

BABUSKA (1973b) beschreibt das Strafverfahren (Penalty Method) im Zusammenhang mit der FEM; ZHU & ATLURI (1998) beschreiben es im Zusammenhang mit der EFG. Die Anzahl der Freiheitsgrade wird nicht erhöht, und das Gleichungssystem bleibt positiv definit, aber die Kondition des Gleichungssystem verschlechtert sich mit zunehmendem Strafparameter. Der Strafparameter ist so einzustellen, dass einerseits die Randbedingungen hinreichend genau erzwungen werden und andererseits die Qualität der Lösung nicht durch ein zu schlecht konditioniertes Gleichungssystem beeinträchtigt wird.

Die auf NITSCHE (1970) zurückgehende Methode kann nach FERNÁNDEZ-MÉNDEZ & HUERTA (2004) als konsistente Verbesserung des Strafverfahrens angesehen werden. HANSBO & LARSON (2002) nutzen Nitsches Methode für eine diskontinuierliche FEM und GRIEBEL & SCHWEITZER (2002a) für eine netzfreie Partition of Unity Method. Verglichen mit den Lagrangeschen Multiplikatoren und dem Strafverfahren ist Nitsches Methode komplizierter in der Anwendung.

Die Kopplung zwischen netzfreien Methoden im Bereichsinneren und netzbasierten Methoden (in der Regel der FEM) am Rand wird u. a. in BELYTSCHKO ET AL. (1995a), HUERTA & FERNÁNDEZ-MÉNDEZ (2000) und HUERTA ET AL. (2004a) beschrieben. Es erscheint allerdings wenig elegant, wenn im Rahmen einer netzfreien Methode zur Befriedigung von wesentlichen Randbedingungen auf finite Elemente zurückgegriffen werden muss.

Als letzte Methode bleibt die Veränderung der Ansatzfunktionen der netzfreien Methode. Diese können entweder nur an den Knoten, an denen wesentliche Randbedingungen vorgegeben werden sollen, oder im gesamten Gebiet dergestalt korrigiert werden, dass sie Knotenwerte interpolieren und nicht nur approximieren. CHEN ET AL. (2003) beschreiben eine *Reproducing Kernel Interpolation*.

Kapitel 3

Implementierte Methoden

3.1 Programmkonzept

Die Bestimmungsgleichungen der behandelten Methoden werden so aufbereitet, dass ein modularer Aufbau des Programmsystems möglich wird und die überwiegenden Teile des Quellcodes von allen Methoden gemeinsam genutzt werden können.

Die Arbeit beschränkt sich auf mechanische Probleme und kleine Verformungen. ¹ Es wird das *Ritz-Galerkin-Verfahren* angewendet. Die Zeitintegration erfolgt implizit. Das Programmsystem ist für Lagrangesche und quasi-Eulersche Sichtweisen ausgelegt. Nichtlineare Materialgesetze (ein viskoelastisches und ein elastoplastisches Materialgesetz mit isotroper Verfestigung) sind implementiert. Die Eigenschaften der Ansatzfunktionen eines Teils der Methoden erlauben keine direkte Berücksichtigung der wesentlichen Randbedingungen und Kontaktbedingungen. Diese werden daher über ein Strafverfahren erzwungen. Da sich der C^1 -stetige Kontakt im Zweidimensionalen einfacher formulieren lässt, wurde das Programmsystem für ebene Probleme aufgestellt.

Unter *http://www.schilling-berlin.de/diss.htm* stehen das mit dem Compiler *gcc 4.02* unter dem Betriebssystem *Suse Linux V10.0* (Kernel 2.6.13-158) übersetzte Programm und die Eingabedateien zu den Berechnungsbeispielen aus Abschnitt 9 zum Herunterladen zur Verfügung.

 $^{^1}$ Die Änderungen, die vorgenommen werden müssen, um das Programmsystem für große Verformungen zu erweitern werden in Abschnitt 6.5.3 beschrieben. Für die Untersuchung der Unterschiede zwischen Methoden mit und ohne Elementnetzen ist die Linearisierung des Verzerrungsmaßes kein Nachteil, da die Unterschiede der Methoden nicht mit der Wahl des Verzerrungsmaßes zusammenhängen.

 = Materialpun] = Integrationspective = Knoten 	typ	funktions- $\bigcirc \rightarrow \bigcirc$	Ansatz- $\blacksquare \rightarrow \bigcirc \blacklozenge$	fixiert?	an Körper	Punkte		Methodennummer	Netzbilder
kt 9unkt	$(E^{-1}, W)^{\star}$		E	ja	<u>.</u>	 .	(FEM)	1a	
()* W 단- 단	(W)*		W	J.	2	<i>2</i>	(FPM)	1b	
= Elementans -1 = Invertierte = MLS-Appro = Nur für Po	E E^{-1}, W $= Elementans$ $I = Invertierte$		ne	je	ja	(MPM)	2a		
sätze Elementansätze oximation stprocessing	W		W	in	1			2b	
	$\mathrm{E}^{-1}, \mathrm{W}$	W	Е	ne	ne	j.		3a	
	W	W	W	in	in	ĝ		3b	

Tabelle 3.1: Methoden und Ansatzfunktionen

16

	=	Materialpunkt	:	Lösung der Materialgleichungen
	=	Integrationspunkt	:	Auswertungspunkt für numerische Integration
	=	Knoten	:	Ort von globalen Unbekannten

Tabelle 3.2: Symbole

3.2 Methodenüberblick

Für eine übersichtliche Implementierung mehrerer Methoden in einem Programmsystem ist es sinnvoll einige Abstraktionen vorzunehmen. Die Materialgleichungen werden an *Materialpunkten* erfüllt. Hier werden auch die Geschichtsvariablen gespeichert. Die Auswertungsspunkte für die numerische Integration sind die *Integrationspunkte*. In den meisten Fällen sind Materialpunkte und Integrationspunkte deckungsgleich. Die globalen Unbekannten sind an den *Knoten* beheimatet.

Die betrachteten Methoden unterscheiden sich in den verwendeten Ansätzen für die räumliche Diskretisierung und darin, welche der Punkte (Materialpunkte, Integrationspunkte und Knoten) permanent mit dem Material verbunden sind. Die Tabelle 3.1 gibt hierzu einen Überblick. Die obere Reihe zeigt Netzausschnitte. In der mittleren Reihe ist vermerkt, welche Punkte permanent mit dem Körper verbunden sind und welche nicht. Die untere Reihe zeigt die im Zusammenhang mit den verschiedenen Methoden genutzten Ansätze.

Im Rahmen dieser Arbeit werden von den sechs im Programmsystem vorgesehenen Methoden die *Methode 1a* (Finite-Elemente-Methode) und die *Methode 1b* (Finite-Punkte-Methode) anhand von Beispielen verifiziert und verglichen.

3.2.1 Methoden 1a (FEM) und 1b (FPM)

Die *Methode 1a* ist die Finite-Elemente-Methode (FEM), die *Methode 1b* eine Finite-Punkte-Methode (FPM). Beiden ist gemeinsam, dass alle Punkte (Materialpunkte, Integrationspunkte und Knoten) permanent mit dem diskretisierten Körper verbunden sind und die Material- und Integrationspunkte deckungsgleich sind.

Die Dehnungen und Dehnungsraten an den Materialpunkten werden bei der FEM über die üblichen Elementansätze und bei der FPM über netzfreie Ansätze berechnet. Im Rahmen dieser Arbeit wird für die netzfreien Ansätze die im Abschnitt 5.5.3 hergeleiteten MLS-Approximation (MLS = Moving Least Squares, Methode der bewegten kleinsten Fehlerquadrate) verwendet.

Abbildung 3.1: Netzausschnitte zu Methoden 1a und 1b

Die numerische Integration erfolgt bei der FEM durch eine Gauß-Integration und bei der FPM direkt punktweise, indem die Größen an den Integrationspunkten vor der Assemblierung mit den Integrationspunktvolumen multipliziert werden. Da diese direkte Integrationsmethode ungenauer ist, muss eine gegenüber der FEM höhere Integrationspunktanzahl gewählt werden.

3.2.2 Methoden 2a (MPM) und 2b

Abbildung 3.2: Netzausschnitte zu Methoden 2a und 2b

Die *Methode 2a* ist eine Abwandlung der Materialpunktmethode (MPM). Die *Methode 2b* verzichtet bei ansonsten gleichem Berechnungsablauf auf Elemente. Bei beiden Methoden (2a und 2b) sind die Material- und Integrationspunkte permanent mit dem diskretisierten Körper verbunden und deckungsgleich. Die Knoten werden nach jedem Zeitschritt in ihre Ausgangslage zurückgesetzt.

Die Berechnung wird in jedem Zeitschritt in eine Lagrangesche und eine konvektive Phase aufgeteilt. In der Lagrangeschen Phase werden aus den Verschiebungen und Geschwindigkeiten der Knoten die Dehnungen und Dehnungsraten an den Materialpunkten berechnet. Hierzu werden bei der Methode 2a Elementansätze und bei der Methode 2b eine MLS-Approximation verwendet.

Die numerische Integration erfolgt direkt punktweise.

Nach Abschluss der globalen Iteration werden die Material- und Integrationspunkte in der konvektiven Phase entsprechend der im Zeitschritt erfolgten Verformung weiterbewegt. Anschließend werden die Knoten in ihre Ausgangslage zurückgesetzt und die Zustandsgrößen an den Knoten gelöscht.

Am Anfang des nächsten Zeitschrittes werden die Knoten mit den approximierten Materialpunktdaten der Verschiebungen und Geschwindigkeiten initialisiert. Auf diese Weise haben die Elementnetze der Methode 2a und die Knotennetze der Methode 2b in der verformten Konfiguration am Zeitschrittanfang eine regelmäßige Gestalt.

Problematisch ist bei der Methode 2a die direkte punktweise Integration. Werden die üblichen C^0 -stetigen finiten Elemente eingesetzt, so kommt es zu Sprüngen in Teilen der Steifigkeitsmatrix, wenn Materialpunkte in der konvektiven Phase Elementgrenzen überschreiten.

3.2.3 Methoden 3a und 3b

Abbildung 3.3: Netzausschnitte zu Methoden 3a und 2b

Um die bei der Methode 2a auftretenden Probleme zu beheben werden die Integrationspunkte von den Materialpunkten getrennt. Die Materialpunkte sind permanent mit dem diskretisierten Körper verbunden; die Knoten und Integrationspunkte werden nach jedem Zeitschritt auf ihre Ausgangslage zurückgesetzt. Der Berechnungsablauf ist bis auf den Bereich der numerischen Integration identisch mit dem Berechnungsablauf der Methoden 2a und 2b. Vor der numerischen Integration werden die Integrationspunkte über eine Approximation von Materialpunktdaten initialisiert. Bei der Methode 3a wird eine Gauß-Integration und bei der Methode 3b eine direkte punktweise Integration ausgeführt.

3.3 Berechnungsablauf

Die Reihenfolge der Berechnungen ist für alle im Programmsystem vorgesehenen Methoden identisch. In einem globalen Iterationsschritt innerhalb eines Zeitschrittes werden folgende Berechnungen ausgeführt:

- \rightarrow Die Dehnungen und Dehnungsraten an den Materialpunkten werden in Abhängigkeit von den Knotenverschiebungen und Knotengeschwindigkeiten berechnet.
- An den Materialpunkten werden die nichtlinearen Materialgleichungen iterativ gelöst und die Spannung und die Materialtangente berechnet, die an den Integrationspunkten benötigt werden.
- → Werden die Methoden 1a (FEM), 1b (FPM), 2a (MPM) oder 2b genutzt, so sind Integrationspunkte und Materialpunkte identisch. In den anderen beiden Fällen müssen durch eine Approximationsmethode Daten von den Materialpunkten zu den Integrationspunkten übertragen werden.
- An den Integrationspunkten werden volumenbezogene Größen berechnet. Bei der direkten numerischen Integration werden diese mit Integrationspunktvolumina multipliziert, bei einer Gauß-Integration mit den Wichtungsfaktoren der Gaußpunkte.
- \rightarrow \blacksquare Die Beiträge der Integrationspunkte werden zu globalen Größen assembliert.
 - Ein Iterationsschritt zur Verbesserung des Vektors der globalen Unbekannten wird ausgeführt.

Die Berechnungsabfolge wird bis zur Konvergenz der globalen Iteration wiederholt. Sind die Knoten körperfest, wird mit dem nächsten Zeitschritt fortgefahren. Sind die Knoten nicht permanent, so werden sie am Ende des Zeitschrittes verworfen, nachdem die Materialpunkte in einer konvektive Phase mit dem verformten Körper weiterbewegt wurden. Die Knoten des neuen Netzes müssen dann über eine geeignete Approximationsmethode mit von den Materialpunkten übertragenen Daten initialisiert werden. Die Berechnungen eines Zeitschrittes sind damit abgeschlossen.

3.4 Formelzusammenstellung für die Methoden 1a (FEM) und 1b (FPM)

Die Finite-Punkte-Methode und die Finite-Elemente-Methode wurden im Rahmen der vorliegenden Arbeit vollständig implementiert, anhand von Beispielen verifiziert und miteinander verglichen. Beide Methoden unterscheiden sich nur in der räumlichen Diskretisierung. Die Bestimmungsgleichungen lassen sich in einheitlicher Form angeben. Dies geschieht an dieser Stelle in zusammengefasster Form.

Es wird eine total Lagrangesche Betrachtungsweise verwendet. Die Kinematik kleiner Verformungen wird angenommen (siehe Fußnote auf S. 15).

$$\boldsymbol{\varepsilon} = \frac{1}{2} \left[\mathbf{u} \otimes \boldsymbol{\nabla} + \boldsymbol{\nabla} \otimes \mathbf{u} \right] \tag{3.1}$$

Die nichtlinearen Materialgleichungen und Entwicklungsgleichungen (siehe Abschnitt 4.3) können in der Form

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}(\boldsymbol{\varepsilon}, \mathbf{z}) \tag{3.2}$$

$$\dot{\mathbf{z}} = \begin{cases} \mathbf{f}(\boldsymbol{\varepsilon}, \mathbf{z}) & : \text{ viskoelastisches Material} \\ \boldsymbol{\varepsilon}(\mathbf{z}, \mathbf{z}) & : \text{ viskoelastisches Material} \end{cases}$$

$$(3.3)$$

$$\left(\mathbf{f}(\boldsymbol{\varepsilon}, \dot{\boldsymbol{\varepsilon}}, \mathbf{z}) \quad (+ \text{Kuhn-Tucker}) : \text{ elastoplastisches Material} \right)$$

angegeben werden. In z sind die inneren Variablen zusammengefaßt. In der partiell integrierten schwachen Form des Impulssatzes

$$\int_{\mathcal{B}} \delta \boldsymbol{\varepsilon} : \boldsymbol{\sigma} \, dV + \int_{\mathcal{B}} \delta \mathbf{u} \cdot (\ddot{\mathbf{u}} - \mathbf{b}) \, \rho \, dV - \int_{\partial \mathcal{B}} \delta \mathbf{u} \cdot \mathbf{t} \, dA \tag{3.4}$$

$$-\int_{\partial \mathcal{B}_{\rm rnd}} \delta \mathbf{u} \cdot \tilde{\mathbf{f}}_{\rm rnd} \, dA - \int_{\partial \mathcal{B}_{\rm kon}} \delta \mathbf{u} \cdot \tilde{\mathbf{f}}_{\rm kon} \, dA = 0 \tag{3.5}$$

erscheinen zusätzliche Terme für die wesentlichen Randbedingungen und die Kontaktbedingungen, da diese durch ein Strafverfahren erzwungen werden (siehe Abschnitt 4.5). $\partial \mathcal{B}$, $\partial \mathcal{B}_{rnd}$ und $\partial \mathcal{B}_{kon}$ sind die Ränder, auf denen Spannungen, Verschie-
bungen und Kontaktbedingungen vorgegeben werden. Der Ansatz für die räumliche Diskretisierung hat die in Abschnitt 5 näher diskutierte Form:

$$\bar{f}(\boldsymbol{x}) = \sum_{k=1}^{N_{K}(\boldsymbol{x})} L_{k}(\boldsymbol{x}) f_{k} = \boldsymbol{L}_{\langle N_{K} \rangle}^{T}(\boldsymbol{x}) \boldsymbol{f}_{\langle N_{K} \rangle}$$
(3.6)

$$\frac{\partial \bar{f}(\boldsymbol{x})}{\partial x_{i}} = \sum_{k=1}^{N_{K}(\boldsymbol{x})} \frac{\partial L_{k}(\boldsymbol{x})}{\partial x_{i}} f_{k} = \frac{\partial \boldsymbol{L}^{\mathrm{T}}(\boldsymbol{x})}{\frac{\partial x_{i}}{\langle N_{K} \rangle}} \boldsymbol{f}$$
(3.7)

 $L_k(\boldsymbol{x})$ ist der Wert der Ansatzfunktion vom Knoten mit dem Index k an der Stelle \boldsymbol{x} , f_k ist der Stützwert am selben Knoten und $\bar{f}(\boldsymbol{x})$ ist der approximierte Wert an der Stelle \boldsymbol{x} . Die Anzahl der Ansatzfunktionen N_K hängt bei der FPM im Gegensatz zur FEM vom Ort \boldsymbol{x} ab. Die Interpolation mit Elementansatzfunktionen ist mit $N_K = const$ als Spezialfall enthalten. Die Ansätze für Verschiebungen und virtuelle Verschiebungen haben für FPM umd FEM dieselbe Form.

$$\boldsymbol{u}(\boldsymbol{x}_{p}) = \boldsymbol{L}(\boldsymbol{x}_{p}) \quad \boldsymbol{U}_{p} \quad (3.8)$$

$$\delta \boldsymbol{u}(\boldsymbol{x}_{p}) = \underbrace{\boldsymbol{L}(\boldsymbol{x}_{p})}_{\langle N_{D} \rangle \otimes \langle N_{K} N_{D} \rangle} \delta \boldsymbol{U}_{p}$$
(3.9)

Auch die Verschiebungs-Verzerrungs- und Geschwindigkeits-Verzerrungsgeschwindigkeits-Beziehungen sehen für beide Methoden gleichartig aus.

$$\boldsymbol{\varepsilon}(\boldsymbol{x}_{p}) = \boldsymbol{B}(\boldsymbol{x}_{p}) \quad \boldsymbol{U}_{p} \tag{3.10}$$

$$\dot{\boldsymbol{\varepsilon}}(\boldsymbol{x}_{p}) = \boldsymbol{B}(\boldsymbol{x}_{p}) \quad \dot{\boldsymbol{U}}_{p} \quad (3.11)$$

$$\delta \boldsymbol{\varepsilon}(\boldsymbol{x}_{p}) = \underset{\langle N_{K} N_{D} \times N_{V} \rangle}{\boldsymbol{B}(\boldsymbol{x}_{p})} \delta \boldsymbol{U}_{p}$$
(3.12)

Ein Unterschied besteht in der variablen Dimension der Matrizen L und B, die Werte der Formfunktionen und Werte der Formfunktionsableitungen enthalten. Das räumlich diskretisierte Gleichungssystem wird in der Zeit unter Verwendung der Newmark-Methode diskretisiert.

$$\ddot{\boldsymbol{U}}_{n+1} = \alpha_1 \left[\boldsymbol{U}_{n+1} - \boldsymbol{U}_n \right] - \alpha_2 \dot{\boldsymbol{U}}_n - \alpha_3 \ddot{\boldsymbol{U}}_n$$
(3.13)

$$\dot{\boldsymbol{U}}_{n+1} = \alpha_4 \left[\boldsymbol{U}_{n+1} - \boldsymbol{U}_n \right] + \alpha_5 \dot{\boldsymbol{U}}_n + \alpha_6 \ddot{\boldsymbol{U}}_n \tag{3.14}$$

Der Vektor U_n beinhaltet die Knotenverschiebungen am Zeitschrittanfang, der Vektor U_{n+1} die unbekannten Knotenverschiebungen am Zeitschrittende. α_1 bis α_6 sind skalare Vorfaktoren, die von den beiden Parametern des Newmark-

Zeitschrittverfahrens und von der Zeitschrittlänge anhängen. Das globale Gleichungssystem hat nach der Diskretisierung und der Assemblierung die bekannte Form:

$$\boldsymbol{G}(\boldsymbol{U}_{n+1}) = \boldsymbol{F}_{int}(\boldsymbol{U}_{n+1}) + \boldsymbol{F}_{m}(\boldsymbol{U}_{n+1}) - \boldsymbol{F}_{extV} - \boldsymbol{F}_{extA} - \boldsymbol{F}_{rnd}(\boldsymbol{U}_{n+1}) - \boldsymbol{F}_{kon}(\boldsymbol{U}_{n+1}) = \boldsymbol{0}$$
(3.15)

 mit

$$\boldsymbol{F}_{\mathrm{m}}(\boldsymbol{U}_{\mathsf{n+1}}) = \boldsymbol{M} \left[\alpha_{\mathsf{1}} \left[\boldsymbol{U}_{\mathsf{n+1}} - \boldsymbol{U}_{\mathsf{n}} \right] - \alpha_{\mathsf{2}} \dot{\boldsymbol{U}}_{\mathsf{n}} - \alpha_{\mathsf{3}} \ddot{\boldsymbol{U}}_{\mathsf{n}} \right]$$
(3.16)

Es handelt sich um ein nichtlineares Gleichungssystem für die Knotenverschiebungen am Ende des Zeitschrittes. Da wesentliche Randbedingungen und Kontaktbedingungen mit einem Strafverfahren erzwungen werden, sind zusätzliche von den Knotenverschiebungen abängige externe Kräfte, $\boldsymbol{F}_{\rm rnd}$ für die Randbedingungen und $\boldsymbol{F}_{\rm kon}$ für den Kontakt, vorhanden. Das nichtlineare Gleichungssystem wird mit dem Newton-Raphson Algorithmus gelöst.

$$\boldsymbol{U}_{n+1}^{0} = \boldsymbol{U}_{n} \tag{3.17}$$

$$\Delta \boldsymbol{U}_{n+1}^{j+1} = -\left. \frac{\partial \boldsymbol{G}(\boldsymbol{U})}{\partial \boldsymbol{U}} \right|_{\boldsymbol{U}_{n+1}^{j}} \boldsymbol{G}(\boldsymbol{U}_{n+1}^{j}) = -\boldsymbol{K}_{T}^{-1}(\boldsymbol{U}_{n+1}^{j}) \boldsymbol{G}(\boldsymbol{U}_{n+1}^{j}) \quad (3.18)$$

$$\boldsymbol{K}_{T}(\boldsymbol{U}_{n+1}^{j}) = \boldsymbol{K}_{T \text{ int}}(\boldsymbol{U}_{n+1}^{j}) - \boldsymbol{K}_{T \text{ rnd}}(\boldsymbol{U}_{n+1}^{j}) - \boldsymbol{K}_{T \text{ kon}}(\boldsymbol{U}_{n+1}^{j}) + \alpha_{1} \boldsymbol{M}$$
(3.19)

Der obere Index bezeichnet den Iterationsschritt, der untere den Zeitschritt. Im Linearisierungsprozess bringen die zusätzlichen externen Kräfte Beiträge zur tangentialen Steifgkeitsmatrix hervor.

Damit sind die Bestimmungsgleichungen für FPM und FEM zusammengestellt. Eine ausführliche Darstellung findet sich in den Kapiteln 4 bis 8.

Kapitel 4

Kontinuumsmechanische Grundgleichungen

Als Beispiel für ein Anfangsrandwertproblem wird das dynamische Verhalten deformierbarer Körper betrachtet. Dabei werden das klassische Kontinuumsmodell und die Theorie kleiner Verformungen angewendet. (Ausführliche Darstellungen finden sich in Lehrbüchern zur klassischen Mechanik und Kontinuumsmechanik wie z.B. in GUMMERT & RECKLING (1986), ALTENBACH & ALTENBACH (1994) oder CHAD-WICK (1999).) In diesem Kapitel werden die benötigten Grundgleichungen zusammengestellt. Es wird durchgehend Tensorschreibweise verwendet.

4.1 Bilanzgleichungen

Die beiden Axiome der klassischen Mechanik (Impulsatz und Drallsatz) haben in ihrer Feldgleichungsformulierung folgende Form:

$$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \rho \, \mathbf{b} = \rho \, \ddot{\mathbf{u}} \tag{4.1}$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T \tag{4.2}$$

Für jeden materiellen Punkt eines Körpers ist die Summe aus der Divergenz des Spannungstensors und der Volumenlast gleich dem Produkt aus der Dichte und der Beschleunigung dieses Punktes. Im Rahmen der Theorie kleiner Verformungen fallen räumliche und materielle Betrachtungsweise zusammen. Es gibt nur ein, als Folgerung aus dem Drallsatz symmetrisches Spannungsmaß.

Die Massenbilanz ist bei materieller Betrachtungsweise automatisch erfüllt.

4.2 Kinematik

Die Linearisierung des Green-Lagrangeschen Verzerrungstensors für kleine Verformungen führt zum *Deformator*. Er ist invariant gegenüber Starrkörpertranslationen aber nicht invariant gegenüber Starrkörperrotationen (siehe Fußnote auf S. 15).

$$\boldsymbol{\varepsilon} = \frac{1}{2} \left[\mathbf{u} \otimes \boldsymbol{\nabla} + \boldsymbol{\nabla} \otimes \mathbf{u} \right] \tag{4.3}$$

4.3 Materialgesetze

Die Schnittstelle für Materialgesetze im Programmsystem ist vom Berechnungsverfahren unabhängig. Stellvertretend für andere ratenabhängige und ratenunabhängige Materialmodelle sind im Programmsystem bereits ein viskoelastisches und ein elastoplastisches Materialmodell eingebaut. Sie können als Vorlage bei der Implementierung weiterer Materialmodelle dienen. Das elastoplastische Materialmodell wird benötigt, da Partikelmethoden im Zusammenhang mit Umformprozessen untersucht werden sollen.

4.3.1 Rheologische Modelle

Motiviert werden Materialgesetze häufig über eindimensionale rheologische Modelle. Tabelle 4.1 zeigt die gebräuchlichsten rheologischen Grundelemente und die dazuge-

Hookesche Feder	Newtonscher Dämpfungszylinder	St. Venantsches Trockenreibungsglied
o-//////-o	o- <u></u> -o	0- <u> </u>
$\sigma = E \varepsilon$	$\sigma = \eta \dot{\varepsilon}$	$\sigma \leqslant \sigma_{\rm y}$
elastisch	viskos	starr-plastisch

Tabelle 4.1: Rheologische Grundelemente

hörigen Materialgesetze für den eindimensionalen Fall. Werden Elemente in Reihe angeordnet, so ergibt sich bei Annahme kleiner Verzerrungen die Gesamt*dehnung* aus der Summe der Einzeldehnungen; werden Elemente parallel angeordnet, so ergibt sich die Gesamt*spannung* aus der Summe der Einzelspannungen.

4.3.2 Viskoelastisches Materialverhalten

Rheologische Modelle für viskoelastisches Materialverhalten ergeben sich aus Kombinationen von Federn und Dämpfern. Eine Parallelschaltung von Feder und Dämpfer ergibt das Kelvin-Modell, eine Reihenschaltung das Maxwell-Modell. Mit dem Kelvin-Modell kann Kriechen (Zunahme der Verzerrungen bei konstanter Spannung), mit dem Maxwell-Modell Relaxation (Abnahme der Spannung bei konstanter Dehnung) beschrieben werden. Eine Vielzahl von Kombinationen aus den Grundele-

Abbildung 4.1: Viskoelastische 2-Element-Körper, Kelvin-Körper (a) und Maxwell-Körper (b)

menten sind denkbar.¹ Die Abbildung 4.2 zeigt gebräuchliche 3-Element-Körper und einen gebräuchlichen 4-Element-Körper. Die Maxwell-, Lethersich-, Jeffreys- und

Abbildung 4.2: Viskoelastische 3- und 4-Element-Körper, Lethersich-Körper (a), Jeffreys-Körper (b), Zehner-K-Körper (c), Zehner-M-Körper (d), Burgers-Körper (e)

¹Die Dämpfungseigenschaften der gezeigten einfachen Modelle sind stark frequenzabhängig. Keine befriedigende Lösung bieten die verallgemeinerten Modelle die durch Parallelschaltung von Maxwell-Elementen (generalisierter Maxwell-Körper) oder Reihenschaltung von Kelvin-Elementen (Kelvin-Kette) erhalten werden, da diese Modelle eine hohe Parameteranzahl haben und außerdem keine "glatte" Anpassung an gemessene Kurven möglich ist. Eine Lösungsmöglichkeit besteht in der Betrachtnahme eines verallgemeinerten rheologischen Grundkörpers, dessen Eigenschaften zwischen denen der Feder und des Dämpfungszylinders liegen. Dies führt auf des Konzept der fraktionalen Ableitung, welches hier nicht weiter verfolgt wird.

Burgers-Modelle beschreiben viskoelastische Fluide, da sie ein vollständiges Relaxationsvermögen aufweisen und unter endlicher Last unbegrenzte Kriechverformungen auftreten. Die übrigen Modelle beschreiben viskoelastische Festkörper.

Verwendet wird das Zener-M-Modell: Es hat drei Materialparameter (E, E_2, η) und

Abbildung 4.3: Zener-M-Körper mit zugeordneten Materialparametern, eindimensional (a), Verallgemeinerung (b)

eine innere Unbekannte (ε_d), die Dehnung im Dämpfer. Als Materialgesetz und als Entwicklungsgleichung für die innere Unbekannte ergeben sich mit τ als Relaxationszeit:

$$\sigma = E \varepsilon + E_2 [\varepsilon - \varepsilon_d] \tag{4.4}$$

$$\dot{\varepsilon}_{\rm d} = \frac{E_2}{\eta} \left[\varepsilon - \varepsilon_{\rm d} \right] = \frac{1}{\tau} \left[\varepsilon - \varepsilon_{\rm d} \right] \tag{4.5}$$

Die vorstehenden Beziehungen werden auf den mehrdimensionalen Fall verallgemeinert:

$$\boldsymbol{\sigma} = \stackrel{(4)}{\boldsymbol{\mathcal{C}}} : \boldsymbol{\varepsilon} + \stackrel{(4)}{\boldsymbol{\mathcal{C}}}_2 : [\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_d]$$
(4.6)

$$\dot{\boldsymbol{\varepsilon}}_{\mathrm{d}} = \frac{1}{\tau} \left[\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\mathrm{d}} \right] \tag{4.7}$$

Hierin sind $\overset{(4)}{\mathcal{C}}$ und $\overset{(4)}{\mathcal{C}}_2$ linear elastisches Materialverhalten beschreibende Materialtetraden. Es wurde vorausgesetzt, dass die die Dämpfung beschreibende Materialtetrade kolinear zu $\overset{(4)}{\mathcal{C}}_2$ ist. Das Materialverhalten wird dann durch vier die elastischen Komponenten des Modells charakterisierenden Materialparameter (z.B. die Elastizitätsmodule E und E_2 und die Querkontraktionszahlen ν und ν_2) und die Relaxationszeit τ beschrieben.

4.3.3 Elastoplastisches Materialverhalten

Als Beispiel für ratenunabhängiges nichtlineares Materialverhalten bei kleinen Verformungen wurde *von Mises* sche Plastizität mit isotroper Verfestigung innerhalb des Programmsystems implementiert. Ausführliche Darstellungen finden sich in PRA-GER (1955) und RECKLING (1967). An dieser Stelle werden nur die Materialgleichung, die Entwicklungsgleichungen für die inneren Variablen und die Fließbedingung angegeben.

$$\sigma_{y0}, H_{iso} \qquad E \qquad \qquad \sigma_{y0}, H_{iso} \qquad (E, \nu) \rightarrow \widetilde{\mathcal{C}}$$

$$\sigma_{y0}, H_{iso} \qquad (E, \nu) \rightarrow \widetilde{\mathcal{C}}$$
(a) (b)

Abbildung 4.4: Elastoplastischer Körper mit zugeordneten Materialparametern, eindimensional (a), Verallgemeinerung (b)

Die Gesamtdehnung setzt sich aus elastischer und plastischer Dehnung zusammen, wobei angenommen wird, dass die plastische Verformung volumenerhaltend ist.

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{\rm el} + \boldsymbol{\varepsilon}_{\rm pl} \quad , \quad \boldsymbol{\varepsilon}_{\rm pl} = \hat{\boldsymbol{\varepsilon}}_{\rm pl}$$

$$\tag{4.8}$$

Innere Variablen sind die plastische Dehnung $\varepsilon_{\rm pl}$ und die plastische Vergleichsdehnung $\alpha_{\rm iso}$. Zu der Materialgleichung

$$\boldsymbol{\sigma} = \stackrel{(4)}{\boldsymbol{\mathcal{C}}} : \boldsymbol{\varepsilon}_{\mathrm{el}} = \stackrel{(4)}{\boldsymbol{\mathcal{C}}} : [\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\mathrm{pl}}]$$
(4.9)

und den Entwicklungsgleichungen für die inneren Variablen

$$\dot{\hat{\boldsymbol{\varepsilon}}}_{\text{pl}} = \lambda \, \mathbf{N} \quad \text{mit} \quad \mathbf{N} = \frac{\hat{\boldsymbol{\sigma}}}{\|\hat{\boldsymbol{\sigma}}\|} = \frac{\hat{\boldsymbol{\varepsilon}}_{\text{el}}}{\|\hat{\boldsymbol{\varepsilon}}_{\text{el}}\|}$$
$$\dot{\alpha}_{\text{iso}} = \lambda \, \sqrt{\frac{2}{3}} \tag{4.10}$$

kommt als weitere Beziehung die Fließbedingung

$$\Phi \leqslant 0 \tag{4.11}$$

mit der Fließfunktion

$$\Phi = \|2 \mu \left[\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\text{pl}}\right]\| - \sqrt{\frac{2}{3}} \left[\sigma_{\text{y0}} + H_{\text{iso}} \alpha_{\text{iso}}\right]$$
(4.12)

hinzu. In den vorstehenden Beziehungen sind deviatorische Anteile mit "($\hat{\boldsymbol{\cdot}}$)" gekennzeichnet. $\stackrel{\scriptscriptstyle (4)}{\boldsymbol{\mathcal{C}}}$ ist eine elastische Materialtetrade, **N** ist die Richtung der plastischen Dehnung und λ ein skalarer Faktor, der die Größe der plastischen Dehnung bestimmt. Materialparameter sind der Elastizitätsmodul E, der Schubmodul μ , die Anfangsfließspannung σ_{y0} und der isotrope Verfestigungsparameter H_{iso} . Die Fließfunktion Φ ist stets kleiner oder gleich Null. Wenn die Fließfunktion Φ verschwindet, können drei Fälle auftreten:

$$\dot{\Phi} < 0$$
 und $\lambda = 0$: elastische Entlastung
 $\dot{\Phi} = 0$ und $\lambda = 0$: neutrale Spannungsänderung (4.13)
 $\dot{\Phi} = 0$ und $\lambda > 0$: plastisches Fließen

Hierzu äquivalent sind die Kuhn-Tucker-Bedingungen (4.14) und die Konsistenzbedingung (4.15):

$$\lambda \ge 0$$
 , $\Phi \leqslant 0$, $\lambda \Phi = 0$ (4.14)

$$\Phi = 0 \quad \to \quad \lambda \, \dot{\Phi} = 0 \tag{4.15}$$

Bei elastoplastischem Materialverhalten muss also in jedem Lastschritt bzw. Zeitschritt eine Fallunterscheidung vorgenommen werden. Die Fließfunktion entscheidet darüber, ob sich die inneren Variablen weiterentwickeln oder nicht. Tritt plastisches Fließen auf, so steht neben den Entwicklungsgleichungen (4.10) die Bedingung $\Phi = 0$ mit der Fließfunktion nach (4.12) zur Verfügung, um die inneren Variablen und den skalaren Faktor λ zu bestimmen.

Wird im rheologischen Modell parallel zur Feder und zum Trockenreibungselement ein Dämpfer angeordnet, so ergibt sich ein ratenabhängiges Materialverhalten. Die

Abbildung 4.5: Elastoplastisch-viskoser Körpers mit zugeordneten Materialparametern, eindimensional (a), Verallgemeinerung (b)

Spannungsbeziehung (4.9) ist um die Spannung im Dämpfer zu ergänzen:

$$\boldsymbol{\sigma} = \stackrel{(4)}{\boldsymbol{\mathcal{C}}} : \left[\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\text{pl}}\right] + \stackrel{(4)}{\boldsymbol{\mathcal{D}}} : \dot{\boldsymbol{\varepsilon}}$$
(4.16)

Die viskose Materialtetrade $\stackrel{(4)}{\mathcal{D}}$ wird über die elastische Materialtetrade $\stackrel{(4)}{\mathcal{C}}$ und eine Relaxationszeit τ definiert:

$$\overset{(4)}{\mathcal{D}} = \tau \overset{(4)}{\mathcal{C}} \tag{4.17}$$

Mit $\tau = 0$ wird ratenunabhängiges Materialverhalten erhalten. Ein kleiner Wert für die Relaxationszeit τ kann zur Stabilisierung von Berechnungen dienen.

4.3.4 Allgemeine Form

Damit eine einheitliche Schnittstelle zu den Materialroutinen geschaffen werden kann, ist es notwendig, die Material- und Entwicklungsgleichungen in allgemeingültige Formen zu bringen, die die verwendeten Material- und Entwicklungsgleichungen als Spezialfälle enthalten. Hierzu werden alle inneren Variablen in Voigt-Notation in einem Vektor \mathbf{z} angeordnet. Im Falle des elastoplastischen Materialverhaltens wird außerdem der skalare Faktor λ in diesem Vektor untergebracht. Es ergibt sich die verallgemeinerte Materialgleichung

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}(\boldsymbol{\varepsilon}, \dot{\boldsymbol{\varepsilon}}, \mathbf{z}) \tag{4.18}$$

und die verallgemeinerte Entwicklungsgleichung

$$\dot{\mathbf{z}} = \mathbf{f}(\boldsymbol{\varepsilon}, \dot{\boldsymbol{\varepsilon}}, \mathbf{z})$$
 . (4.19)

Im Falle elastoplastischen Materialverhaltens sind zusätzlich noch die Kuhn-Tucker-Bedingungen (4.14) und die Konsistenzbedingung (4.15) zu beachten.

4.4 Schwache Form der Bilanzgleichungen

Aus der starken Form des Impulssatzes wird die schwache Form gewonnen, indem Gleichung (4.1), in Residualform gebracht, mit einer Testfunktion $\delta \mathbf{u}$ multipliziert und über ein Kontrollvolumen \mathcal{B} integriert wird.

$$\hat{g} = \int_{\mathcal{B}} \left[\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \rho \, \mathbf{b} - \rho \, \ddot{\mathbf{u}} \right] \cdot \delta \mathbf{u} \, dV$$

$$= \int_{\mathcal{B}} \left[\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} \right] \cdot \delta \mathbf{u} \, dV + \int_{\mathcal{B}} \left[\mathbf{b} - \ddot{\mathbf{u}} \right] \cdot \delta \mathbf{u} \, \rho \, dV = 0$$
(4.20)

Zur räumlichen Diskretisierung werden aus einem Ansatzfunktionsraum stammende Ansatzfunktionen verwendet. Sind Ansatzfunktionsraum und Testfunktionsraum identisch, so handelt es sich um ein *Ritz-Galerkin-Verfahren*, andernfalls um ein *Petrov-Galerkin-Verfahren*. Im Rahmen dieser Arbeit sollen ausschließlich Ritz-Galerkin-Verfahren zum Einsatz kommen. Damit bestimmt die höchste in Gleichung (4.20) auftretende räumliche Ableitungsordnung von Verschiebung **u** oder Testfunktion δ **u** die Glattheits- bzw. Stetigkeitsanforderung an den Funktionsraum.

Die Ansätze sind beim *Ritz-Galerkin-Verfahren* im Gegensatz zu den globalen Ansätzen des *Ritz-Verfahrens* lokal. Die Ansatzfunktionen sind wie beim Ritz-Verfahren unter Beachtung der wesentlichen Randbedingungen (beim vorliegenden physikalischen Problem sind das die Verschiebungsrandbedingungen) auszusuchen. Es ist also hinreichend wenn nach SZABÓ (1984b) *zulässige Funktionen* verwendet werden und nicht notwendig, dass *Vergleichsfunktionen* (die alle Randbedingungen erfüllen) verwendet werden.

Wird der Testfunktionsraum nicht eingeschränkt, so sind starke und schwache Form mathematisch gesehen gleichwertig. Soll die schwache Form des Impulssatzes numerisch behandelt werden, so muss der Testfunktionsraum eingeschränkt werden. Damit sorgt die Befriedigung der schwachen Form (4.20) nur noch näherungsweise für die Befriedigung der zugrunde liegenden Differentialgleichung (4.1).

Die Spannungen hängen von Verzerrungen (d.h. Verschiebungsableitungen) ab. Da im ersten Integral der schwachen Form (4.20) die Divergenz des Spannungstensors gebildet wird, treten Verschiebungsableitungen bis zur 2. Ordnung auf.

Um eine in den Ableitungsordnungen der Verschiebungen und der Testfunktionen symmetrische Formulierung zu erhalten, wird die schwache Form partiell integriert und unter Ausnutzung der Symmetrie des Spannungstensors und des Gaußschen Integralsatzes umgeformt. Damit folgt für die partiell integrierte schwache Form des Impulssatzes:

$$-\hat{g} = g = \int_{\mathcal{B}} \delta \boldsymbol{\varepsilon} : \boldsymbol{\sigma} \, dV + \int_{\mathcal{B}} \delta \mathbf{u} \cdot [\ddot{\mathbf{u}} - \mathbf{b}] \, \rho \, dV - \int_{\partial \mathcal{B}} \delta \mathbf{u} \cdot \mathbf{t} \, dA = 0 \qquad (4.21)$$

4.5 Randbedingungen und Kontakt

Da bei einem Teil der implementierten Methoden die Eigenschaften der für die räumliche Diskretisierung verwendeten Ansatzfunktionen eine direkte Behandlung von wesentlichen Randbedingungen und Kontaktbedingungen nicht gestatten, wird ein Strafverfahren eingesetzt (siehe Abschnitte 2.3 und 5.1). Das Verfahren ermöglicht die Erzwingung beliebiger inhomogener und schiefwinkliger Verschiebungsrandbedingungen.

 $\partial \mathcal{B}_{rnd}$: Verschiebungsrand, $\partial \mathcal{B}_{kon}$: Kontaktrand

Abbildung 4.6: Wesentliche Randbedingungen und Kontaktbedingungen, Anwendung eines Strafverfahrens

Physikalisch betrachtet werden durch das Strafverfahren wesentliche Randbedingungen in gemischte Randbedingungen überführt. Die Spannung ist am nun nachgiebig gelagerten Rand abhängig von der Verschiebung. Die Lagerung wird so steif gewählt, dass die wesentlichen Randbedingungen hinreichend genau nachgebildet werden, und so weich, dass die Konditionszahl des globalen Gleichungssystems (siehe Abschnitt 7.1.4) hinreichend klein bleibt. Werden die Berechnungen mit doppelter Genauigkeit durchgeführt, bleibt für die Wahl des Strafparameters ein großer Spielraum.

Abbildung 4.7: Beispiele für Umformprozesse

Der Kontakt wird beschränkt auf Normalkontakt zu starren Oberflächen. Eine Beschreibung der C^1 -stetigen Diskretisierung der Kontaktoberflächen und dazugehörige Literaturangaben finden sich in Abschnitt 6.3.

Die Randbedingungen und Kontaktbedingungen werden nicht kontinuierlich sondern

für diskrete Randpunkte aufgestellt. Hierzu werden punktweise die nachgiebigen Lagerungen zu Federn und die Randspannungen zu Randkräften zusammengefaßt.

Abbildung 4.8: Strafverfahren, Geometrie einer Verschiebungsrandbedingung

Die Abbildungen 4.8 und 4.9 zeigen die Geometrien einer Verschiebungsrandbedingung und einer inaktiven und einer aktiven Kontaktbedingung für einen einzelnen Randpunkt.

In beiden Abbildungen ist \mathcal{P}_0 die Lage des Randpunktes in der Referenzkonfiguration und \mathcal{P} die Lage in der Momentankonfiguration. Nimmt der Punkt eine Lage $\bar{\mathcal{P}}$ auf der strichpunktierten Linie ein, so wirken auf ihn keine Kräfte infolge der Strafbedingung. $\hat{\mathcal{P}}$ ist der Fußpunkt des Lotes von \mathcal{P} auf die strichpunktierte Linie.

Eine inhomogene und schiefe Verschiebungsrandbedingung wird über eine Richtung \mathbf{n} und eine Verschiebung in dieser Richtung

$$\bar{u}_{n} = \bar{\mathbf{u}} \cdot \mathbf{n} = \hat{\mathbf{u}} \cdot \mathbf{n} \tag{4.22}$$

definiert. (In der Abbildung 4.8 ist \bar{u}_n negativ.) Mit **n** und \bar{u}_n sind die zulässigen Lagen des Randpunktes eindeutig definiert.

Im Falle einer Kontaktbedingung wird vom Randpunkt \mathcal{P} ein Lot auf die Kontaktoberfläche gefällt. Damit werden der Ortsvektor $\hat{\mathbf{x}}$ vom Fußpunkt $\hat{\mathcal{P}}$ des Lotes und

(a) Punkt ${\mathcal P}$ außerhalb der Kontaktoberfläche, g>0,Kontaktbedingung inaktiv

(b) Punkt $\mathcal P$ innerhalb der Kontaktoberfläche, g<0,Kontaktbedingung aktiv

Abbildung 4.9: Strafverfahren, Geometrie einer Kontaktbedingung

die Richtung **n** erhalten. Die Berechnung hängt von der Art der Diskretisierung der Kontaktoberfläche ab und wird in Abschnitt 6.3.3 beschrieben. \bar{u}_n wird aus

$$\bar{u}_{n} = [\hat{\mathbf{x}} - \mathbf{x}_{0}] \cdot \mathbf{n} = \hat{\mathbf{u}} \cdot \mathbf{n}$$
(4.23)

gewonnen. (In den Abbildungen 4.9(a) und 4.9(b) ist \bar{u}_n negativ.)

Das Abstandsmaß gergibt sich für wesentliche Randbedingungen und Kontaktbedingungen aus

$$g = [\mathbf{x} - \bar{\mathbf{x}}] \cdot \mathbf{n} = [\mathbf{u} - \bar{\mathbf{u}}] \cdot \mathbf{n}$$
$$= [\mathbf{x} - \hat{\mathbf{x}}] \cdot \mathbf{n} = [\mathbf{u} - \hat{\mathbf{u}}] \cdot \mathbf{n} = u_{\mathrm{n}} - \bar{u}_{\mathrm{n}} \quad . \tag{4.24}$$

Die Ableitung des Abstandsmaßes gnach der Punktverschiebung u

$$\frac{\partial g}{\partial \mathbf{u}} = \mathbf{n} \tag{4.25}$$

wird später bei der Linearisierung der Strafkräfte benötigt.

Repräsentiert eine Feder eine wesentliche Randbedingung, so ist sie für positive und negative Werte von g aktiv. Steht eine Feder für eine Kontaktbedingung, so ist sie nur aktiv, wenn der Punkt eindringt (g < 0).

Für wesentliche Randbedingungen wird das lineare Federkraftgesetz

$$f_{\rm rnd} = -\alpha \ g \tag{4.26}$$

$$\frac{\partial f_{\rm rnd}}{\partial g} = -\alpha \tag{4.27}$$

verwendet; für Kontaktbedingungen ein lineares Federkraftgesetz, dass nur bei Eindringung (g < 0) aktiv ist

$$f_{\rm kon} = \begin{cases} -\alpha \ g \ \text{für } g < 0\\ 0 \ \text{für } g \ge 0 \end{cases}$$
(4.28)

$$\frac{\partial f_{\rm kon}}{\partial g} = \begin{cases} -\alpha \ \text{für } g < 0\\ 0 \ \text{für } g \ge 0 \end{cases}$$
(4.29)

Die Ableitungen der Kraftgesetze nach g sind angegeben, da diese bei der Linearisierung der Strafkräfte in Abschnitt 6.5.2 benötigt werden. Die Kraftgesetze und deren Ableitungen zeigen die Abbildungen 4.10 und 4.11. Vorschläge für Kontaktfederkraftgesetze, die auch an der Stelle g = 0 glatt (C^1 -stetig) sind, finden sich in ZAVARISE ET AL. (1998).

Abbildung 4.10: Strafverfahren, Federkraftgesetz für wesentliche Randbedingung

Abbildung 4.11: Strafverfahren, Federkraftgesetz für Kontaktbedingung

Als Kraft*vektoren* und deren Ableitungen ergeben sich für wesentliche Randbedingungen

$$\mathbf{f}_{\mathrm{rnd}} = f_{\mathrm{rnd}} \,\mathbf{n} = -\,\alpha \,g \,\mathbf{n} \tag{4.30}$$

$$\frac{\partial \mathbf{f}_{\rm rnd}}{\partial g} = -\alpha \,\mathbf{n} \tag{4.31}$$

und für Normalkontakt

$$\mathbf{f}_{\text{kon}} = f_{\text{kon}} \mathbf{n} = \begin{cases} -\alpha \, g \, \mathbf{n} & \text{für } g < 0 \\ \mathbf{0} & \text{für } g \ge 0 \end{cases}$$
(4.32)

$$\frac{\partial \mathbf{f}_{\text{kon}}}{\partial g} = \begin{cases} -\alpha \, \mathbf{n} & \text{für } g < 0 \\ \mathbf{0} & \text{für } g \ge 0 \end{cases} .$$
(4.33)

 $\partial \mathcal{B}_{rnd}$ und $\partial \mathcal{B}_{kon}$ seien die Teile der Oberfläche des Integrationsgebietes \mathcal{B} auf denen wesentliche Randbedingungen und Kontaktbedingungen über das Strafverfahren erzwungen werden. Die partiell integrierte schwache Form des Impulssatzes (4.21) ist dann um die zwei Terme

$$-\int_{\partial \mathcal{B}_{\rm rnd}} \tilde{\mathbf{f}}_{\rm rnd} \cdot \delta \mathbf{u} \, dA - \int_{\partial \mathcal{B}_{\rm kon}} \tilde{\mathbf{f}}_{\rm kon} \cdot \delta \mathbf{u} \, dA \tag{4.34}$$

zu ergänzen. Die Strafkräfte $\tilde{\mathbf{f}}_{rnd}$ und $\tilde{\mathbf{f}}_{kon}$ sind wie in (4.30) und (4.32) definiert, aber im Unterschied zu diesen auf die Oberflächeneinheit bezogen. Damit nimmt die partiell integrierte schwache Form des Impulssatzes folgende Form an:

$$g = \int_{\mathcal{B}} \delta \boldsymbol{\varepsilon} : \boldsymbol{\sigma} \, dV + \int_{\mathcal{B}} \delta \mathbf{u} \cdot \ddot{\mathbf{u}} \rho \, dV$$
$$- \int_{\mathcal{B}} \delta \mathbf{u} \cdot \mathbf{b} \rho \, dV - \int_{\partial \mathcal{B}} \delta \mathbf{u} \cdot \mathbf{t} \, dA$$
$$- \int_{\partial \mathcal{B}_{\text{rnd}}} \delta \mathbf{u} \cdot \tilde{\mathbf{f}}_{\text{rnd}} \, dA - \int_{\partial \mathcal{B}_{\text{kon}}} \delta \mathbf{u} \cdot \tilde{\mathbf{f}}_{\text{kon}} \, dA = 0$$
(4.35)

Kapitel 5

Ansätze zur räumlichen Diskretisierung

Im Rahmen numerischer Berechnungsverfahren werden kontinuierliche Zustandsgrößenverläufe diskretisiert. Die an einzelnen Stützpunkten bekannten oder zu berechnenden Zustandsgrößen werden zwischen den Stützpunkten über Ansätze interpoliert oder approximiert. Im Falle der Interpolation werden die Stützwerte durch den Ansatz exakt reproduziert; im allgemeineren Falle der Aproximation werden die Abweichungen zwischen den Stützwerten und dem Ansatz minimiert.

Ein und derselbe Ansatztyp kann unterschiedlichen Zwecken dienen. Mit der elementnetzfreien MLS-Approximation können beispielsweise Knotenwerte an den Integrationspunkten oder umgekehrt Integrationspunktwerte an den Knoten approximiert werden. Um Ansätze unabhängig von ihrem Einsatzzweck beschreiben zu können ist es also nicht sinnvoll von Knoten und Integrationspunkten zu sprechen, da sich deren Rollen vertauschen können. Stattdessen werden die sich selbsterklärenden Begriffe *Stützpunkte* und *Auswertungspunkte* verwendet.

Alle in dieser Arbeit verwendeten Ansätze entsprechen einer allgemeinen Form, die im Abschnitt 5.1 angegeben ist.

Elementansätze beschreibt Abschnitt 5.2; Ansätze, die ohne Elemente auskommen, Abschnitt 5.5. Ein Vergleich beider erfolgt in Abschnitt 5.6.

Werden temporäre Elementnetze eingesetzt, so müssen die Knoten neu erzeugter Netze initialisiert werden. Hierzu müssen Zustandsgrößenwerte von Punkten, an denen diese Werte gespeichert sind, auf die Knoten des neuen Netzes übertragen werden. Ein ähnliches Problem stellt sich im Rahmen der FEM: Spannungen und Verzerrungen werden an den Integrationspunkten der Elemente berechnet. Zur Erzeugung von grafischen Ausgaben mit stetigen Verläufen für diese Zustandsgrößen werden die Knotenwerte der Zustandsgrößen benötigt. Es bieten sich drei unterschiedliche Strategien an:

- Die Punkte werden durch ein weiteres FE-Netz verbunden. Zumindest f
 ür den zweidimensionalen Fall stehen Netzgeneratoren zur Verf
 ügung, die hochwertige Dreieckselementnetze erzeugen, die keine manuelle Nachbearbeitung mehr erfordern. Dieser Weg wird nicht verfolgt, da bei Punktmethoden der Vernetzungsaufwand gerade reduziert werden soll.
- 2. Es werden die im Abschnitt 5.5 beschriebenen elementfreien Ansätze verwendet.
- 3. Aus den ohnehin vorhandenen Elementansatzfunktionen des (neuen) FE-Netzes werden Ansätze konstruiert, die die Knotenwerte approximieren. Da im Gegensatz zu den Elementansätzen nicht Elementknotenwerte im Element interpoliert werden, sondern Punktwerte approximiert werden, um Elementknotenwerte zu erhalten, werden diese Ansätze hier als *Inverse Elementansätze* bezeichnet. Sie werden im Abschnitt 5.4 hergeleitet.

5.1 Allgemeine Form

Eine allgemeine Form, der alle in dieser Arbeit verwendeten Ansätze entsprechen, kann wie folgt angegeben werden:

$$\bar{f}(\boldsymbol{x}) = \sum_{k=1}^{N_{K}(\boldsymbol{x})} L_{k}(\boldsymbol{x}) f_{k} = \boldsymbol{L}_{\langle N_{K} \rangle}^{T}(\boldsymbol{x}) \boldsymbol{f}_{\langle N_{K} \rangle}$$
(5.1)

$$\frac{\partial \bar{f}(\boldsymbol{x})}{\partial x_{i}} = \sum_{k=1}^{N_{K}(\boldsymbol{x})} \frac{\partial L_{k}(\boldsymbol{x})}{\partial x_{i}} f_{k} = \frac{\partial \boldsymbol{L}^{\mathrm{T}}(\boldsymbol{x})}{\frac{\partial x_{i}}{_{\langle N_{K} \rangle}}} \boldsymbol{f}_{\langle N_{K} \rangle}$$
(5.2)

Hierin sind $L_k(\boldsymbol{x})$ die Ansatzfunktionen, $\partial L_k(\boldsymbol{x})/\partial x_i$ die räumlichen Ansatzfunktionsableitungen, f_k die Ansatzfunktionskoeffizienten und $N_K(\boldsymbol{x})$ die vom Ort \boldsymbol{x} abhängige Anzahl der Ansatzfunktionen und Stützpunkte. Die interpolierten oder approximierten Werte sind mit einem Querstrich gekennzeichnet.

Die Arbeit beschränkt sich auf Ansätze, bei denen alle Ansatzfunktionskoeffizienten

 f_k die physikalische Bedeutung von Werten an den Stützstellen haben. ¹ Weiterhin wird gefordert, dass die Summe der Ansatzfunktionen an jedem Ort 1 ergibt:

$$\sum_{\mathsf{k}=1}^{\mathsf{N}_{\mathsf{k}}(\boldsymbol{x})} L_{\mathsf{k}}(\boldsymbol{x}) = 1$$
(5.3)

Diese Forderung wird auch als *Partition of Unity* bezeichnet. Sie stellt sicher, dass konstante Funktionen exakt wiedergegeben werden. Letzteres wird nachgewiesen, indem der Ansatz gemäß Gleichung 5.1 für eine konstante Funktion aufgestellt, der (konstante) Stützwert f_k ausgeklammert und Gleichung 5.3 berücksichtigt wird. Berechnungsverfahren, deren Ansätze Gleichung (5.3) erfüllen gehören zur Familie der *Partition of Unity Methods*.

Als unmittelbare Folgerung aus Gleichung (5.3) ergibt sich:

$$\sum_{k=1}^{N_{\rm K}(\boldsymbol{x})} \frac{\partial L_{\rm k}(\boldsymbol{x})}{\partial x_{\rm i}} = 0$$
(5.4)

Die vorstehende Gleichung kann genutzt werden um Ansatzfunktionsableitungen zu kontrollieren.

Enthält \boldsymbol{x}_i die globalen Koordinaten des Punktes \mathcal{P}_k , so ist im Allgemeinen

$$L_{\mathbf{k}}(\boldsymbol{x}_{\mathbf{i}}) \neq \delta_{\mathbf{i}\mathbf{k}}$$
 . (5.5)

Die Ansatzfunktionen sind also im Allgemeinen an den Stützpunkten nicht gleich 0 oder 1. Dies erschwert die Berücksichtigung von wesentlichen Randbedingungen und Kontaktbedingungen.

5.2 Elementansätze

Elementanätze haben die Form

$$\bar{f}(\boldsymbol{x}) = \sum_{k=1}^{N_{K}} L_{k}(\boldsymbol{x}) f_{k} = \boldsymbol{L}_{\langle N_{K} \rangle}^{T}(\boldsymbol{x}) \boldsymbol{f}$$
(5.6)

¹Bei Verwendung *hierarchischer Ansatzfunktionen* wäre dies nicht mehr der Fall. Diese erhöhen die Rechengenauigkeit, indem sie die "konventionellen" Ansatzfunktionen ergänzen. Das Netz muss dabei nicht verändert werden. Zu den zusätzlichen Ansatzfunktionen gehören zusätzliche Freiwerte, die sich größtenteils einer direkten physikalischen Interpretation entziehen.

worin $L_k(\boldsymbol{x})$ die Elementansatzfunktionen, f_k die Knotenwerte und N_K die Knotenanzahl im Element sind. Die Ansatzfunktionen nehmen jeweils genau an einem Knoten den Wert 1 und an den übrigen Knoten den Wert 0 an. Enthält \boldsymbol{x}_i die globalen Koordinaten des Knotens \mathcal{K}_i , so gilt:

$$L_{\mathbf{k}}(\boldsymbol{x}_{\mathbf{i}}) = \delta_{\mathbf{i}\mathbf{k}} \tag{5.7}$$

Hieraus ergibt sich, dass die Knotenwerte exakt abgebildet werden:

$$\bar{f}(\boldsymbol{x}_{i}) = \sum_{k=1}^{N_{K}} L_{k}(\boldsymbol{x}_{i}) f_{k} = \sum_{k=1}^{N_{K}} \delta_{ik} f_{k} = f_{i}$$
(5.8)

Wird die Beziehung (5.6) für N_P Punkte im Element (z.B. für die Integrationspunkte) aufgestellt, so lassen sich die N_P Gleichungen

$$\bar{f}(\boldsymbol{x}_{p}) = \sum_{k=1}^{N_{K}} L_{k}(\boldsymbol{x}_{p}) f_{k} = \boldsymbol{L}_{\langle N_{K} \rangle}^{T}(\boldsymbol{x}_{p}) \boldsymbol{f}_{\langle N_{K} \rangle} , \quad p = 1, \dots, N_{P}$$
(5.9)

zu einer Matrizengleichung zusammenfassen:

$$\underbrace{\left\{\begin{array}{c} \bar{f}(\boldsymbol{x}_{1}) \\ \bar{f}(\boldsymbol{x}_{2}) \\ \vdots \\ \bar{f}(\boldsymbol{x}_{N_{P}}) \end{array}\right\}}_{\boldsymbol{f}_{\langle N_{P} \rangle}} = \underbrace{\left[\begin{array}{cccc} L_{1}(\boldsymbol{x}_{1}) & L_{2}(\boldsymbol{x}_{1}) & \cdots & L_{N_{K}}(\boldsymbol{x}_{1}) \\ L_{1}(\boldsymbol{x}_{2}) & L_{2}(\boldsymbol{x}_{2}) & \cdots & L_{N_{K}}(\boldsymbol{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ L_{1}(\boldsymbol{x}_{N_{P}}) & L_{2}(\boldsymbol{x}_{N_{P}}) & \cdots & L_{N_{K}}(\boldsymbol{x}_{N_{P}}) \end{array}\right]}_{\boldsymbol{S}_{\langle N_{P} \times N_{K} \rangle}} \underbrace{\left\{\begin{array}{c} f_{1} \\ f_{2} \\ \vdots \\ f_{N_{K}} \end{array}\right\}}_{\boldsymbol{f}_{\langle N_{K} \rangle}} \tag{5.10}$$

Die Matrix S vermittelt eine Abbildung zwischen Elementknotenwerten und Werten an Punkten im Element. Für die Komponenten von S gilt:

$$S_{\mathsf{p}\,\mathsf{k}} = L_{\mathsf{k}}(\boldsymbol{x}_{\mathsf{p}}) \tag{5.11}$$

Die Beziehung (5.10) wird in Abschnitt 5.4 genutzt, um eine inverse Abbildung herzuleiten.

5.2.1 Natürliche Elementkoordinaten

Die Elementansatzfunktionen lassen sich nur, wenn die Elementknoten auf den Kreuzungspunkten und die Elementränder auf den Linien eines regelmäßigen Netzes aus Koordinatenlinien liegen, effektiv und systematisch konstruieren. Daher lassen sich die Elementansatzfunktionen nur dann in direkter Abhängigkeit von den globalen Koordinaten darstellen, wenn die Elementnetze orthogonal sind. Um auch Elementnetze verwenden zu können, bei denen die Elementränder schiefwinklig und/oder krummlinig sind, werden *natürliche Elementkoordinaten* eingeführt. Sie sind elementweise definiert und normiert. Die Abbildungen 5.1 und 5.2 zeigen an den

Abbildung 5.1: Krummlinig berandetes Viereckselement

Abbildung 5.2: Krummlinig berandetes Dreieckselement

Beispielen des 9-Knoten-Viereckselementes und des 6-Knoten-Dreieckselementes die Beziehung zwischen dem globalen und dem lokalen normierten Koordinatensystem. Im durch die globale kartesische Basis aufgespannten Raum sind die Linien der globalen Koordinaten orthogonal und die Linien der natürlichen Elementkoordinaten im Allgemeinen schiefwinklig und krummlinig. Umgekehrt verhält es sich im durch die lokale Basis aufgespannten Raum. Hier sind die natürlichen Koordinaten orthogonal und die globalen Koordinaten im Allgemeinen schiefwinklig und krummlinig. Die Beziehung zwischen globalen und lokalen Koordinaten wird gewonnen, indem die globalen Koordinaten im Element mittels der in Abhängigkeit von lokalen Koordinaten definierten Ansatzfunktionen interpoliert werden:

$$\boldsymbol{x}(\boldsymbol{\xi}) = \underset{\langle N_{\mathrm{D}} \times N_{\mathrm{K}} \rangle}{\boldsymbol{X}_{\mathrm{K}}} \underset{\langle N_{\mathrm{K}} \rangle}{\boldsymbol{L}(\boldsymbol{\xi})}$$
(5.12)

Die Matrix $X_{\rm K}$ enthält die globalen Koordinaten der Elementknoten, $N_{\rm D}$ ist die räumliche Dimension und $N_{\rm K}$ die Anzahl der Elementknoten. Die Beziehung ist im Allgemeinen nichtlinear, sodass sie sich nicht direkt invertieren lässt. Im Abschnitt 5.3.2 wird beschrieben, wie sich die lokalen Elementkoordinaten in Abhängigkeit von den globalen Koordinaten bestimmen lassen. Die Schreibweise L(x) ist also im Falle der Elementansätze so zu verstehen, dass zunächst die Elementkoordinaten in Abhängigkeit von den globalen Koordinaten und anschließend die Elementansatzfunktionen in Abhängigkeit von den Elementkoordinaten berechnet werden.

Als Definitionsbereich der Ansatzfunktionen gilt für Linienelemente, Viereckselemente und Oktaederelemente

$$-1 \leqslant \xi_{\mathsf{i}} \leqslant 1 \quad \text{mit} \quad \mathsf{i} = 1, \dots, \mathsf{N}_{\mathsf{D}} \tag{5.13}$$

und für Dreieckselemente und Tetraederelemente

$$0 \leqslant \xi_{i} \leqslant 1 \quad \text{mit} \quad i = 1, \dots, N_{D}$$

und
$$\sum_{i=1}^{N_{D}} \xi_{i} \leqslant 1 \quad .$$
(5.14)

Die Elementkoordinaten der Mittelpunkte von Linienelementen, Viereckselementen und Oktaederelementen sind

$$\xi_{\mathcal{M}\mathbf{i}} = 0 \quad \text{mit} \quad \mathbf{i} = 1, \dots, \mathsf{N}_{\mathsf{D}} \quad , \tag{5.15}$$

die von Dreieckselementen sind

$$\xi_{\mathcal{M}i} = \frac{1}{3} \quad \text{mit} \quad i = 1, \dots, 2$$
 (5.16)

und die von Tetraederelementen sind

$$\xi_{\mathcal{M}i} = \frac{1}{4}$$
 mit $i = 1, \dots, 3$. (5.17)

Werden zur Interpolation der globalen Koordinaten die gleichen Ansatzfunktionen verwendet wie zur Interpolation der Unbekannten, so wird das Element als isoparametrisch bezeichnet. Wird zur Beschreibung der Elementgeometrie eine niedrigere Ansatzfunktionsordnung verwendet als zur Beschreibung der Zustandsgrößenverläufe, so ist das Element subparametrisch; im umgekehrten Fall ist es superparametrisch.

Im Rahmen dieser Arbeit wurden Dreiecks- und Viereckselemente der *Lagrange*- und der *Serendipity*-Familie implementiert. Die Ansätze dieser Elementfamilien sind an den Elementgrenzen C^0 -stetig. Es handelt sich um Standardelementansätze, die z.B in KNOTHE & WESSELS (1991), ZIENKIEWICZ & TAYLOR (2000a) oder BATHE (2002) beschrieben werden.

5.3 Punktzuordnung

Im Rahmen der klassischen FEM bewegen sich die Materialpunkte, die gleichzeitig auch Integrationspunkte sind, mit den Elementen mit, d.h. die Elementeinheitskoordinaten der Materialpunkte ändern sich nicht und die Punkte sind immer den selben Elementen zugeordnet.

Finden im Rahmen anderer Methoden Relativbewegungen zwischen Punkten und FE-Netz statt oder wird das FE-Netz neu generiert, so sind die Punkte nach jeder Relativbewegung oder Netzneugenerierung den Elementen neu zuzuordnen und die Elementkoordinaten zu bestimmen.

Für das Problem der Punktzuordnung wird der Spezialfall konvex polygonal begrenzter 2D-Elemente und der allgemeinere Fall beliebig begrenzter 2D- und 3D-Elemente untersucht. In die erste Kategorie fallen 3-Knoten-Dreieckselemente und nicht entartete 4-Knoten-Viereckselemente; in die zweite alle 2-D-Elemente mit höherer Ansatzfunktionsordnung für die Elementgeometrie und alle 3D-Elemente.

5.3.1 Konvex polygonal berandete Elemente

Die Abbildung 5.3 zeigt einen Punkt innerhalb eines konvexen Polygons. Ein Punkt \mathcal{P} befindet sich genau dann innerhalb eines Polygons mit den Eckpunkten \mathcal{K}_i und den Kantenvektoren \mathbf{k}_i , wenn alle Teilflächen A_i positiv sind ($i = 1, ..., N_K$).

$$2 A_{i} \mathbf{e}_{3} = \mathbf{k}_{i} \times \mathbf{a}_{i} = \begin{vmatrix} \mathbf{e}_{3} & \mathbf{e}_{3} & \mathbf{e}_{3} \\ k_{i1} & k_{i2} & 0 \\ a_{i1} & a_{i2} & 0 \end{vmatrix} = \begin{bmatrix} k_{i1} a_{i2} - k_{i2} a_{i1} \end{bmatrix} \mathbf{e}_{3}$$
(5.18)
$$A_{i} = \frac{1}{2} \begin{bmatrix} k_{i1} a_{i2} - k_{i2} a_{i1} \end{bmatrix}$$
(5.19)

Abbildung 5.3: Punkt in konvex polygonal begrenztem Element

Der Algorithmus kann bei Netzen aus konvex polygonal begrenzten 2D-Elementen dazu dienen, numerisch effizient Punkte den Elementen zuzuordnen. In der Regel werden zusätzlich die Elementkoordinaten der Punkte benötigt. Zur Berechnung der Elementkoordinaten kann das im folgenden Abschnitt beschriebene Verfahren verwendet werden.

5.3.2 Krummlinig berandete Elemente

Im allgemeineren Fall von krummlinig berandeten Elementen ist es nicht mehr möglich die Elementzugehörigkeit von Punkten über eine einfache geometrische Bedingung zu entscheiden. Stattdessen wird die nichtlineare Beziehung (5.12) zwischen den normierten Elementkoordinaten $\boldsymbol{\xi}$ und den globalen Koordinaten \boldsymbol{x} eines Punktes ausgenutzt:

$$\boldsymbol{x}(\boldsymbol{\xi}) = \underset{\langle N_{\mathrm{D}} \times N_{\mathrm{K}} \rangle}{\boldsymbol{X}_{\mathrm{K}} \times N_{\mathrm{K}} } \boldsymbol{L}(\boldsymbol{\xi})$$
(5.20)

Die globalen Koordinaten des Punktes sind bekannt; die Elementkoordinaten des Punktes sind gesucht. Die Gleichung (5.20) lässt sich nur für Sonderfälle (z.B. 3-Knoten-Dreieckselement) invertieren. Stattdessen wird die Gleichung in Residualform gebracht

$$\boldsymbol{r}(\boldsymbol{\xi}) = \boldsymbol{X}_{\mathrm{K}} \boldsymbol{L}(\boldsymbol{\xi}) - \boldsymbol{x} = 0 \tag{5.21}$$

und numerisch mit dem im Abschnitt 7.2.1 beschriebenen Newton-Raphson-Verfahren gelöst:

$$\boldsymbol{r}(\boldsymbol{\xi}^{i+1}) = \boldsymbol{r}(\boldsymbol{\xi}^{i} + \Delta \boldsymbol{\xi}^{i+1})$$

$$\approx \boldsymbol{r}(\boldsymbol{\xi}^{i}) + \left. \frac{\partial \boldsymbol{r}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} \right|_{\boldsymbol{\xi}^{i}} \Delta \boldsymbol{\xi}^{i+1}$$

$$\stackrel{!}{=} 0$$
(5.22)

Die Tangente wird als Jakobimatrix identifiziert:

$$\frac{\partial \boldsymbol{r}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} = \boldsymbol{X}_{\mathrm{K}} \frac{\partial \boldsymbol{L}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} = \frac{\partial \boldsymbol{x}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} = \boldsymbol{J}(\boldsymbol{\xi})$$
(5.23)

Mit den Gleichungen (5.22) und (5.23) ergibt sich als Verbesserung der lokalen Koordinaten im Iterationsschritt i ± 1

$$\Delta \boldsymbol{\xi}^{\mathbf{i}+1} = -\boldsymbol{J}(\boldsymbol{\xi}^{\mathbf{i}})^{-1} \boldsymbol{r}(\boldsymbol{\xi}^{\mathbf{i}})$$
(5.24)

und abschließend für die verbesserten lokalen Koordinaten

$$\boldsymbol{\xi}^{i+1} = \boldsymbol{\xi}^i + \Delta \boldsymbol{\xi}^{i+1} \quad . \tag{5.25}$$

Als Anfangswerte für das Iterationsverfahren werden die Einheitskoordinaten des Elementmittelpunktes entspechend der Gleichungen (5.15) bis (5.17) verwendet. Die Iteration wird abgebrochen wenn

$$\|\boldsymbol{r}(\boldsymbol{\xi}^{i+1})\| < \varepsilon \tag{5.26}$$

erfüllt ist. ε ist eine kleine Zahl, die in Abhängigkeit von der Rechnergenauigkeit und der gewünschten Genauigkeit der Lösung festgelegt wird. Sind die Ungleichungen (5.13) bzw. (5.14) für die Lösung erfüllt, so liegt der Punkt im Element. Die Iteration wird vorzeitig abgebrochen, wenn entweder die Jakobimatrix nicht invertierbar ist oder in zwei aufeinander folgenden Iterationsschritten für den Punkt Elementkoordinaten außerhalb des durch die Ungleichungen (5.13) bzw. (5.14) definierten Bereiches erhalten werden. In beiden Fällen liegt der Punkt außerhalb des Elementes.

5.4 Inverse Elementansätze

Die Approximation von Elementknotenwerten aus an Punkten im Element vorliegenden Werten kann in folgender Weise erfolgen:

$$\bar{f}(\boldsymbol{x}_{\mathsf{k}}) = \bar{f}_{\mathsf{k}} = \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathsf{P}}(\boldsymbol{x}_{\mathsf{k}})} L_{\mathsf{p}}^{\star}(\boldsymbol{x}_{\mathsf{k}}) f_{\mathsf{p}} = \boldsymbol{L}_{\langle\mathsf{N}_{\mathsf{P}}\rangle}^{\star \mathsf{T}}(\boldsymbol{x}_{\mathsf{k}}) \boldsymbol{f}_{\langle\mathsf{N}_{\mathsf{P}}\rangle}$$
(5.27)

Hierin sind f_p die Werte an den Stützpunkten und N_P ist die Stützpunktanzahl. Die Größen $L_p^{\star}(\boldsymbol{x}_k)$ sind keine kontinuierlichen Ansatzfunktionen. Sie sind nur an den Knoten definiert.

Inverse Elementansätze können entweder elementweise über eine Invertierung oder gegebenenfalls Pseudoinvertierung der Beziehung (5.10) gewonnen werden oder knotenweise über die *Partition of Unity*-Forderung.

5.4.1 Herleitung über Pseudoinverse

Tabelle 5.1: Fallunterscheidung bei der Bestimmung der (pseudo)inversen Elementansatzfunktionsmatrix am Beispiel des linearen 2-Knoten-Elementes und des bilinearen 4-Knoten-Elementes In der Beziehung (5.10) in Abschnitt 5.2 enthält der Vektor f Knotenwerte und der Vektor \bar{f} interpolierte Werte an Punkten im Element. Nun soll die umgekehrte Beziehung aufgestellt werden. Die Werte an den Punkten im Element sind Stützwerte und die Werte an den Elementknoten approximierte Werte. Daher wird nun in (5.10) der Vektor der approximierten Knotenwerte mit dem Querstrich gekennzeichnet:

$$\boldsymbol{f}_{\langle N_{\mathrm{P}} \rangle} = \boldsymbol{S}_{\langle N_{\mathrm{P}} \times N_{\mathrm{K}} \rangle} \, \bar{\boldsymbol{f}} \tag{5.28}$$

Die Matrix S, die Werte von Ansatzfunktionen an den Orten der Punkte im Element enthält, bildet Werte an den Elementknoten auf Werte an den Punkten im Element ab. Die umgekehrte Abbildung wird über die Beziehung

$$\bar{\boldsymbol{f}}_{|\boldsymbol{N}_{\mathrm{K}}\rangle} = \boldsymbol{S}^{\star}_{\langle \boldsymbol{N}_{\mathrm{K}} \times \boldsymbol{N}_{\mathrm{P}}\rangle} \boldsymbol{f}$$
(5.29)

definiert, wobei noch geklärt werden muss, wie die Matrix S^* berechnet werden kann. Es sind drei Fälle zu unterscheiden:

1. $N_P = N_K$ und $Rang(S) = N_K$: Das Gleichungssystem (5.28) ist bestimmt. S^* wird durch Invertierung von S gewonnen:

$$\boldsymbol{S}^{\star}_{\langle \mathsf{N}_{\mathrm{K}}\times\mathsf{N}_{\mathrm{K}}\rangle} = \boldsymbol{S}^{-1}_{\langle \mathsf{N}_{\mathrm{K}}\times\mathsf{N}_{\mathrm{K}}\rangle}$$
(5.30)

2. $N_P > N_K$ und $\text{Rang}(\boldsymbol{S}) = N_K$: Das Gleichungssystem (5.28) ist überbestimmt. \boldsymbol{S}^* wird durch Pseudoinvertierung von \boldsymbol{S} gemäß Gleichung (7.14) aus Abschnitt 7.1.2 gewonnen:

$$\boldsymbol{S}^{\star}_{\langle N_{\mathrm{K}} \times N_{\mathrm{P}} \rangle} = \begin{bmatrix} \boldsymbol{S} \\ \langle N_{\mathrm{P}} \times N_{\mathrm{K}} \rangle \end{bmatrix}^{\dagger}$$
(5.31)

3. $N_{\rm P} < N_{\rm K} ~{\rm oder}~{\rm Rang}({\boldsymbol{\mathcal{S}}}) < N_{\rm K}$:

Das Gleichungssystem (5.28) ist unterbestimmt. S^* wird durch eine effektive Pseudoinvertierung von S gemäß Gleichung (7.18) aus Abschnitt 7.1.3 gewonnen:

$$\boldsymbol{S}^{\star}_{\langle N_{\mathrm{K}} \times N_{\mathrm{P}} \rangle} = \begin{bmatrix} \boldsymbol{S} \\ {}_{\langle N_{\mathrm{P}} \times N_{\mathrm{K}} \rangle} \end{bmatrix}^{\dagger_{(\mathrm{eff})}}$$
(5.32)

Die drei Fälle werden anhand der Beispiele des bilinearen 4-Knoten-Elementes und des linearen 2-Knoten-Elementes in Tabelle 5.1 illustriert.

Tabelle 5.2 zeigt am Beispiel des linearen 2-Knoten-Elementes wie Knotenwerte bei unterschiedlicher Stützpunktanzahl und Stützpunktposition approximiert werden,

Tabelle 5.2: Eigenschaften der Approximation von Elementknotenwerten aus Werten an Punkten im Element über die (pseudo)inverse Elementansatzfunktionsmatrix am Beispiel des linearen 2-Knoten-Elementes

wenn hierzu Beziehung (5.29) mit (5.30), (5.31) oder (5.32) genutzt wird.

Um die nur an den Elementknoten definierten *inversen Elementansatzfunktionen* $L_{p}^{\star}(\boldsymbol{x}_{k})$ zu identifizieren, wird die Matrizengleichung (5.29) ausgeschrieben

$$\underbrace{\left\{\begin{array}{c} \bar{f}(\boldsymbol{x}_{1}) \\ \bar{f}(\boldsymbol{x}_{2}) \\ \vdots \\ \bar{f}(\boldsymbol{x}_{N_{\mathrm{K}}}) \end{array}\right\}}_{\bar{f}_{\langle N_{\mathrm{K}} \rangle}} = \underbrace{\left[\begin{array}{cccc} S_{11}^{\star} & S_{12}^{\star} & \cdots & S_{1N_{\mathrm{P}}}^{\star} \\ S_{21}^{\star} & S_{22}^{\star} & \cdots & S_{2N_{\mathrm{P}}}^{\star} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N_{\mathrm{K}}1}^{\star} & S_{N_{\mathrm{K}}2}^{\star} & \cdots & S_{N_{\mathrm{K}}N_{\mathrm{P}}}^{\star} \end{array}\right]}_{\boldsymbol{S}_{\langle N_{\mathrm{K}} \times N_{\mathrm{P}} \rangle}} \underbrace{\left\{\begin{array}{c} f_{1} \\ f_{2} \\ \vdots \\ f_{N_{\mathrm{P}}} \end{array}\right\}}_{\langle N_{\mathrm{P}} \rangle}$$
(5.33)

und mit der für alle Elementknoten aufgestellten Beziehung (5.27)

$$\bar{f}(\boldsymbol{x}_{\mathsf{k}}) = \bar{f}_{\mathsf{k}} = \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathsf{P}}(\boldsymbol{x}_{\mathsf{k}})} L_{\mathsf{p}}^{\star}(\boldsymbol{x}_{\mathsf{k}}) f_{\mathsf{p}} = \boldsymbol{L}_{\langle\mathsf{N}_{\mathsf{P}}\rangle}^{\star \mathrm{T}}(\boldsymbol{x}_{\mathsf{k}}) f_{\mathsf{N}_{\mathsf{K}}\rangle} , \quad \mathsf{k} = 1, \dots, \mathsf{N}_{\mathsf{K}}$$
(5.34)

verglichen. Hieraus ergibt sich

$$\boldsymbol{S}_{(N_{\mathrm{K}}\times N_{\mathrm{P}})}^{\star} = \begin{bmatrix} L_{1}^{\star}(\boldsymbol{x}_{1}) & L_{2}^{\star}(\boldsymbol{x}_{1}) & \cdots & L_{N_{\mathrm{P}}}^{\star}(\boldsymbol{x}_{1}) \\ L_{1}^{\star}(\boldsymbol{x}_{2}) & L_{2}^{\star}(\boldsymbol{x}_{2}) & \cdots & L_{N_{\mathrm{P}}}^{\star}(\boldsymbol{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ L_{1}^{\star}(\boldsymbol{x}_{\mathrm{N}_{\mathrm{K}}}) & L_{2}^{\star}(\boldsymbol{x}_{\mathrm{N}_{\mathrm{K}}}) & \cdots & L_{\mathrm{N}_{\mathrm{K}}}^{\star}(\boldsymbol{x}_{\mathrm{N}_{\mathrm{K}}}) \end{bmatrix}$$
(5.35)

oder kürzer

$$L_{\mathbf{p}}^{\star}(\boldsymbol{x}_{\mathbf{k}}) = S_{\mathbf{k}\,\mathbf{p}}^{\star} \tag{5.36}$$

Grenzen an einen Knoten mehrere Elemente, so werden im Allgemeinen für diesen Knoten in jedem Element andere Knotenwerte durch die Approximation erhalten. ² Wird eine kontinuierliche Approximation der Knotenwerte benötigt, so sind die Knotenwerte noch zu mitteln. Dies lässt sich vermeiden, wenn die inversen Elementansatzfunktionen wie im nächsten Abschnitt beschrieben bestimmt werden.

5.4.2 Herleitung über *Partition of Unity*-Forderung

Als Bausteine für die inversen Elementansatzfunktionen werden aus Elementansatzfunktionen knotenweise zusammengefaßte Funktionen konstruiert. Alle Elementansatzfunktionen, die am Knoten mit dem Index k den Wert 1 haben, bilden die zusammengesetzte Funktion \hat{L}_k . Die zusammengesetzte Funktion nimmt nur in Elementen, die an den Knoten mit dem Index k angrenzen, von 0 verschiedene Werte an.

Für die inversen Elementansatzfunktionen wird gefordert, dass diese die *Partition* of Unity-Forderung (5.3) erfüllen:

$$\sum_{\mathbf{p}=1}^{N_{\mathbf{p}}(\boldsymbol{x}_{\mathbf{k}})} L_{\mathbf{p}}^{\star}(\boldsymbol{x}_{\mathbf{k}}) = 1$$
(5.37)

²Bei der Visualisierung über Farbverläufe von im Rahmen der Finite-Elemente-Methode an Integrationspunkten gewonnenen Berechnungsergebnissen (wie z.B. Spannungen oder Dehnungen) können die approximierten Knotenwerte direkt zur elementweisen Darstellung der Ergebnisse genutzt werden. Die Farbverläufe sind dann im Allgemeinen an den Elementrändern diskontinuierlich. Starke Farbsprünge an den Elementrändern zeigen größere Sprünge in den Berechnungsergebnissen an, was auf eine zu grobe Diskretisierung in den entsprechenden Bereichen hindeutet.

Hierin ist $N_{P}(\boldsymbol{x}_{k})$ die Punktanzahl in den an den Knoten mit dem Index kangrenzenden Elementen.

Ausgegangen wird von einem Quotienten mit identischem Zähler und Nenner. Der Bruch wird in eine Summe von $N_{\rm P}(\boldsymbol{x}_k)$ Brüchen zerlegt und mit (5.37) verglichen.

$$1 = \frac{\sum_{q=1}^{N_{\rm P}(\boldsymbol{x}_{\rm k})} V_{\rm p} \, \hat{L}_{\rm k}(\boldsymbol{x}_{\rm p})}{\sum_{q=1}^{N_{\rm P}(\boldsymbol{x}_{\rm k})} V_{\rm q} \, \hat{L}_{\rm k}(\boldsymbol{x}_{\rm q})} = \sum_{p=1}^{N_{\rm P}(\boldsymbol{x}_{\rm k})} \left[\frac{V_{\rm p} \, \hat{L}_{\rm k}(\boldsymbol{x}_{\rm p})}{\sum_{q=1}^{N_{\rm P}(\boldsymbol{x}_{\rm k})} V_{\rm q} \, \hat{L}_{\rm k}(\boldsymbol{x}_{\rm q})} \right] \stackrel{!}{=} \sum_{p=1}^{N_{\rm P}(\boldsymbol{x}_{\rm k})} L_{\rm p}^{\star}(\boldsymbol{x}_{\rm k})$$
(5.38)
$$\rightarrow \quad L_{\rm p}^{\star}(\boldsymbol{x}_{\rm k}) = \frac{V_{\rm p} \, \hat{L}_{\rm k}(\boldsymbol{x}_{\rm p})}{\sum_{q=1}^{N_{\rm P}(\boldsymbol{x}_{\rm k})} V_{\rm q} \, \hat{L}_{\rm k}(\boldsymbol{x}_{\rm q})}$$
(5.39)

Die zusammengesetzten Funktionen \hat{L}_k werden mit den Volumina, die den Punkten zugeordnet sind, gewichtet. Werden Knotenwerte über den Ansatz (5.27) mit $L_p^*(\boldsymbol{x}_k)$ nach (5.39) approximiert, so werden eindeutige Knotenwerte erhalten. Eine Mittelung von mehreren Knotenwerten wie beim Vorgehen nach Abschnitt 5.4.1 entfällt.

5.5 Ansätze für Punktnetze

Als elementfreie räumliche Diskretisierung wird in dieser Arbeit die in Abschnitt 5.5.3 beschriebene MLS-Approximation verwendet (MLS = Moving Least Squares, Methode der bewegten kleinsten Fehlerquadrate). Zunächst werden deren Bestandteile angegeben. Dies sind die im Abschnitt 5.5.1 behandelten Wichtungsfunktionen und die im Abschnitt 5.5.2 behandelten Basisfunktionen.

5.5.1 Wichtungsfunktionen

Die meisten netzfreien Methoden nutzen als Bausteine für Ansatzfunktionen Wichtungsfunktionen. Wichtungsfunktionen sorgen dafür, dass der Einfluss eines Punktes mit zunehmendem Abstand abnimmt. Die Ausdehnung der Wichtungsfunktionen bestimmt die Anzahl der Stützpunkte $N_{\rm K}(\boldsymbol{x})$ der Approximation.³

 $^{^{3}}$ Werden die Einflussbereiche der Wichtungsfunktionen nicht begrenzt, so ergeben sich globale Ansätze. Diese Ansätze führen zu einem dicht besetzten Gleichungssystem, wenn sie im Rahmen einer numerische Berechnungsmethode zur räumlichen Diskretisierung eingesetzt werden.

	Exponential-	Polynom
	funktion	2n-ten Grades
$\tilde{w}(s)$	$e^{\left[-c^2\left[rac{s}{h} ight]^2 ight]}$	$\left[1 - \left[\frac{s}{h}\right]^2\right]^n$
$\beta_{ m 1D}$	$\left[\frac{\operatorname{erf}(c)\sqrt{\pi}h}{c}\right]^{-1}$	$\left[\frac{\Gamma(n+1) h \sqrt{\pi}}{\Gamma(n+\frac{3}{2})}\right]^{-1}$
$\beta_{ m 2D}$	$\left[\left[1 - e^{\left(-c^2\right)} \right] \frac{h^2}{c^2} \pi \right]^{-1}$	$\left[\frac{h^2 \pi}{n+1}\right]^{-1}$

Tabelle 5.3: Wichtungsfunktionen und Faktoren zur Normierung

Werden die Wichtungsfunktionen in Abhängigkeit vom Abstand vom Basispunkt \mathcal{P}_k

$$s = \|x - x_{\mathsf{k}}\| \tag{5.40}$$

dargestellt, so ergeben sich im eindimensionalen Fall achsensymmetrische, im zweidimensionalen Fall rotationssymmetrische und im dreidimensionalen Fall kugelsymmetrische Wichtungsfunktionen bzgl. \mathcal{P}_k .

Wichtungsfunktionen sollten nur im Einflussbereich des Basispunktes von Null verschiedene Werte annehmen

$$w(s) \begin{cases} \neq 0 & \text{für } s < h \\ = 0 & \text{für } s \ge h \end{cases}, \tag{5.41}$$

mit zunehmendem Abstand abnehmen

$$w(s_2) \leqslant w(s_1) \quad \text{für} \quad s_2 > s_1 \quad , \tag{5.42}$$

möglichst glatt (mindestens C^1 -stetig) und normiert sein

$$\int_{\mathcal{B}} w(s) \, dV = 1 \tag{5.43}$$

 $(\mathcal{B}$ symbolisiert den Definitionsbereich).

Abbildung 5.4: Fehlerfunktion (a) und Gammafunktion (b)

Die Normierungsbedingung für den eindimensionalen Fall lautet

$$2\int_{s=0}^{h} w_{1\mathrm{D}}(s) \, ds = 1 \quad , \tag{5.44}$$

woraus sich als Normierungsvorschrift

$$w_{1\mathrm{D}}(s) = \beta_{1\mathrm{D}} \,\tilde{w}(s) \tag{5.45}$$

mit
$$\beta_{1D} = \left[2\int_{s=0}^{h} \tilde{w}(s) ds\right]^{-1}$$
 (5.46)

ergibt. $\tilde{w}(s)$ ist hierin eine nicht normierte Funktion. Die Normierungsbedingung für den zweidimensionalen Fall ist

$$\int_{s=0}^{h} \int_{\varphi=0}^{2\pi} w_{2D}(s) \, s \, d\varphi \, ds = 2\pi \int_{s=0}^{h} w_{2D}(s) \, s \, ds = 1 \quad . \tag{5.47}$$

Als Normierungsvorschrift ergibt sich

$$w_{2\mathrm{D}}(s) = \beta_{2\mathrm{D}} \,\tilde{w}(s) \tag{5.48}$$

mit
$$\beta_{2D} = \begin{bmatrix} 2\pi \int_{s=0}^{h} \tilde{w}(s) \, ds \end{bmatrix}^{-1}$$
 (5.49)

Häufig werden als Wichtungsfunktionen Exponentialfunktionen oder Polynome 2*n*ten Grades verwendet. In Tabelle (5.3) sind die nichtnormierten Funktionen und die Faktoren β_{1D} und β_{2D} zur Normierung für den ein- und zweidimensionalen Fall angegeben. erf(·) ist die Fehlerfunktion und $\Gamma(\cdot)$ die Gammafunktion (siehe Abbil-

Abbildung 5.5: Normierte Wichtungsfunktionen (Exponentialfunktion und Polynom 2*n*-ten Grades) und Ableitungen, 1D, Funktionsparameter $c = \frac{5}{2}$ und n = 6, Einflussbereich h = 1

Abbildung 5.6: Normierte Wichtungsfunktion (Exponentialfunktion) und Ableitungen, 1D, Funktionsparameter $c = \frac{5}{2}$, Einflussbereich $h \in \{1, 2, 3\}$

Abbildung 5.7: Normierte Wichtungsfunktion (Polynom 2*n*-ten Grades) und Ableitungen, 1D, Funktionsparameter n = 6, Einflussbereich $h \in \{1, 2, 3\}$

Abbildung 5.8: Normierte Wichtungsfunktion (Exponentialfunktion) und Ableitungen, 2D, Funktionsparameter $c = \frac{5}{2}$, Einflussbereich h = 1

Abbildung 5.9: Normierte Wichtungsfunktion (Polynom 2n-ten Grades) und Ableitungen, 2D, Funktionsparameter n = 6, Einflussbereich h = 1

${\rm Dimension}~N_{\rm D}$	1	2	3
	(Fläche A)	(Dicke d)	
Gitter	äquidistant	quadratisch,	kubisch,
		äquidistant	äquidistant
V _k	a A	$a^2 d$	a^3
	$= h_0 A$	$=\pi \ h_0^2 \ d$	$=rac{4}{3}\pi \ h_0^3$
h_0	a	$\frac{1}{\sqrt{\pi}} a = 0.564190a$	$\frac{1}{\sqrt[3]{\frac{4}{3}\pi}}a = 0.620350a$

Tabelle 5.4: Grundwerte der Wichtungsfunktionsfunktionsbereiche h_0 für regelmäßige Punktgitter mit Punktabstand a

dung 5.4).

Die normierten eindimensionalen Wichtungsfunktionen zeigen die Abbildungen 5.5 bis 5.7; die normierten zweidimensionalen Wichtungsfunktionen die Abbildungen 5.8 und 5.9.

Bei der Parameterwahl $c = \frac{5}{2}$ und n = 6 haben die normierte Exponentialfunktion und das normierte Polynom 2n-ten Grades für s < h eine sehr ähnliche Gestalt, wie in Abbildung 5.5 zu erkennen ist. Ein wesentlicher Unterschied besteht darin, dass das Polynom 2n-ten Grades für Argumente s = h exakt verschwindet und außerhalb des Einflussbereiches h große Werte annimmt. Diese Funktion ist daher immer für s > h abzuschneiden. Die Exponentialfunktion verschwindet für s = hnur näherungsweise aber geht für $s \to \infty$ streng monoton fallend gegen Null, so dass es nicht zwingend erforderlich ist, diese Funktion für s > h abzuschneiden. (Die Exponentialfunktion wird lediglich abgeschnitten, um lokale Ansätze zu erhalten.) Das Polynom 2n-ten Grades ist n-fach stetig differenzierbar, die Exponentialfunktion ∞ -fach, sofern sie nicht abgeschnitten wird.

Mit dem Parameter h wird festgelegt wie stark die Wichtungsfunktionen benachbarter Punkte überlappen. h wird über einen dimensionslosen Parameter α angepaßt:

$$h = \alpha h_0 \tag{5.50}$$

 h_0 ist der Grundwert für den Wichtungsfunktionseinflussbereich. Liegen regelmäßige Punktraster vor, so kann h_0 nach Tabelle 5.4 berechnet werden. Andernfalls müssen zunächst, z.B durch die Bildung eines *Voronoi-Diagrammes*, die den Punkten

Dimension $N_{\rm D}$	1	2	3
	(Fläche: A)	(Dicke: d)	
Vk	$h_0 A$	$\pi h_0^2 d$	$\frac{4}{3}\pi \ h_0^3$
h_0	$\frac{V_{k}}{A}$	$\sqrt{\frac{V_{\rm k}}{\pi d}} = 0.564190 \sqrt{\frac{V_{\rm k}}{d}}$	$\sqrt[3]{\frac{V_{\rm k}}{\frac{4}{3}\pi}} = 0.620350\sqrt[3]{V_{\rm k}}$

Tabelle 5.5: Grundwerte der Wichtungsfunktions
funktionsbereiche h_0 für unregelmäßige Punkt
gitter

zugeordneten Volumina berechnet werden. Aus diesen ergibt sich h_0 nach Tabelle 5.5.

Bei $\alpha = 1$ überlappen die Wichtungsfunktionen gerade nicht (im 2- und 3dimensionalen Fall nur näherungsweise, siehe Abbildung 9.3).

Sinnvolle Überlappungsparameter α werden werden im Abschnitt 9.3.1 numerisch bestimmt und in der Tabelle 9.2 für unterschiedliche MLS-Ansatzfunktionsordnungen angegeben.

Um eine Wichtungsfunktion für einen Punkt \mathcal{P}_k zu erhalten, wird die normierte Wichtungsfunktion mit dem Volumen V_k , das dem Punkt zugeordet ist, multipliziert. Da eine Funktion in Abhängigkeit von den globalen Koordinaten benötigt wird, ist außerdem Beziehung (5.40) zu berücksichtigen.

$$w_{\mathsf{k}}(\boldsymbol{x}) = V_{\mathsf{k}} w(s) \quad \text{mit} \quad s = \|\boldsymbol{x} - \boldsymbol{x}_{\mathsf{k}}\|$$
(5.51)

5.5.2 Basisfunktionen

Neben den Wichtungsfunktionen wird für die MLS-Approximation eine Funktionsbasis benötigt. In der Funktionsbasis enthaltene Funktionen werden durch die MLS-Approximation exakt wiedergegeben, sofern die Stützpunktanzahl hinreichend groß ist. Durch die Wahl der Funktionsbasis können die Ansatzfunktionen an unterschiedliche Erfordernisse angepasst werden. Geeignete Funktionsbasen für zweidimensionale Berechnungen sind in Tabelle 5.6 angegeben. Ist der Polynomgrad N_G , so sind in der Funktionsbasis alle Monome der ersten $N_G + 1$ Zeilen des Pascaleschen Dreiecks enthalten.

Tabelle 5.7 zeigt, dass die Anzahl der Basisfunktionen $N_{\rm B}$ im zwei- und dreidimensionalen Fall rasch mit dem Polynomgrad $N_{\rm G}$ ansteigt.

Polynomgrad	Anzahl Basis-	Funktionsbasis
	funktionen	
$N_{ m G}$	N_{B}	$\{b_{i}\},i=1,\ldots,N_{\mathrm{B}}$
0	1	1
1	3	$1, x_1, x_2$
2	6	$1, x_1, x_2, x_1^2, x_1x_2, x_2^2$
3	10	$1, x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3$
:		÷

Tabelle 5.6: Funktionsbasen im Zweidimensionalen bis zum Polynom
grad $\mathsf{N}_{\mathrm{G}}=3$

Polynomgrad	${\rm Dimension}~N_{\rm D}$		
N_{G}	1	2	3
0	1	1	1
1	2	3	4
2	3	6	10
3	4	10	20
4	5	15	35
n	$\binom{n+1}{1}$	$\binom{n+2}{2}$	$\binom{n+3}{3}$

Tabelle 5.7: Anzahl Basisfunktionen $N_{\rm B}$ in Abhängigkeit von Polynomgrad $N_{\rm G}$ und der räumlichen Dimension $N_{\rm D}$

5.5.3 Approximation über Methode der bewegten kleinsten Fehlerquadrate

Die Ansatzfunktionen werden wie folgt konstruiert:

$$L_{\mathsf{k}}(\boldsymbol{x}) = \sum_{\mathsf{i}=1}^{\mathsf{N}_{\mathsf{B}}} \alpha_{\mathsf{i}}(\boldsymbol{x}) \, b_{\mathsf{i}}(\boldsymbol{x}_{\mathsf{k}}) \, w_{\mathsf{k}}(\boldsymbol{x}) = \boldsymbol{\alpha}_{\langle \mathsf{N}_{\mathsf{B}} \rangle}^{\mathsf{T}}(\boldsymbol{x}) \, \boldsymbol{b}(\boldsymbol{x}_{\mathsf{k}}) \, w_{\mathsf{k}}(\boldsymbol{x})$$
(5.52)

Hierin sind die Wichtungsfunktion w_k des Knoten \mathcal{K} und die Koeffizienten α_i am Ort \boldsymbol{x} und die Basisfunktionen b_i am Ort \boldsymbol{x}_k des Knoten \mathcal{K} auszuwerten ($i = 1, ..., N_B$). Es wird gefordert, dass alle Funktionen der Funktionsbasis selbst exakt approximiert werden.

$$b_{\mathbf{i}}(\boldsymbol{x}) = \sum_{\mathbf{k}=1}^{N_{\mathrm{K}}(\boldsymbol{x})} L_{\mathbf{k}}(\boldsymbol{x}) \ b_{\mathbf{i}}(\boldsymbol{x}_{\mathbf{k}}) \quad , \quad \mathbf{i} = 1, \dots, N_{\mathrm{B}}$$
(5.53)

Einsetzen von (5.52) in (5.53) ergibt:

$$b_{i}(\boldsymbol{x}) = \sum_{k=1}^{N_{K}(\boldsymbol{x})} \boldsymbol{\alpha}_{(N_{B})}^{T}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x}_{k}) w_{k}(\boldsymbol{x}) b_{i}(\boldsymbol{x}_{k})$$
(5.54)

Zusammenfassen von $N_{\rm B}$ Gleichungen und anschließendes Umordnen liefert:

$$\boldsymbol{b}(\boldsymbol{x}) = \sum_{k=1}^{N_{K}(\boldsymbol{x})} \boldsymbol{\alpha}_{\langle N_{B} \rangle}^{T}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x}_{k}) w_{k}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x}_{k})$$

$$= \sum_{k=1}^{N_{K}(\boldsymbol{x})} \boldsymbol{b}(\boldsymbol{x}_{k}) w_{k}(\boldsymbol{x}) \boldsymbol{b}_{\langle N_{B} \rangle}^{T}(\boldsymbol{x}_{k}) \boldsymbol{\alpha}(\boldsymbol{x})$$

$$= \frac{\boldsymbol{B}}{\langle N_{B} \times N_{K} \rangle} \frac{\boldsymbol{W}(\boldsymbol{x})}{\langle N_{K} \times N_{K} \rangle} \frac{\boldsymbol{B}^{T}}{\langle N_{K} \times N_{B} \rangle} \boldsymbol{\alpha}(\boldsymbol{x})$$
(5.55)

Für die symmetrische Größe $\boldsymbol{B} \ \boldsymbol{W} \ \boldsymbol{B}^{\mathrm{T}}$ wird eine Abkürzung eingeführt:

$$\mathbf{A}(\mathbf{x}) = \mathbf{B}_{\langle \mathbf{N}_{\mathrm{B}} \times \mathbf{N}_{\mathrm{K}} \rangle} \mathbf{W}(\mathbf{x}) \mathbf{B}^{\mathrm{T}}_{\langle \mathbf{N}_{\mathrm{K}} \times \mathbf{N}_{\mathrm{K}} \rangle} = \mathbf{A}^{\mathrm{T}}(\mathbf{x})$$
(5.56)

Gleichung (5.55) wird nach dem Vektor der Koeffizienten der Basisfunktionen α umgestellt. Unter Berücksichtigung von (5.56) ergibt sich:

$$\boldsymbol{\alpha}(\boldsymbol{x}) = \boldsymbol{A}^{-1}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x}) = \boldsymbol{b}^{\mathrm{T}}(\boldsymbol{x}) \boldsymbol{A}^{-1}(\boldsymbol{x}) _{\langle \mathsf{N}_{\mathrm{B}} \rangle} \boldsymbol{\lambda}_{\langle \mathsf{N}_{\mathrm{B}} \rangle \mathsf{N}_{\mathrm{B}} \rangle} \boldsymbol{\lambda}_{\langle \mathsf{N}_{\mathrm{B}} \rangle} \boldsymbol{$$

Mit (5.52) und (5.57) wird schließlich eine Bestimmungsgleichung für die Ansatzfunktionen erhalten.

$$L_{\mathsf{k}}(\boldsymbol{x}) = \boldsymbol{b}^{\mathrm{T}}(\boldsymbol{x}) \boldsymbol{A}^{-1}(\boldsymbol{x}) \boldsymbol{b}(\boldsymbol{x}) \boldsymbol{w}_{\mathsf{k}}(\boldsymbol{x})$$

$$(5.58)$$

Der Rechenaufwand für die Inversion der Matrix A steigt mit zunehmender Ansatzfunktionsordnung und damit zunehmender Größe der Funktionsbasis. Ebenso wächst die Anzahl der benötigten Stützpunkte. Die Lage der Stützpunkte beeinflusst die Kondition der Matrix A und damit die Güte des Rechenergebnisses.

Die Ansatzfunktionsordnung wird bei zu geringer Stützpunktanzahl reduziert. Außerdem wird die Genauigkeit der Inversion von A nach (7.19) und (7.20) überprüft und die Berechnung der Ansatzfunktionen gegebenenfalls mit niedrigerem Polynomgrad wiederholt.

Bei der Bildung der Ansatzfunktionsableitungen ist die Produktregel zu beachten.

$$\frac{\partial L_{\mathsf{k}}(\boldsymbol{x})}{\partial x_{\mathsf{i}}} = \frac{\partial \boldsymbol{b}^{\mathrm{T}}(\boldsymbol{x})}{\partial x_{\mathsf{i}}} \boldsymbol{A}^{-1}(\boldsymbol{x}) \quad \boldsymbol{b}(\boldsymbol{x}_{\mathsf{k}}) w_{\mathsf{k}}(\boldsymbol{x}) + \boldsymbol{b}^{\mathrm{T}}(\boldsymbol{x}) \quad \frac{\partial \boldsymbol{A}^{-1}(\boldsymbol{x})}{\partial x_{\mathsf{i}}} \boldsymbol{b}(\boldsymbol{x}_{\mathsf{k}}) w_{\mathsf{k}}(\boldsymbol{x}) + \boldsymbol{b}^{\mathrm{T}}(\boldsymbol{x}) \quad \boldsymbol{A}^{-1}(\boldsymbol{x}) \quad \boldsymbol{b}(\boldsymbol{x}_{\mathsf{k}}) \frac{\partial w_{\mathsf{k}}(\boldsymbol{x})}{\partial x_{\mathsf{i}}}$$
(5.59)

Die Berechnung der Ansatzfunktionen wird numerisch verbessert, wenn die Basisfunktionen b_i nicht in Abhängigkeit von globalen Koordinaten sondern in Abhängigkeit von lokalen, skalierten Koordinaten berechnet werden. Das lokale Koordinatensystem hat seinen Ursprung im Punkt \boldsymbol{x} , für den die MLS-Approximation berechnet wird. Formal sind in den Gleichungen (5.52 bis 5.59) die Basisfunktionswerte $b_i(\boldsymbol{x}_k)$ durch $\tilde{b}_i(\boldsymbol{x}_k, \boldsymbol{x})$ und $b_i(\boldsymbol{x})$ durch $\tilde{b}_i(\boldsymbol{x}, \boldsymbol{x})$ zu ersetzen.

$$b_{i}(\boldsymbol{x}_{k}) \longrightarrow \tilde{b}_{i}(\boldsymbol{x}_{k}, \boldsymbol{x}) = b_{i}(\frac{\boldsymbol{x}_{k} - \boldsymbol{x}}{\bar{h}_{0}}) = b_{i}(\boldsymbol{\xi}_{k})$$
 (5.60)

$$b_{i}(\boldsymbol{x}) \longrightarrow \tilde{b}_{i}(\boldsymbol{x}, \boldsymbol{x}) = b_{i}(\frac{\boldsymbol{x} - \boldsymbol{x}}{\bar{h}_{0}}) = b_{i}(\boldsymbol{\theta})$$
 (5.61)

 \bar{h}_0 ist hierbei der durchschnittliche Grundwert der Einflussbereiche (siehe Abschnitt 5.5.1) der beteiligten Stützpunkte. Damit ergibt sich für den Wertebereich der skalierten lokalen Koordinaten näherungsweise:

$$-\alpha \lessapprox \boldsymbol{\xi}_{\mathsf{k}} = \frac{\boldsymbol{x}_{\mathsf{k}} - \boldsymbol{x}}{\bar{h}_0} \lessapprox \alpha$$
 (5.62)

 α ist der Wichtungsfunktionsüberlappungsparameter nach Gleichung (5.50).

5.6 Vergleich der in der FPM und der FEM genutzten Ansätze

Zur räumlichen Diskretisierung wird für die Finite-Elemente-Methode die in Abschnitt 5.2 beschriebene Interpolation mit Elementansatzfunktionen und für die Finite-Punkte-Methode die in Abschnitt 5.5 beschriebene MLS-Approximation verwendet.

	FPM	FEM
Ansatz	$ar{f}(oldsymbol{x}) = \sum_{k=1}^{N_{\mathrm{K}}(oldsymbol{x})} L_{k}(oldsymbol{x}) \ f_{k} onumber \ = oldsymbol{L}_{\langle N_{\mathrm{K}} angle} oldsymbol{f}_{\langle N_{\mathrm{K}} angle} oldsymbol{f}$	$ar{f} = \sum\limits_{k=1}^{N_{\mathrm{K}}} L_{k}(oldsymbol{x}) f_{k} onumber \ = oldsymbol{L}_{_{\langle N_{\mathrm{K}} angle}}^{\mathrm{T}} oldsymbol{x}_{_{\langle N_{\mathrm{K}} angle}} oldsymbol{f}$
Partiton of Unity	$\sum_{k=1}^{N_{\mathrm{K}}(oldsymbol{x})} L_{k}(oldsymbol{x}) = 1$	$\sum_{k=1}^{N_{\mathrm{K}}} L_{k}(oldsymbol{x}) = 1$
Ansatzfunktions- werte an Knoten	$L_{k}(\boldsymbol{x}_{i}) \neq \delta_{ik}$ (im Allgem.)	$L_{k}(oldsymbol{x}_{i}) = \delta_{ik}$
Art der räumlichen Diskretisierung	$\bar{f}(\boldsymbol{x}_{k}) \neq f_{k}$ Approximation	$ar{f}(oldsymbol{x}_{k}) = f_{k}$ Interpolation

Tabelle 5.8: Vergleich der Ansätze zur räumlichen Diskretisierung in FPM und FEM

Die Anzahl der Ansatzfunktionen N_K ist bei der FPM im Gegensatz zur FEM abhängig vom Ort \boldsymbol{x} . Die Summe der Ansatzfunktionen an jedem Ort ist in beiden Fällen gleich 1. Da die MLS-Ansatzfunktionen an den Knoten im Allgemeinen nicht die Werte 0 oder 1 annehmen, werden bei der FPM die Stützwerte an den Knoten f_k nicht "durchgereicht". Dies hat zur Folge, dass zur Befriedigung der wesentlichen Randbedingungen in der FPM besondere Maßnahmen getroffen werden müssen (siehe Abschnitt 4.5).

Abbildung 5.10: Netzausschnitte zur elementnetzfreien FPM und zur FEM

Die Interaktion zwischen Knotenfreiheitsgraden erfolgt über Einträge in der Systemsteifigkeitsmatrix bzw. der tangentialen Systemsteifigkeitsmatrix. Im Folgenden wird beschrieben, welche Knoten in der FPM und der FEM über solche Einträge gekoppelt sind.

In der FPM liefert ein Integrationspunkt Beiträge zu den Knotengrößen derjenigen Knoten, deren Wichtungsfunktionen den Integrationspunkt überdecken. Damit hat ein Knoten mit allen Knoten, mit denen er gemeinsame Integrationspunkte hat, gemeinsame Steifigkeitsmatrizeneinträge.

In der FEM liefern Integrationspunkte eines Elementes Beiträge zu den Knotengrößen aller Knoten des Elementes. Damit hat ein Knoten mit allen Knoten der angrenzenden Elemente gemeinsame Steifigkeitsmatrizeneintäge.

Kapitel 6

Diskretisierung, Linearisierung und Lösung

In diesem Kapitel werden die im vorangegangenen Kapitel zusammengestellten Grundgleichungen räumlich und zeitlich diskretisiert, linearisiert und gelöst.

6.1 Übergang zur Matrizenschreibweise

Es wird auf ein globales kartesisches Koordinatensystem Bezug genommen (①), die Voigtsche Notation nach Abschnitt 8.1 verwendet (②) und zur Matrizenschreibweise übergegangen (③). Diese wird dann durchgängig verwendet. Die Beziehungen werden für den dreidimensionalen Fall aufgestellt, da die Beziehungen für den zweidimensionalen Fall durch Streichen von Zeilen und Spalten einfach erhalten werden können.

Für den Spannungstensor ergibt sich

$$\boldsymbol{\sigma} \stackrel{\text{(1)}}{=} \sum_{i,j=1}^{3} \sigma_{ij} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \stackrel{\text{(2)}}{=} \sum_{i=1}^{6} \stackrel{\text{(2)}}{\sigma_{i}} \stackrel{\text{(3)}}{\mathbf{e}_{i}} \stackrel{\text{(3)}}{=} \stackrel{\text{(3)}}{\boldsymbol{\sigma}_{i}} \stackrel{\text{(3)}}{=} \left\{ \begin{array}{c} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{array} \right\} = \left\{ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sqrt{2} \sigma_{12} \\ \sqrt{2} \sigma_{23} \\ \sqrt{2} \sigma_{13} \end{array} \right\} \quad . \tag{6.1}$$

Um die Darstellung nicht zu überladen, wird im Folgenden mit Ausnahme der Komponenten der Voigtschen Vektoren auf die Kennzeichnung der Voigtschen Notation verzichtet. Die Dehnungen werden entsprechend übersetzt. Bei der Umwandlung von Materialtetraden oder tangentialen Materialtetraden ist (8.5) zu beachten.

Für die Verschiebungs-Verzerrungs-Relation in Matrizenschreibweise folgt durch Vergleich mit (4.3)

$$\boldsymbol{\varepsilon}_{(N_{\mathrm{V}})} = \boldsymbol{D}_{\mathrm{u}\varepsilon}_{(N_{\mathrm{V}}\times N_{\mathrm{D}})} \boldsymbol{u}_{(N_{\mathrm{D}})} = \begin{cases} \overset{\mathfrak{V}}{\varepsilon_{1}} \\ \overset{\mathfrak{V}}{\varepsilon_{2}} \\ \overset{\mathfrak{V}}{\varepsilon_{3}} \\ \overset{\mathfrak{V}}{\varepsilon_{4}} \\ \overset{\mathfrak{V}}{\varepsilon_{5}} \\ \overset{\mathfrak{V}}{\varepsilon_{6}} \\ \overset{\mathfrak{V}}{\varepsilon_{6}} \end{cases} = \begin{cases} \overset{\varepsilon_{11}}{\varepsilon_{22}} \\ \varepsilon_{33} \\ \sqrt{2}\varepsilon_{12} \\ \sqrt{2}\varepsilon_{23} \\ \sqrt{2}\varepsilon_{13} \\ \sqrt{2}\varepsilon_{13} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x_{1}} & 0 & 0 \\ 0 & \frac{\partial}{\partial x_{2}} & 0 \\ 0 & 0 & \frac{\partial}{\partial x_{3}} \\ \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{2}} & \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{1}} \\ 0 & \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{3}} & \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{2}} \\ \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{3}} & 0 & \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{1}} \\ \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{3}} & 0 & \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{1}} \end{bmatrix} \begin{cases} u_{1} \\ u_{2} \\ u_{3} \end{cases}$$

$$(6.2)$$

Unter Ausnutzung von

$$\delta \boldsymbol{\varepsilon}^{\mathrm{T}} = \delta \boldsymbol{u}^{\mathrm{T}} \boldsymbol{D}_{\mathrm{u}\varepsilon}^{\mathrm{T}}$$
(6.3)

wird die schwache Form des Impulsatzes (4.35) in Matrizenschreibweise überführt

$$g = \int_{\mathcal{B}} \left[\delta \boldsymbol{u}^{\mathrm{T}} \boldsymbol{D}_{\mathrm{u}\varepsilon}^{\mathrm{T}} \right] \boldsymbol{\sigma} \, dV + \int_{\mathcal{B}} \delta \boldsymbol{u}^{\mathrm{T}} \, \ddot{\boldsymbol{u}} \, \rho \, dV$$

$$- \left[\int_{\mathcal{B}} \delta \boldsymbol{u}^{\mathrm{T}} \, \boldsymbol{b} \, \rho \, dV + \int_{\delta \mathcal{B}} \delta \boldsymbol{u}^{\mathrm{T}} \, \mathbf{t} \, dA \right]$$

$$- \int_{g_{\mathrm{extV}}} \delta \boldsymbol{u}^{\mathrm{T}} \, \tilde{\boldsymbol{f}}_{\mathrm{rnd}} \, dA - \int_{g_{\mathrm{kon}}} \delta \boldsymbol{u}^{\mathrm{T}} \, \tilde{\boldsymbol{f}}_{\mathrm{kon}} \, dA$$

$$= g_{\mathrm{int}} + g_{\mathrm{m}} - g_{\mathrm{extV}} - g_{\mathrm{extA}} - g_{\mathrm{rnd}} - g_{\mathrm{kon}} = 0 \quad .$$

$$(6.4)$$

Für die im nächsten Abschnitt (6.2) folgende räumliche Diskretisierung werden die Ansätze für Verschiebungen, Testfunktionen, Dehnungen und virtuelle Dehnungen in Form von Matrizengleichungen bereitgestellt.

Ausgegangen wird von der in Abschnitt 5.1 näher beschriebenen allgemeinen Form

eines interpolierenden oder approximierenden Ansatzes.

$$\bar{f}(\boldsymbol{x}) = \sum_{k=1}^{N_{K}(\boldsymbol{x})} L_{k}(\boldsymbol{x}) f_{k} = \boldsymbol{L}_{\langle N_{K} \rangle}^{T}(\boldsymbol{x}) \boldsymbol{f}_{\langle N_{K} \rangle}$$
(6.5)

$$\frac{\partial \bar{f}(\boldsymbol{x})}{\partial x_{i}} = \sum_{k=1}^{N_{K}(\boldsymbol{x})} \frac{\partial L_{k}(\boldsymbol{x})}{\partial x_{i}} f_{k} = \frac{\partial \boldsymbol{L}^{\mathrm{T}}(\boldsymbol{x})}{\frac{\partial x_{i}}{\langle N_{K} \rangle}} \boldsymbol{f}_{(N_{K})}$$
(6.6)

Die Anzahl der Knoten (Stützpunkte) N_K hängt im allgemeinen Fall vom Ort x der Interpolation oder Approximation ab. Die Interpolation mit Elementansatzfunktionen ist als Spezialfall enthalten. Auf die Kennzeichnung der diskretisierten Größe mit einem Querstrich wird im Folgenden verzichtet.

Die Ansätze für Verschiebungen \boldsymbol{u} , Geschwindigkeiten $\dot{\boldsymbol{u}}$, Beschleunigungen $\ddot{\boldsymbol{u}}$, Testfunktionen $\delta \boldsymbol{u}$, Dehnungen $\boldsymbol{\varepsilon}$, Dehnungsgeschwindigkeiten $\dot{\boldsymbol{\varepsilon}}$ und virtuelle Dehnungen $\delta \boldsymbol{\varepsilon}$ ähneln denen der FEM. Ein Unterschied besteht in der vom Ort abhängigen Dimension der \boldsymbol{L} - und \boldsymbol{B} -Matrizen, die die Werte der Ansatzfunktionen und der Ansatzfunktionsableitungen am Ort \boldsymbol{x}_{p} enthalten.

$$\boldsymbol{u}(\boldsymbol{x}_{p}) = \underbrace{\boldsymbol{L}(\boldsymbol{x}_{p})}_{\langle N_{D} \rangle \otimes N_{K} N_{D} \rangle} \underbrace{\boldsymbol{U}_{p}}_{\langle N_{K} N_{D} \rangle}$$
(6.7)

$$\dot{\boldsymbol{u}}_{\boldsymbol{\mathsf{N}}_{\mathrm{D}}\rangle}(\boldsymbol{x}_{\mathrm{p}}) = \underbrace{\boldsymbol{\boldsymbol{L}}(\boldsymbol{x}_{\mathrm{p}})}_{\langle \boldsymbol{\mathsf{N}}_{\mathrm{D}} \times \boldsymbol{\mathsf{N}}_{\mathrm{K}} \boldsymbol{\mathsf{N}}_{\mathrm{D}}\rangle} \dot{\boldsymbol{\boldsymbol{U}}}_{\mathrm{p}}$$
(6.8)

$$\ddot{\boldsymbol{u}}_{\boldsymbol{\mathsf{N}}_{\mathrm{D}}\rangle} = \underbrace{\boldsymbol{L}(\boldsymbol{x}_{\mathrm{p}})}_{\langle \boldsymbol{\mathsf{N}}_{\mathrm{D}} \times \boldsymbol{\mathsf{N}}_{\mathrm{K}} \boldsymbol{\mathsf{N}}_{\mathrm{D}}\rangle} \ddot{\boldsymbol{U}}_{\mathrm{p}}$$
(6.9)

$$\delta \boldsymbol{u}(\boldsymbol{x}_{p}) = \boldsymbol{L}(\boldsymbol{x}_{p}) \quad \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{L}^{\mathrm{T}}(\boldsymbol{x}_{p}) \quad (6.10)$$

$$\varepsilon(\boldsymbol{x}_{\mathsf{p}}) = \underbrace{\boldsymbol{D}_{\mathsf{u}\,\varepsilon}}_{\langle\mathsf{N}_{\mathsf{V}}\times\mathsf{N}_{\mathsf{D}}\rangle} \boldsymbol{u}(\boldsymbol{x}_{\mathsf{p}}) = \underbrace{\boldsymbol{D}_{\mathsf{u}\,\varepsilon}}_{\langle\mathsf{N}_{\mathsf{V}}\times\mathsf{N}_{\mathsf{D}}\rangle} \underbrace{\boldsymbol{L}(\boldsymbol{x}_{\mathsf{p}})}_{\langle\mathsf{N}_{\mathsf{D}}\times\mathsf{N}_{\mathsf{K}}\mathsf{N}_{\mathsf{D}}\rangle} \underbrace{\boldsymbol{U}_{\mathsf{p}}}_{\langle\mathsf{N}_{\mathsf{K}}\mathsf{N}_{\mathsf{D}}\rangle} \underbrace{\boldsymbol{U}_{\mathsf{p}}}_{\mathsf{N}_{\mathsf{K}}} \underbrace{\boldsymbol{U}}_{\mathsf{N}}} \underbrace{\boldsymbol{U}_{\mathsf{p}}}_{\mathsf{N}_{\mathsf{K}}} \underbrace{\boldsymbol{U}_{\mathsf{p}}}_{\mathsf{N}_{\mathsf{K}}} \underbrace{\boldsymbol{U}}_{\mathsf{N}} \underbrace{\boldsymbol{U}}} \underbrace{\boldsymbol{U}_{\mathsf{p}}}_{\mathsf{N}_{\mathsf{K}}} \underbrace{\boldsymbol{U}}}_{\mathsf{N}_{\mathsf{K}}} \underbrace{$$

$$\dot{\varepsilon}(\boldsymbol{x}_{\mathsf{p}}) = \underbrace{\boldsymbol{D}_{\mathrm{u}\varepsilon}}_{\langle \mathsf{N}_{\mathrm{V}} \times \mathsf{N}_{\mathrm{D}} \rangle} \dot{\boldsymbol{u}}_{\langle \mathsf{N}_{\mathrm{D}} \rangle} = \underbrace{\boldsymbol{D}_{\mathrm{u}\varepsilon}}_{\langle \mathsf{N}_{\mathrm{V}} \times \mathsf{N}_{\mathrm{D}} \rangle} \underbrace{\boldsymbol{L}(\boldsymbol{x}_{\mathsf{p}})}_{\langle \mathsf{N}_{\mathrm{D}} \times \mathsf{N}_{\mathrm{K}}\mathsf{N}_{\mathrm{D}} \rangle} \dot{\boldsymbol{U}}_{\mathsf{p}} = \underbrace{\boldsymbol{B}(\boldsymbol{x}_{\mathsf{p}})}_{\langle \mathsf{N}_{\mathrm{V}} \times \mathsf{N}_{\mathrm{D}} \rangle} \dot{\boldsymbol{U}}_{\mathsf{p}}$$
(6.12)

$$\delta \boldsymbol{\varepsilon}(\boldsymbol{x}_{p}) = \boldsymbol{D}_{u\varepsilon} \delta \boldsymbol{u}(\boldsymbol{x}_{p}) = \boldsymbol{D}_{u\varepsilon} \boldsymbol{L}(\boldsymbol{x}_{p}) \delta \boldsymbol{U}_{p} = \boldsymbol{B}(\boldsymbol{x}_{p}) \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{B}(\boldsymbol{x}_{p})^{\mathrm{T}} \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{B}(\boldsymbol{x}_{p})^{\mathrm{T}} \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{A}_{p} \delta \boldsymbol{U}_{p} \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{A}_{p} \delta \boldsymbol{U}_{p} \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{A}_{p} \delta \boldsymbol{U}_{p} \delta \boldsymbol{U}_{p} \delta \boldsymbol{U}_{p} \delta \boldsymbol{U}_{p} = \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{A}_{p} \delta \boldsymbol{U}_{p} \delta \boldsymbol{U}$$

 $N_{\rm K}$ ist hier nicht die globale Knotenanzahl, sondern die Anzahl der Knoten, deren Einflussbereiche den Ort $\boldsymbol{x}_{\rm p}$ umfassen. Die Vektoren $\boldsymbol{U}_{\rm p}$, $\dot{\boldsymbol{U}}_{\rm p}$, $\ddot{\boldsymbol{U}}_{\rm p}$ und $\delta \boldsymbol{U}_{\rm p}$ enthalten die Verschiebungs-, Geschwindigkeits-, Beschleunigungs- und Testfunktionswerte an diesen Knoten. $N_{\rm D}$ ist die räumliche Dimension und $N_{\rm V}$ die Dimension der Voigtschen Vektoren.

Für spätere Linearisierungen werden noch die Ableitungen

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x}_{p})}{\partial \boldsymbol{U}_{p}} = \boldsymbol{L}(\boldsymbol{x}_{p}) \tag{6.14}$$

$$\frac{\partial \boldsymbol{\varepsilon}(\boldsymbol{x}_{p})}{\partial \boldsymbol{U}_{p}} = \boldsymbol{B}(\boldsymbol{x}_{p}) \tag{6.15}$$

$$\frac{\partial \dot{\boldsymbol{\varepsilon}}(\boldsymbol{x}_{p})}{\partial \dot{\boldsymbol{U}}_{p}} = \boldsymbol{B}(\boldsymbol{x}_{p}) \tag{6.16}$$

benötigt, die sich unmittelbar aus (6.7), (6.11) und (6.12) ergeben.

6.2 Räumliche Diskretisierung der Bilanzgleichungen

Zur räumlichen Diskretisierung der schwachen Form des Impulssatzes (6.4) wird zunächst das Integrationsgebiet \mathcal{B} in Teilgebiete zerlegt. Bei einer Diskretisierung mit finiten Elementen werden die Teilgebiete \mathcal{B}_e (mit $e = 1, \ldots, N_E$) durch die Elemente gebildet. Bei einer elementfreien Diskretisierung sind die Teilgebiete \mathcal{B}_p (mit $p = 1, \ldots, N_P$) Integrationspunkten zugeordnete Bereiche. Die Integration über die Teilgebiete erfolgt in beiden Fällen numerisch.

Anhand eines der Volumenintegrale von (6.4) wird gezeigt, wie die Gebietszerlegung und numerische Integration für Methoden mit Elementnetzen und elementfreie Methoden vereinheitlicht werden kann. g_{\blacklozenge} steht im Folgenden für g_{int} , g_{m} oder g_{extV} .

Für eine Methode mit Elementen ergibt sich

$$g_{\blacklozenge} = \int_{\mathcal{B}} \tilde{g}_{\blacklozenge} \, dV = \sum_{\mathsf{e}=1}^{\mathsf{N}_{\mathsf{E}}} \int_{\mathcal{B}_{\mathsf{e}}} \tilde{g}_{\blacklozenge} \, dV = \sum_{\mathsf{e}=1}^{\mathsf{N}_{\mathsf{E}}} \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathsf{P}}} \tilde{g}_{\blacklozenge,\mathsf{p}} \, V_{\mathsf{p}} \tag{6.17}$$

und für eine elementfreie Methode

$$g_{\blacklozenge} = \int_{\mathcal{B}} \tilde{g}_{\blacklozenge} \, dV = \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathsf{P}}} \int_{\mathcal{B}_{\mathsf{p}}} \tilde{g}_{\blacklozenge} \, dV = \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathsf{P}}} \tilde{g}_{\blacklozenge,\mathsf{p}} \, V_{\mathsf{p}} \quad . \tag{6.18}$$

Volumenbezogene Größen sind mit (\cdot) gkennzeichnet. $\tilde{g}_{\mathbf{\varphi}\mathbf{p}}$ ist eine abkürzende Schreibweise für $\tilde{g}_{\mathbf{\varphi}}(\boldsymbol{x}_{\mathbf{p}})$ und $V_{\mathbf{p}}$ ist das einem Integrationspunkt zugeordnete Volumen.

Eine einheitliche Vorgehensweise wird erzielt, wenn bei Methoden, die Elementnetze

nutzen, die verschachtelte Summation über die Elemente und die Integrationspunkte der Elemente ersetzt wird durch eine Summation über die Integrationspunkte aller Elemente:

$$g_{\bigstar} = \sum_{\mathsf{e}=1}^{\mathsf{N}_{\mathrm{E}}} \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \tilde{g}_{\bigstar,\mathsf{p}} V_{\mathsf{p}} = \sum_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \tilde{g}_{\bigstar,\mathsf{p}} V_{\mathsf{p}}$$
(6.19)

Im nächsten Schritt werden Verschiebungen und Testfunktionen durch lokale Ansätze entsprechend der Gleichungen (6.7) und (6.10) räumlich diskretisiert.

$$\boldsymbol{u}_{p} = \boldsymbol{u}(\boldsymbol{x}_{p}) = \boldsymbol{L}(\boldsymbol{x}_{p}) \boldsymbol{U}_{p}$$
(6.20)

$$\delta \boldsymbol{u}_{p} = \delta \boldsymbol{u}(\boldsymbol{x}_{p}) = \boldsymbol{L}(\boldsymbol{x}_{p}) \,\delta \boldsymbol{U}_{p} \tag{6.21}$$

Die Vektoren U_p und δU_p enthalten die Verschiebungs- und Testfunktionswerte an den Knoten, deren Einflussbereiche den Ort x_p umfassen.

Da lokale Ansätze verwendet werden, muss die Summation der Beiträge der Integrationspunkte durch eine Assemblierungsprozedur ersetzt werden. Die lokalen Größen sind an den richtigen Stellen den globalen Größen hinzuzufügen. Die Assemblierung wird mit dem Zeichen "A" symbolisiert.¹

Der vollständige Ablauf der räumlichen Diskretisierung wird wieder anhand des Teilintegrals g_{\blacklozenge} verdeutlicht.

$$g_{\blacklozenge} = \int_{\mathcal{B}} \tilde{g}_{\blacklozenge} dV \stackrel{\textcircled{1}}{=} \sum_{p=1}^{N_{P}} \tilde{g}_{\blacklozenge p} V_{p} \qquad \stackrel{\textcircled{2}}{=} \sum_{p=1}^{N_{P}} \delta \boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{L}_{p}^{\mathrm{T}} \tilde{\boldsymbol{f}}_{\blacklozenge p} V_{p}$$
$$\stackrel{\textcircled{3}}{=} \delta \boldsymbol{U}^{\mathrm{T}} \bigwedge_{p=1}^{N_{P}} \boldsymbol{L}_{p}^{\mathrm{T}} \tilde{\boldsymbol{f}}_{\blacklozenge p} V_{p} \stackrel{\textcircled{4}}{=} \delta \boldsymbol{U}^{\mathrm{T}} \bigwedge_{p=1}^{N_{P}} \boldsymbol{F}_{\blacklozenge p}$$
$$\stackrel{\textcircled{5}}{=} \delta \boldsymbol{U}^{\mathrm{T}} \boldsymbol{F}_{\blacklozenge} \quad . \qquad (6.22)$$

Im Einzelnen werden folgende Schritte durchgeführt: ① Zerlegung in Teilbereiche und numerische Integration. ② Räumliche Diskretisierung der Verschiebungen und Testfunktionen über lokale Ansätze und Abspalten der Testfunktionsvektoren. ③ "Ausklammern" der Testfunktionsvektoren; die Summation muss hier durch eine

¹Um auf eine gesonderte Schreibweise für die Assemblierungsprozedur verzichten zu können, werden formal häufig Zuordnungsmatrizen eingeführt. Die lokalen Größen werden durch Multiplikation mit den dünn besetzten Zuordnungsmatrizen auf die Dimension der globalen Größen "aufgebläht" und können dann einfach aufsummiert werden. Diese Vorgehensweise ist jedoch numerisch ineffizient und daher für die praktische Umsetzung ungeeignet. Stattdessen wird zu jeder lokalen Freiheitsgradnummer die dazugehörige globale Freiheitsgradnummer abgespeichert, so dass eine Assemblierungsroutine die Einordnung der Komponenten der lokalen Größen in die globalen Größen vornehmen kann.

Assemblierung ersetzt werden. ④ Bestimmung der lokalen Kraftgrößen an den Integrationspunkten. ⑤ Assemblierung der Beiträge der Integrationspunkte zu globalen Kraftgrößen.

Entsprechend werden alle Volumenintegrale von (6.4) behandelt. Bei den Oberflächenintegralen wird ähnlich vorgegangen. Hier werden die flächenbezogenen Kräfte an den Orten der Randintegrationspunkte mit den den Randintegrationspunkten zugeordneten Flächen multipliziert. Assembliert wird über die Anzahl der Randpunkte N_{RP}.

Für die räumlich diskretisierte schwache Form der Impulsbilanz ergibt sich damit

$$g = g_{\text{int}} + g_{\text{m}} - g_{\text{ext}} - g_{\text{rnd}} - g_{\text{kon}}$$

$$= \delta \boldsymbol{U}^{\text{T}} \left[\boldsymbol{F}_{\text{int}}(\boldsymbol{U}, \dot{\boldsymbol{U}}) + \boldsymbol{F}_{\text{m}}(\ddot{\boldsymbol{U}}) - \boldsymbol{F}_{\text{extV}} - \boldsymbol{F}_{\text{extA}} - \boldsymbol{F}_{\text{rnd}}(\boldsymbol{U}) - \boldsymbol{F}_{\text{kon}}(\boldsymbol{U}) \right]$$

$$= \delta \boldsymbol{U}^{\text{T}} \boldsymbol{G}(\boldsymbol{U}, \dot{\boldsymbol{U}}, \ddot{\boldsymbol{U}}) = 0 \quad .$$
(6.23)

Da g für beliebige Testfunktionsvektoren δU verschwinden muss, kann gefolgert werden, dass die Kraftsumme G gleich dem Nullvektor sein muss, womit abschließend als räumlich diskretisiertes System

$$\boldsymbol{G}(\boldsymbol{U}, \dot{\boldsymbol{U}}, \ddot{\boldsymbol{U}}) = \boldsymbol{F}_{\text{int}}(\boldsymbol{U}, \dot{\boldsymbol{U}}) + \boldsymbol{F}_{\text{m}}(\ddot{\boldsymbol{U}}) - \boldsymbol{F}_{\text{extV}} - \boldsymbol{F}_{\text{extA}} - \boldsymbol{F}_{\text{rnd}}(\boldsymbol{U}) - \boldsymbol{F}_{\text{kon}}(\boldsymbol{U}) = \boldsymbol{0}$$
(6.24)

mit den aus Volumenintegrationen stammenden Kräften

$$\boldsymbol{F}_{\text{int}}(\boldsymbol{U}, \dot{\boldsymbol{U}}) = \bigwedge_{p=1}^{N_{\text{P}}} \tilde{\boldsymbol{F}}_{\text{int}\,p}(\boldsymbol{U}_{\text{p}}, \dot{\boldsymbol{U}}_{\text{p}}) V_{\text{p}} = \bigwedge_{p=1}^{N_{\text{P}}} \boldsymbol{B}_{\text{p}}^{\text{T}} \boldsymbol{\sigma}_{\text{p}}(\boldsymbol{U}_{\text{p}}, \dot{\boldsymbol{U}}_{\text{p}}) V_{\text{p}}$$
(6.25)

$$\boldsymbol{F}_{\mathrm{m}}(\ddot{\boldsymbol{U}}) = \boldsymbol{M} \ \ddot{\boldsymbol{U}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \tilde{\boldsymbol{F}}_{\mathrm{m}\,\mathsf{p}}(\ddot{\boldsymbol{U}}_{\mathsf{p}}) V_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \boldsymbol{L}_{\mathsf{p}} \rho_{\mathsf{p}} V_{\mathsf{p}} \ \ddot{\boldsymbol{U}}_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \boldsymbol{M}_{\mathsf{p}} \ \ddot{\boldsymbol{U}}_{\mathsf{p}} \quad (6.26)$$

$$\boldsymbol{F}_{\text{extV}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \tilde{\boldsymbol{F}}_{\text{extV}\,\mathsf{p}} \, V_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \, \tilde{\boldsymbol{f}}_{\text{extV}\,\mathsf{p}} \, V_{\mathsf{p}}$$
(6.27)

und den aus Oberflächenintegrationen stammenden Kräften

$$\boldsymbol{F}_{\text{extA}} = \bigwedge_{p=1}^{N_{\text{RP}}} \tilde{\boldsymbol{F}}_{\text{extV}p} A_{p}$$
(6.28)

$$\boldsymbol{F}_{\mathrm{rnd}}(\boldsymbol{U}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \tilde{\boldsymbol{F}}_{\mathrm{rnd}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}}) A_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \tilde{\boldsymbol{f}}_{\mathrm{rnd}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}}) A_{\mathsf{p}}$$
(6.29)

$$\boldsymbol{F}_{\mathrm{kon}}(\boldsymbol{U}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \tilde{\boldsymbol{F}}_{\mathrm{kon}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}}) A_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \tilde{\boldsymbol{f}}_{\mathrm{kon}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}}) A_{\mathsf{p}}$$
(6.30)

erhalten wird. Im Abschnitt 6.4.2 wird das semidiskrete System (6.24) zeitlich diskretisiert.

6.3 Räumliche Diskretisierung der Kontaktoberflächen

Zur glatten(mindestens C^1 -stetigen) Beschreibung von Kontaktoberflächen können unterschiedliche Wege begangen werden:

EL-ABBASI ET AL. (2001) glätten Oberflächen von Starrkörpern über C^2 -kontinuierliche und Oberflächen von deformierbaren Körpern über C^1 -kontinuierliche Splines. Die Splines stützen sich auf die Oberflächenknoten und eine zusätzliche Angabe von Normalen oder Tangenten ist nicht erforderlich. Ähnlich gehen WRIGGERS ET AL. (2001) vor. An Stelle von Splines nutzen sie Bézier-Kurven zur Interpolation der Master-Oberflächen.

BELYTSCHKO ET AL. (2002) verwenden eine glatte Abstandsfunktion. Die vorzeichenbehaftete Abstandsfunktion basiert auf einer MLS-Approximation über die Oberflächenknoten. PUSO ET AL. (2002) glätten Oberflächen mit *Gregory Patches*; STADLER ET AL. (2003) verwenden hierzu *NURBS*.

Im Rahmen dieser Arbeit werden die Kontaktoberflächen im zweidimensionalen Raum (d.h. Kontaktlinien) mit C^1 -stetigen Hermite-Linienelementen (d.h. Splines) diskretisiert. Im Folgenden werden die hierzu verwendete Hermite-Interpolation (siehe z.B. DHATT ET AL. (1984)), die Definition der aus Hermite-Elementen zusammengesetzten Kontaktlinien und die Kontaktgeometrie beschrieben.

6.3.1 Hermite-Interpolation

Ein C^1 -stetiges Hermite-Element (Abbildung 6.1) wird über die Lage seiner Knoten und die Tangentenrichtungen in den Knoten definiert. Wie bei Lagrangeschen Linienelementen wird eine normierte Elementkoordinate ξ eingeführt, die an den Knoten \mathcal{A} und \mathcal{B} die Werte $\xi_{\mathsf{A}} = -1$ und $\xi_{\mathsf{B}} = 1$ annimmt. Die globalen Koordinaten des Elementes ergeben sich in Abhängigkeit von der normierten Koordinate aus

$$\hat{\boldsymbol{x}}(\xi) = H_1(\xi) \, \boldsymbol{x}_{\mathsf{A}} + H_2(\xi) \, \boldsymbol{x}_{\mathsf{B}} + \beta_{\mathsf{A}} \, l_{\mathsf{A}} \, H_3(\xi) \, \boldsymbol{t}_{\mathsf{A}} + \beta_{\mathsf{B}} \, l_{\mathsf{B}} \, H_4(\xi) \, \boldsymbol{t}_{\mathsf{B}} \quad . \tag{6.31}$$

Abbildung 6.1: Hermite-Element

Die Hermite-Ansatzfunktionen

$$H_{1}(\xi) = \frac{1}{4} \left[2 - 3\xi + \xi^{3} \right] \qquad H_{3}(\xi) = \frac{1}{4} \left[1 - \xi - \xi^{2} + \xi^{3} \right] H_{2}(\xi) = \frac{1}{4} \left[2 + 3\xi - \xi^{3} \right] \qquad H_{4}(\xi) = \frac{1}{4} \left[-1 - \xi + \xi^{2} + \xi^{3} \right]$$
(6.32)

und ihre Ableitungen zeigt die Abbildung 6.2.

 $\beta_A l_A$ und $\beta_B l_B$ sind Tangentenwichtungsfaktoren, wobei β_A und β_B positive dimen-

Abbildung 6.2: Hermite-Ansatzfunktionen und ihre Ableitungen

sionslose Zahlen und l_{A} und l_{B} Längen sind. Es wird speziell

$$\beta_{\mathsf{A}} = \beta_{\mathsf{B}} = \beta \tag{6.33}$$

und

$$l_{\mathsf{A}} = l_{\mathsf{B}} = l \tag{6.34}$$

mit

$$l = \frac{1}{2} \|\boldsymbol{x}_{\mathsf{B}} - \boldsymbol{x}_{\mathsf{A}}\| \tag{6.35}$$

(halber Knotenabstand) gewählt. Es sind auch andere Definitionen der Tangentenwichtungsfaktoren möglich. Die Wichtungsfaktoren sollten aber stets linear von einem Längenmaß abhängen, damit die Hermite-Interpolation invariant gegenüber Maßstabsänderungen ist.

Den Einfluss der Tangentenwichtung auf die Hermite-Interpolation bei unterschiedlichen Winkeln zwischen der Anfangstangente t_A und der Endtangente t_B zeigt die Abbildung 6.3. Wird $\beta = 0$ gewählt, entartet die Hermite-Interpolation zu einer linearen Interpolation. Eine sinnvolle Wahl ist $\beta = 1$. Die dazugehörige Interpolation ist fett dargestellt.

Durch Ableitung der globalen Elementkoordinaten nach der lokalen Elementkoordinate wird eine von der lokalen Elementkoordinate abhängige nichtnormierte Tangente \tilde{t} erhalten

$$\tilde{\boldsymbol{t}}(\xi) = \frac{\partial \hat{\boldsymbol{x}}(\xi)}{\partial \xi} = H_{1,\xi}(\xi) \, \boldsymbol{x}_{\mathsf{A}} + H_{2,\xi}(\xi) \, \boldsymbol{x}_{\mathsf{B}} + \beta \, l \, H_{3,\xi}(\xi) \, \boldsymbol{t}_{\mathsf{A}} + \beta \, l \, H_{4,\xi}(\xi) \, \boldsymbol{t}_{\mathsf{B}} \quad . \quad (6.36)$$

Die normierte Tangente ergibt sich aus

$$\boldsymbol{t}(\xi) = \frac{\boldsymbol{t}(\xi)}{\|\tilde{\boldsymbol{t}}(\xi)\|} \quad . \tag{6.37}$$

Für die Tangenten an den Knoten des Hermite-Elementes lässt sich

$$\boldsymbol{t}(-1) = \ldots = \frac{\beta \, l \, \boldsymbol{t}_{\mathsf{A}}}{\beta \, l} = \boldsymbol{t}_{\mathsf{A}} \quad \text{und} \quad \boldsymbol{t}(1) = \ldots = \frac{\beta \, l \, \boldsymbol{t}_{\mathsf{B}}}{\beta \, l} = \boldsymbol{t}_{\mathsf{B}} \tag{6.38}$$

leicht überprüfen.

Die Normale n bildet mit der Tangente t und dem senkrecht auf der Diskretisie-

Abbildung 6.3: Hermite-Element, Einfluss des Tangentenwichtungsfaktors βl auf die Hermite-Interpolation bei verschiedenen Winkeln zwischen der Anfangs- und Endtangente, $\beta \in \{0, \frac{1}{2}, 1, 2, 8\}$

rungsebene stehenden Einheitsvektor \boldsymbol{e}_3 ein Rechtssystem.

$$\boldsymbol{n} = \boldsymbol{t} \times \boldsymbol{e}_3 = \left\{ \begin{array}{c} t_2 \\ -t_1 \\ 0 \end{array} \right\} \quad , \quad \boldsymbol{t} = \boldsymbol{e}_3 \times \boldsymbol{n} = \left\{ \begin{array}{c} -n_2 \\ n_1 \\ 0 \end{array} \right\} \tag{6.39}$$

Für die nichtnormierten Vektoren \tilde{n} und \tilde{t} gilt entsprechend

$$\tilde{\boldsymbol{n}} = \tilde{\boldsymbol{t}} \times \boldsymbol{e}_3 = \left\{ \begin{array}{c} \tilde{t}_2 \\ -\tilde{t}_1 \\ 0 \end{array} \right\} \quad , \quad \tilde{\boldsymbol{t}} = \boldsymbol{e}_3 \times \tilde{\boldsymbol{n}} = \left\{ \begin{array}{c} -\tilde{n}_2 \\ \tilde{n}_1 \\ 0 \end{array} \right\} \quad . \tag{6.40}$$

Damit sind die für die Berechnung der Kontaktgeometrie in Abschnitt 6.3.3 benötigten Beziehungen zusammengestellt.

6.3.2 Kontaktlinien

Abbildung 6.4: Kontaktliniendiskretisierung, links Variante 1, rechts Variante 2

Die direkte Definition von Hermite-Elementen ist umständlich, da neben den Knotenpositionen auch die Tangenten in den Knoten angegeben werden müssen. Statt-

Abbildung 6.5: Hermite-Interpolation eines Kreises mit dem Radius 1, Knoten der Hermite-Elemente auf Knoten der Stützelemente (a), (c), (e) oder auf den Mitten der Stützelemente (b), (d), (f)

Abbildung 6.6: Hermite-Interpolation eines Quadrates mit abgerundeten Ecken, Knoten der Hermite-Elemente auf Knoten der Stützelemente (a), (c), (e) oder auf den Mitten der Stützelemente (b), (d), (f)

dessen werden aus Hermite-Elementen zusammengesetzte Linien über aus linearen Stützelementen zusammengesetzte Linien definiert, wie in WRIGGERS ET AL. (2001) vorgeschlagen wurde.

Hierzu ist für jede Kontaktlinie nur eine Serie aus Punkten anzugeben. Die Punkte werden linear zu einem polygonalen Linienzug verbunden. Für die Definition der Hermite-Elemente werden zwei Varianten untersucht:

In der ersten Variante werden die Knoten der Hermite-Elemente auf die Knoten der Stützelemente gelegt. Die Tangente an einem Knoten ergibt sich aus den gemittelten Richtungen der beiden an den Knoten angrenzenden Stützelemente.

In der zweiten Variante werden die Knoten der Hermite-Elemente auf die Mitten der Stützelemente gelegt. Die Tangenten ergeben sich unmittelbar aus den Richtungen der Stützelemente.

Die Abbildungen 6.5 und 6.6 zeigen die Hermite-Interpolation eines Kreises in unterschiedlich feiner Diskretisierung und die Hermite-Interpolation eines Quadrates mit abgerundeten Ecken. Die Interpolation nach der ersten Variante ist jeweils auf der linken Seite und die Interpolation nach der zweiten Variante auf der rechten Seite abgebildet. Die Stützelemente und ihre Knoten sind dünn wiedergegeben, die Hermite-Interpolation dick.

Die erste Variante ist bei der Interpolation des Kreises überlegen. Bereits mit 4 Punkten wird der Kreis gut wiedergegeben (siehe Abbildung 6.5c). Zur Abbildung abgerundeter Ecken ist sie allerdings schlecht geeignet. Die Abbildungen 6.6a und 6.6c zeigen offensichtlich unbrauchbare Interpolationen.

Dahingegen lassen sich mit Hilfe der zweiten Variante Ecken sehr gut interpolieren. Zur Definition einer abgerundeten Ecke reichen zwei Stützelemente aus (siehe Abbildung 6.6b). Je kürzer die Stützelemente an der Ecke gewählt werden, desto "schärfer" wird die Ecke ausgebildet.

Die zweite Variante hat den Vorteil, dass bei einer sinnvollen Wahl der Tangentenwichtungsfaktoren aus einem konvexen Polygonzug aus Stützelementen stets eine konvexe C^1 -stetige Linie aus Hermite-Elementen gebildet wird.

6.3.3 Kontaktgeometrie

Abbildung 6.7 zeigt die Geometrie einer inaktiven und einer aktiven Kontaktbedingung. \mathcal{P} ist ein Randpunkt eines deformierbaren Körpers, der in der Abbildung nicht dargestellt ist. Die Kontaktoberfläche wird durch ein Hermite-Element gebildet.

(a) Punkt ${\mathcal P}$ außerhalb der Kontaktlinie, g>0,Kontaktbedingung inaktiv

Wie in Abschnitt 4.5 beschrieben wurde, werden zur Berechnung der Kontaktkraft und der Tangente der Kontaktkraft der Abstand g zwischen dem Punkt \mathcal{P} und der Kontaktoberfläche und der Normalenvektor \boldsymbol{n} der Kontaktoberfläche im Fusspunkt des Lotes benötigt. Zwischen dem Ortsvektor \boldsymbol{x} des Punktes \mathcal{P} in der Momentankonfiguration und dem Ortsvektor $\hat{\boldsymbol{x}}$ des Fußpunktes $\hat{\mathcal{P}}$ des Lotes besteht folgender Zusammenhang:

$$\boldsymbol{x} = \hat{\boldsymbol{x}}(\xi) + \boldsymbol{n}(\xi) g \tag{6.41}$$

(6.41) ist ein nichtlineares Gleichungssystem mit den Unbekannten ξ und g. Es wird iterativ mit dem Newton-Raphson-Verfahren (siehe Abschnitt 7.2.1) gelöst. Der Normalenvektor \boldsymbol{n} hängt über Gleichung (6.39) von der Tangente \boldsymbol{t} ab. Diese lässt sich aus (6.36) und (6.37) in Abhängigkeit von der normierten Koordinate ξ berechnen.

Die Linearisierung wird vereinfacht, wenn der Vektor vom Fußpunkt des Lotes $\hat{\mathcal{P}}$ zum Punkt \mathcal{P} durch einen nichtnormierten Stellungsvektor \tilde{n} ausgedrückt wird:

$$\boldsymbol{n}(\xi) \ g = \tilde{\boldsymbol{n}}(\xi) \ \tilde{g} \tag{6.42}$$

Die Unbekannten ξ und \tilde{g} werden in einem Vektor zusammengefaßt

$$\boldsymbol{z} = \left\{ \begin{array}{c} \boldsymbol{\xi} \\ \tilde{\boldsymbol{g}} \end{array} \right\} \tag{6.43}$$

und die Gleichung (6.41) unter Berücksichtigung von (6.42) in Residualfom gebracht

$$\boldsymbol{r}(\boldsymbol{z}) = \boldsymbol{x} - \hat{\boldsymbol{x}}(\xi) - \tilde{\boldsymbol{n}}(\xi) \,\tilde{\boldsymbol{g}} = \boldsymbol{0} \tag{6.44}$$

Unter Verwendung der Gleichungen (6.40) und (6.36) und der Abkürzungen

$$a_{11} = \frac{1}{4} \left[2 x_{A1} + 2 x_{B1} + \beta l t_{A1} - \beta l t_{B1} \right]$$

$$a_{12} = \frac{1}{4} \left[2 x_{A2} + 2 x_{B2} + \beta l t_{A2} - \beta l t_{B2} \right]$$

$$a_{21} = \frac{1}{4} \left[-3 x_{A1} + 3 x_{B1} - \beta l t_{A1} - \beta l t_{B1} \right]$$

$$a_{22} = \frac{1}{4} \left[-3 x_{A2} + 3 x_{B2} - \beta l t_{A2} - \beta l t_{B2} \right]$$

$$a_{31} = \frac{1}{4} \left[-\beta l t_{A1} + \beta l t_{B1} \right]$$

$$a_{32} = \frac{1}{4} \left[-\beta l t_{A2} + \beta l t_{B2} \right]$$

$$a_{41} = \frac{1}{4} \left[x_{A1} - x_{B1} + \beta l t_{A1} + \beta l t_{B1} \right]$$

$$a_{42} = \frac{1}{4} \left[x_{A2} - x_{B2} + \beta l t_{A2} + \beta l t_{B2} \right]$$
(6.45)

lassen sich die Komponenten des Residualvektor $\boldsymbol{r}(\boldsymbol{z})$

$$\{\boldsymbol{r}(\boldsymbol{z})\}_{1} = r_{1} = a_{41}\xi^{3} + a_{31}\xi^{2} + a_{21}\xi + a_{11} + \tilde{g} \left[3 a_{42}\xi^{2} + 2 a_{32}\xi + a_{22}\right] - x_{1} \\ \{\boldsymbol{r}(\boldsymbol{z})\}_{2} = r_{2} = a_{42}\xi^{3} + a_{32}\xi^{2} + a_{22}\xi + a_{12} - \tilde{g} \left[3 a_{41}\xi^{2} + 2 a_{31}\xi + a_{21}\right] - x_{2} \\ (6.46)$$

und der Tangente $\partial {\bm r}({\bm z})/\partial {\bm z}$

$$\begin{bmatrix} \frac{\partial \mathbf{r}(\mathbf{z})}{\partial \mathbf{z}} \end{bmatrix}_{11} = \frac{\partial r_1}{\partial z_1} = 3 a_{41} \xi^2 + 2 a_{31} \xi + a_{21} + \tilde{g} \left[6 a_{42} \xi + 2 a_{32} \right] \begin{bmatrix} \frac{\partial \mathbf{r}(\mathbf{z})}{\partial \mathbf{z}} \end{bmatrix}_{12} = \frac{\partial r_1}{\partial z_2} = 3 a_{42} \xi^2 + 2 a_{32} \xi + a_{22} \begin{bmatrix} \frac{\partial \mathbf{r}(\mathbf{z})}{\partial \mathbf{z}} \end{bmatrix}_{21} = \frac{\partial r_2}{\partial z_1} = 3 a_{42} \xi^2 + 2 a_{32} \xi + a_{22} + \tilde{g} \left[-6 a_{41} \xi - 2 a_{31} \right] \begin{bmatrix} \frac{\partial \mathbf{r}(\mathbf{z})}{\partial \mathbf{z}} \end{bmatrix}_{22} = \frac{\partial r_2}{\partial z_2} = -3 a_{41} \xi^2 - 2 a_{31} \xi - a_{21}$$
(6.47)

übersichtlich angeben.

Als Startwert (Iterations index $k=0)\ \mathrm{des}$ Unbekanntenvektors wird

$$\boldsymbol{z}^{0} = \left\{ \begin{array}{c} \xi^{0} \\ \tilde{g}^{0} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\}$$
(6.48)

gewählt. Der Unbekanntenvektor wird gemäß

$$\boldsymbol{z}^{k+1} = \boldsymbol{z}^{k} - \left[\frac{\partial \boldsymbol{r}(\boldsymbol{z})}{\partial \boldsymbol{z}} \Big|_{\boldsymbol{z}^{k}} \right]^{-1} \boldsymbol{r}(\boldsymbol{z}^{k})$$
(6.49)

in jedem Iterationsschritt verbessert. Die Iteration wird abgebrochen, wenn der Unbekanntenvektor mit hinreichender Genauigkeit bestimmt wurde.

$$\|\boldsymbol{r}(\boldsymbol{z}^{k+1})\| < \varepsilon \tag{6.50}$$

Ergibt sich während der Iteration

$$\tilde{g} > 0 \quad \rightarrow \quad g > 0 \tag{6.51}$$

befindet sich der Punkt \mathcal{P} außerhalb der Kontaktoberfläche; ergibt sich

$$\xi < -1 \quad \text{oder} \quad 1 < \xi \tag{6.52}$$

befindet ich der Fußpunkt des Lotes außerhalb des Hermite-Elementes. In beiden Fällen wird die Iteration vorzeitig abgebrochen, da der Punkt \mathcal{P} mit dem Hermite-Element keinen Kontakt hat.

Nach Abschluss der Iteration (es gilt $-1 \leq \xi \leq 1$ und $\tilde{g} < 0$) werden der Abstand gund der Normalenvektor n aus

$$g = \operatorname{signum}(\tilde{g}) \| \tilde{\boldsymbol{n}} \; \tilde{g} \| \tag{6.53}$$

$$\boldsymbol{n} = \tilde{\boldsymbol{n}} \, \frac{\tilde{g}}{g} \tag{6.54}$$

gewonnen.

6.4 Zeitliche Diskretisierung

Im Rahmen dieser Arbeit wird in der zeitlichen Dimension eine andere Diskretisierung vorgenommen als in den räumlichen Dimensionen. Es werden konventionelle Zeitschrittverfahren (siehe Abschnitt 7.3) eingesetzt.

Eine zeitliche Diskretisierung muss auf Materialebene für die Entwicklungsgleichungen der inneren Unbekannten (4.19) und auf globaler Ebene für das semidiskrete System (6.24) durchgeführt werden. Für die Entwicklungsgleichungen wird ein Verfahren erster Ordnung und für das globale System ein Verfahren zweiter Ordnung benötigt. In beiden Fällen kommen implizite Zeitschrittverfahren zum Einsatz, die gegenüber expliziten Verfahren größere Zeitschritte erlauben.

6.4.1 Zeitliche Diskretisierung der Entwicklungsgleichungen

Für die Entwicklungsgleichungen der inneren Unbekannten wurde die allgemeine Form

$$\dot{\boldsymbol{z}} = \boldsymbol{f}(\boldsymbol{\varepsilon}, \dot{\boldsymbol{\varepsilon}}, \boldsymbol{z}) \tag{6.55}$$

angenommen (siehe Abschnitt 4.3.4).

Zur zeitlichen Diskretisierung wird das Euler-Rückwärts-Verfahren (siehe Abschnitt 7.3.1) verwendet. Die zeitlichen Ableitungen des Vektors der inneren Variablen und der Dehnungen werden durch Differenzenquotienten ersetzt und die übrigen Größen zum Zeitpunkt t_{n+1} ausgewertet.

$$\begin{aligned} \dot{z} &\longrightarrow \frac{z_{n+1} - z_n}{\Delta t} \\ \dot{\varepsilon} &\longrightarrow \frac{\varepsilon_{n+1} - \varepsilon_n}{\Delta t} \\ z &\longrightarrow z_{n+1} \\ \varepsilon &\longrightarrow \varepsilon_{n+1} \end{aligned} (6.56)$$

Damit wird das nichtlineare Gleichungssystem

$$\frac{\boldsymbol{z}_{\mathsf{n}+1} - \boldsymbol{z}_{\mathsf{n}}}{\Delta t} = \hat{\boldsymbol{f}}(\boldsymbol{\varepsilon}_{\mathsf{n}+1}, \boldsymbol{z}_{\mathsf{n}+1})$$
(6.57)

für die inneren Unbekannten zum Zeitpunkt t_{n+1} erhalten. Dieses wird in Residualform gebracht:

$$\boldsymbol{r}(\boldsymbol{\varepsilon}_{\mathsf{n}+1},\boldsymbol{z}_{\mathsf{n}+1}) = \boldsymbol{z}_{\mathsf{n}+1} - \boldsymbol{z}_{\mathsf{n}} - \bigtriangleup t \, \hat{\boldsymbol{f}}(\boldsymbol{\varepsilon}_{\mathsf{n}+1},\boldsymbol{z}_{\mathsf{n}+1}) = \boldsymbol{0} \tag{6.58}$$

Um die Darstellung übersichtlicher zu gestalten, wird im Folgenden auf die Notation des Indexes $(\cdot)_{n+1}$ für das Zeitschrittende verzichtet.

$$\boldsymbol{r}(\boldsymbol{\varepsilon}, \boldsymbol{z}) = \boldsymbol{z} - \boldsymbol{z}_{\mathsf{n}} - \Delta t \, \boldsymbol{\hat{f}}(\boldsymbol{\varepsilon}, \boldsymbol{z}) = \boldsymbol{0} \tag{6.59}$$

Die vorstehende Beziehung wird in Abschnitt 6.5.1 linearisiert.

6.4.2 Zeitliche Diskretisierung der Bilanzgleichungen

Es wird das Newmark-Verfahrens (siehe Abschnitt 7.3.2) eingesetzt. Als primäre Unbekannte werden die Verschiebungen gewählt. Die entsprechend der Gleichungen (7.48 und 7.49) für die Beschleunigungen und Geschwindigkeiten aufgestellten Ansätze

$$\ddot{\boldsymbol{U}}_{n+1} = \alpha_1 \left[\boldsymbol{U}_{n+1} - \boldsymbol{U}_n \right] - \alpha_2 \dot{\boldsymbol{U}}_n - \alpha_3 \ddot{\boldsymbol{U}}_n \tag{6.60}$$

$$\dot{\boldsymbol{U}}_{n+1} = \alpha_4 \left[\boldsymbol{U}_{n+1} - \boldsymbol{U}_n \right] + \alpha_5 \dot{\boldsymbol{U}}_n + \alpha_6 \ddot{\boldsymbol{U}}_n \tag{6.61}$$

werden in das semidiskretisierte System (6.24) und die Beziehungen für die Teilkräfte (6.25 bis 6.30) eingesetzt. Es wird das nichlineare Gleichungssystem

$$\boldsymbol{G}(\boldsymbol{U}_{n+1}) = \boldsymbol{F}_{int}(\boldsymbol{U}_{n+1}) + \boldsymbol{F}_{m}(\boldsymbol{U}_{n+1}) - \boldsymbol{F}_{extV} - \boldsymbol{F}_{extA} - \boldsymbol{F}_{rnd}(\boldsymbol{U}_{n+1}) - \boldsymbol{F}_{kon}(\boldsymbol{U}_{n+1}) = \boldsymbol{0}$$
(6.62)

für die Verschiebungen am Zeitschrittende U_{n+1} erhalten. Die aus den Volumenintegrationen stammenden Kräfte lauten

$$\begin{aligned} \boldsymbol{F}_{\text{int}}(\boldsymbol{U}_{n+1}) &= \bigwedge_{p=1}^{N_{p}} \tilde{\boldsymbol{F}}_{\text{int}\,p}(\boldsymbol{U}_{n+1\,p}) V_{p} = \bigwedge_{p=1}^{N_{p}} \boldsymbol{B}_{p}^{\mathrm{T}} \,\boldsymbol{\sigma}_{p}(\boldsymbol{U}_{n+1\,p}) V_{p} \end{aligned} \tag{6.63} \\ \boldsymbol{F}_{\mathrm{m}}(\boldsymbol{U}_{n+1}) &= \bigwedge_{p=1}^{N_{p}} \tilde{\boldsymbol{F}}_{\mathrm{m}\,p}(\boldsymbol{U}_{n+1\,p}) V_{p} \\ &= \bigwedge_{p=1}^{N_{p}} \boldsymbol{L}_{p}^{\mathrm{T}} \, \boldsymbol{L}_{p} \,\rho_{p} \, V_{p} \left[\alpha_{1} \left[\boldsymbol{U}_{n+1\,p} - \boldsymbol{U}_{n\,p} \right] - \alpha_{2} \, \dot{\boldsymbol{U}}_{n\,p} - \alpha_{3} \, \ddot{\boldsymbol{U}}_{n\,p} \right] \\ &= \bigwedge_{p=1}^{N_{p}} \boldsymbol{M}_{p} \left[\alpha_{1} \left[\boldsymbol{U}_{n+1\,p} - \boldsymbol{U}_{n\,p} \right] - \alpha_{2} \, \dot{\boldsymbol{U}}_{n\,p} - \alpha_{3} \, \ddot{\boldsymbol{U}}_{n\,p} \right] \\ &= \boldsymbol{M} \left[\alpha_{1} \left[\boldsymbol{U}_{n+1} - \boldsymbol{U}_{n} \right] - \alpha_{2} \, \dot{\boldsymbol{U}}_{n\,p} - \alpha_{3} \, \ddot{\boldsymbol{U}}_{n\,p} \right] \end{aligned} \tag{6.64}$$

$$\boldsymbol{F}_{\text{extV}} = \bigwedge_{p=1}^{N_{\text{P}}} \tilde{\boldsymbol{F}}_{\text{extV}\,p} \, V_{p} = \bigwedge_{p=1}^{N_{\text{P}}} \boldsymbol{L}_{p}^{\text{T}} \, \tilde{\boldsymbol{f}}_{\text{extV}\,p} \, V_{p}$$
(6.65)

und die aus den Oberflächenintegrationen stammenden Kräfte lauten

$$\boldsymbol{F}_{\text{extA}} = \bigwedge_{\mathbf{p}=1}^{N_{\text{RP}}} \tilde{\boldsymbol{F}}_{\text{extA}\,\mathbf{p}} A_{\mathbf{p}}$$
(6.66)

$$\boldsymbol{F}_{\mathrm{rnd}}(\boldsymbol{U}_{\mathsf{n+1}}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \tilde{\boldsymbol{F}}_{\mathrm{rnd}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{n+1}\,\mathsf{p}}) A_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \tilde{\boldsymbol{f}}_{\mathrm{rnd}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{n+1}\,\mathsf{p}}) A_{\mathsf{p}}$$
$$= \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \boldsymbol{f}_{\mathrm{rnd}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{n+1}\,\mathsf{p}})$$
(6.67)

$$\boldsymbol{F}_{\mathrm{kon}}(\boldsymbol{U}_{\mathsf{n}+1}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \tilde{\boldsymbol{F}}_{\mathrm{kon}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{n}+1\,\mathsf{p}}) A_{\mathsf{p}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \tilde{\boldsymbol{f}}_{\mathrm{kon}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{n}+1\,\mathsf{p}}) A_{\mathsf{p}}$$
$$= \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \boldsymbol{L}_{\mathsf{p}}^{\mathrm{T}} \boldsymbol{f}_{\mathrm{kon}\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{n}+1\,\mathsf{p}}) \quad .$$
(6.68)

Die Linearisierung der diskretisierten Bilanzgleichungen (6.62) wird in Abschnitt 6.5.2 vorgenommen. Hierfür werden noch die Ableitungen

$$\frac{\partial \boldsymbol{U}_{\mathsf{n+1}}}{\partial \boldsymbol{U}_{\mathsf{n+1}}} = \alpha_4 \tag{6.69}$$

$$\frac{\partial \ddot{\boldsymbol{U}}_{\mathsf{n}+1}}{\partial \boldsymbol{U}_{\mathsf{n}+1}} = \alpha_1 \tag{6.70}$$

benötigt, die sich unmittelbar aus (6.61) und (6.60) ergeben.

Um die Darstellung übersichtlicher zu gestalten, wird im Folgenden auf die Notation des Indexes $(\cdot)_{n+1}$ für das Zeitschrittende verzichtet.

6.5 Linearisierung und Lösung

Sowohl die Entwicklungsgleichungen der inneren Variablen (6.59) als auch das globale Gleichungssystem (6.62) sind im Allgemeinen nichtlinear. Die Lösung erfolgt daher in beiden Fällen iterativ.

6.5.1 Linearisierung und Lösung der Materialgleichungen

Die Materialgleichungen werden an den Orten der Materialpunkte ausgewertet. Auf eine Kennzeichnung mit $(\cdot)_p$ wird in diesem Abschnitt verzichtet, da sie für alle Größen erfolgen müsste.

Auf Materialebene sind die inneren Variablen aus den diskretisierten Entwicklungsgleichungen (6.59), die Spannung aus der konstitutiven Beziehung (4.18) und die Materialtangenten durch Linearisierung der konstitutiven Beziehung zu berechnen.

Mit der Berechnung der inneren Variablen wird begonnen. Die zeitlich diskretisierten und in Residualform gebrachten Entwicklungsgleichungen (6.59) beschreiben einen im allgemeinen Fall nichtlinearen Zusammenhang zwischen den Dehnungen und den inneren Zustandsgrößen am Zeitschrittende und müssen daher iterativ gelöst werden.

$$\boldsymbol{r}(\boldsymbol{\varepsilon}, \boldsymbol{z}) = \boldsymbol{0} \tag{6.71}$$

Die Lösung erfolgt mit dem im Abschnitt 7.2.1 beschriebenen Newton-Raphson-Verfahren. Die Dehnung ε_{n+1}^{j} wird in jedem Bilanziterationsschritt neu berechnet und bleibt während der Materialiteration konstant. Die Indizes für den Zeitschritt $(\cdot)_{n+1}$ und die Bilanziteration $(\cdot)^{j}$ (äußere Iteration) werden fortgelassen. Im folgenden bezieht sich der obere Index $(\cdot)^{k}$ auf die Materialiteration (innere Iteration).

$$\boldsymbol{r}(\boldsymbol{z}^{k+1}) = \boldsymbol{r}(\boldsymbol{z}^{k} + \Delta \boldsymbol{z}^{k+1})$$

$$\approx \boldsymbol{r}(\boldsymbol{z}^{k}) + \frac{\partial \boldsymbol{r}(\boldsymbol{z})}{\partial \boldsymbol{z}} \Big|_{\boldsymbol{z}^{k}} \Delta \boldsymbol{z}^{k+1}$$

$$= \boldsymbol{r}(\boldsymbol{z}^{k}) + \boldsymbol{K}_{\text{lok}}(\boldsymbol{z}^{k}) \Delta \boldsymbol{z}^{k+1} \stackrel{!}{=} \boldsymbol{0}$$
(6.72)

Für die Verbesserung des Vektors der inneren Variablen im Iterationsschritt und den Vektor der inneren Variablen am Ende des Iterationsschrittes ergeben sich:

$$\Delta \boldsymbol{z}^{\mathsf{k}+1} = -\boldsymbol{K}_{\mathrm{lok}}^{-1}(\boldsymbol{z}^{\mathsf{k}}) \boldsymbol{r}(\boldsymbol{z}^{\mathsf{k}})$$
(6.73)

$$\boldsymbol{z}^{\mathsf{k}+1} = \boldsymbol{z}^{\mathsf{k}} + \Delta \, \boldsymbol{z}^{\mathsf{k}+1} \tag{6.74}$$

Als Anfangswert für für die Iteration wird der konvergierte Vektor der inneren Variablen des letzten Zeitschrittes verwendet:

$$\boldsymbol{z}^{0} = \boldsymbol{z}_{\mathsf{n}} \tag{6.75}$$

Die Iteration wird abgebrochen, wenn die Norm des Residuums bzw. die Norm der Änderung des Vektors der inneren Variablen festgelegte Schranken unterschreiten:

$$\left[\|\boldsymbol{r}(\boldsymbol{z}^{k+1})\| < \operatorname{tol}_{\boldsymbol{r}} \quad \operatorname{und/oder} \quad \| \Delta \boldsymbol{z}^{k+1}\| < \operatorname{tol}_{\Delta \boldsymbol{z}} \right] \rightarrow \text{Abbruch} \quad (6.76)$$

Ist der Vektor der inneren Variablen berechnet, so folgt die Spannung aus der in

Abschnitt 4.3.4 in verallgemeinerter Form angegebenen konstitutiven Beziehung

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}(\boldsymbol{\varepsilon}, \dot{\boldsymbol{\varepsilon}}, \boldsymbol{z})$$
 . (6.77)

Im Zuge der Linearisierung des Vektors der inneren Kräfte muss das totale Differential der Spannungen gebildet werden. Wird eine konstitutive Beziehung entsprechend der obigen Form angenommen, so gilt für das totale Differential der Spannungen

$$\Delta \boldsymbol{\sigma} = \frac{\partial \boldsymbol{\sigma}}{\partial \varepsilon} \ \Delta \boldsymbol{\varepsilon} + \frac{\partial \boldsymbol{\sigma}}{\partial \dot{\boldsymbol{\varepsilon}}} \ \Delta \dot{\boldsymbol{\varepsilon}} + \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{z}} \ \Delta \boldsymbol{z} \\ = \left[\left[\frac{\partial \boldsymbol{\sigma}}{\partial \varepsilon} + \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \varepsilon} \right] \ \frac{\partial \varepsilon}{\partial \boldsymbol{U}} + \frac{\partial \boldsymbol{\sigma}}{\partial \dot{\boldsymbol{\varepsilon}}} \ \frac{\partial \dot{\boldsymbol{\varepsilon}}}{\partial \dot{\boldsymbol{U}}} \ \frac{\partial \dot{\boldsymbol{U}}}{\partial \boldsymbol{U}} \right] \ \Delta \boldsymbol{U} \quad .$$

$$(6.78)$$

Mit (6.15), (6.16) und (6.69) folgt

$$\Delta \boldsymbol{\sigma} = \left[\frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\varepsilon}} + \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{\varepsilon}} + \alpha_4 \frac{\partial \boldsymbol{\sigma}}{\partial \dot{\boldsymbol{\varepsilon}}} \right] \boldsymbol{B} \ \Delta \boldsymbol{U} \quad . \tag{6.79}$$

Für die Ableitung der inneren Variablen nach den Dehnungen $\frac{\partial z}{\partial \varepsilon}$ wird noch eine Beziehung benötigt. Diese wird aus der Forderung gewonnen, dass das totale Differential der in Residualform gebrachten Entwicklungsgleichungen (6.59) verschwinden muss.

$$\Delta \mathbf{r}(\varepsilon, \mathbf{z}) = \frac{\partial \mathbf{r}}{\partial \varepsilon} \ \Delta \varepsilon + \frac{\partial \mathbf{r}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \varepsilon} \ \Delta \varepsilon$$
$$= \left[\frac{\partial \mathbf{r}}{\partial \varepsilon} + \frac{\partial \mathbf{r}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \varepsilon} \right] \ \Delta \varepsilon = \mathbf{0}$$
(6.80)

Da die obige Beziehung auch für $\Delta \varepsilon \neq 0$ erfüllt sein muss, wird gefordert, dass der Ausdruck innerhalb der Klammern verschwindet

$$\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\varepsilon}} + \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{z}} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{\varepsilon}} = \boldsymbol{0} \quad , \qquad (6.81)$$

woraus sich die gesuchte Beziehung

$$\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{\varepsilon}} = -\left[\frac{\partial \boldsymbol{r}}{\partial \boldsymbol{z}}\right]^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\varepsilon}} = -\boldsymbol{K}_{\text{lok}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\varepsilon}}$$
(6.82)

ergibt. Die lokale Steifigkeit K_{lok} ist in Abhängigkeit von den konvergierten inneren Variablen zu bestimmen.

Schließlich folgt durch Einsetzen von (6.82) in (6.79) für das totale Differential der

Spannungen

$$\Delta \boldsymbol{\sigma} = \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{U}} \Delta \boldsymbol{U} = \left[\frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\varepsilon}} - \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{z}} \boldsymbol{K}_{\text{lok}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\varepsilon}} + \alpha_4 \frac{\partial \boldsymbol{\sigma}}{\partial \dot{\boldsymbol{\varepsilon}}} \right] \boldsymbol{B} \Delta \boldsymbol{U}$$

$$= \left[\boldsymbol{C}_{\text{T}} + \alpha_4 \boldsymbol{D}_{\text{T}} \right] \boldsymbol{B} \Delta \boldsymbol{U} \quad .$$
(6.83)

 α_4 ist ein Parameter des Newmark-Verfahrens und $C_{\rm T}$ und $D_{\rm T}$ sind die Materialtangenten.

$$\boldsymbol{C}_{\mathrm{T}} = \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\varepsilon}} - \frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{z}} \boldsymbol{K}_{\mathrm{lok}}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\varepsilon}}$$
(6.84)

$$\boldsymbol{D}_{\mathrm{T}} = \frac{\partial \boldsymbol{\sigma}}{\partial \dot{\boldsymbol{\varepsilon}}} \tag{6.85}$$

6.5.2 Linearisierung und Lösung der Bilanzgleichungen

Die räumlich und zeitlich diskretisierten und in Residualform gebrachten Bilanzgleichungen (6.62) werden iterativ mit dem Newton-Raphson-Verfahren (siehe Abschnitt 7.2.1) gelöst. Aus der nach dem ersten Glied abgebrochenen Taylorreihenentwicklung für das globale Residuum

$$G(U^{j+1}) = G(U^{j} + \Delta U^{j+1})$$

$$\approx G(U^{j}) + \frac{\partial G(U)}{\partial U} \Big|_{U^{j}} \Delta U^{j+1}$$

$$= G(U^{j}) + K_{T}(U^{j}) \Delta U^{j+1} = 0$$
(6.86)

ergeben sich die Verbesserung des globalen Unbekanntenvektors im Iterationsschritt

$$\Delta \boldsymbol{U}^{j+1} = -\boldsymbol{K}_{T}^{-1}(\boldsymbol{U}^{j}) \boldsymbol{G}(\boldsymbol{U}^{j})$$
(6.87)

und der globale Unbekanntenvektor am Iterationsschrittende

$$\boldsymbol{U}^{j+1} = \boldsymbol{U}^{j} + \Delta \boldsymbol{U}^{j+1} \quad . \tag{6.88}$$

Als Startwert der Iteration wird das konvergierte Ergebnis vom Ende des letzten Zeitschrittes

$$\boldsymbol{U}^{0} = \boldsymbol{U}_{n} \tag{6.89}$$

verwendet. Die Iteration wird abgebrochen, wenn die Norm des Residualkraftvektors bzw. die Norm der Änderung des Vektors der globalen Variablen festgelegte Schranken unterschreiten.

$$\|\boldsymbol{G}(\boldsymbol{U}^{j+1})\| < \operatorname{tol}_{\boldsymbol{G}} \quad \operatorname{und/oder} \quad \| \Delta \boldsymbol{U}^{j+1}\| < \operatorname{tol}_{\Delta \boldsymbol{U}} \quad \Big| \quad \to \quad \operatorname{Abbruch}$$

$$(6.90)$$

Beiträge zur Tangente $K_{\rm T}$ liefern alle vom Vektor der Verschiebungen am Zeitschrittende U abhängigen Summanden des Residualkraftvektor G. Dies sind die inneren Kräfte $F_{\rm int}$, die Massenträgheitskräfte $F_{\rm m}$ und die Strafkräfte $F_{\rm rnd}$ und $F_{\rm kon}$, die die Einhaltung der wesentlichen Randbedingungen und der Kontaktbedingungen erzwingen.

$$\boldsymbol{K}_{\mathrm{T}}(\boldsymbol{U}^{\mathrm{j}}) = \boldsymbol{K}_{\mathrm{Tint}}(\boldsymbol{U}^{\mathrm{j}}) + \boldsymbol{K}_{\mathrm{Tm}}(\boldsymbol{U}^{\mathrm{j}}) - \boldsymbol{K}_{\mathrm{Trnd}}(\boldsymbol{U}^{\mathrm{j}}) - \boldsymbol{K}_{\mathrm{Tkon}}(\boldsymbol{U}^{\mathrm{j}})$$
(6.91)

Die Linearisierung wird für eine aus einer Volumenintegration stammenden Kraft $(\mathbf{F}_{\bullet} \text{ steht für } \mathbf{F}_{\text{int}} \text{ oder } \mathbf{F}_{\text{m}})$

$$\boldsymbol{F}_{\blacklozenge}(\boldsymbol{U}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathsf{P}}} \tilde{\boldsymbol{F}}_{\blacklozenge\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}}) \, V_{\mathsf{p}}$$
(6.92)

und für eine aus einer Oberflächen
integration stammenden Kraft (F_{\Diamond} steht für $F_{\rm rnd}$, oder $F_{\rm kon}$)

$$\boldsymbol{F}_{\Diamond}(\boldsymbol{U}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \tilde{\boldsymbol{F}}_{\Diamond\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}}) \, V_{\mathsf{p}}$$
(6.93)

gezeigt. Mit (\cdot) sind im ersten Fall volumenbezogene und im zweiten Fall flächenbezogene Größen gekennzeichnet. V_p ist das einem Integrationspunkt zugeordnete Volumen und A_p die einem Randintegrationspunkt zugeordnete Oberfläche. Der Vektor U_p beeinhaltet die Verschiebungen der Knoten, deren Einflussbereiche den Integrationspunkt überdecken.

Das totale Differential einer aus einer Volumenintegration stammenden Kraft ist

$$\Delta \boldsymbol{F}_{\boldsymbol{\phi}}(\boldsymbol{U}) = \Delta \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{P}}} \tilde{\boldsymbol{F}}_{\boldsymbol{\phi},\mathbf{p}}(\boldsymbol{U}_{\mathrm{p}}) V_{\mathrm{p}} = \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{P}}} \Delta \tilde{\boldsymbol{F}}_{\boldsymbol{\phi},\mathbf{p}}(\boldsymbol{U}_{\mathrm{p}}) V_{\mathrm{p}}$$
$$= \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{P}}} \frac{\partial \tilde{\boldsymbol{F}}_{\boldsymbol{\phi},\mathbf{p}}(\boldsymbol{U}_{\mathrm{p}})}{\partial \boldsymbol{U}_{\mathrm{p}}} \Delta \boldsymbol{U}_{\mathrm{p}} V_{\mathrm{p}} = \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{P}}} \tilde{\boldsymbol{K}}_{\mathrm{T},\boldsymbol{\phi},\mathbf{p}}(\boldsymbol{U}_{\mathrm{p}}) \Delta \boldsymbol{U}_{\mathrm{p}} V_{\mathrm{p}}$$
$$= \left[\bigwedge_{\mathbf{p}=1}^{N_{\mathrm{P}}} \tilde{\boldsymbol{K}}_{\mathrm{T},\boldsymbol{\phi},\mathbf{p}}(\boldsymbol{U}_{\mathrm{p}}) V_{\mathrm{p}}\right] \Delta \boldsymbol{U} = \boldsymbol{K}_{\mathrm{T},\boldsymbol{\phi}}(\boldsymbol{U}) \Delta \boldsymbol{U} \quad . \tag{6.94}$$

Zur Berechnung der globalen Tangente $K_{T} \\bis$ werden für jeden Integrationspunkt volumenbezogene Tangenten $\tilde{K}_{T \\bis p}$ berechnet, diese mit den Integrationspunktvo-

lumina multipliziert und assembliert:

$$\boldsymbol{K}_{\mathrm{T} \boldsymbol{\phi}}(\boldsymbol{U}) = \bigwedge_{\mathrm{p}=1}^{\mathrm{N}_{\mathrm{P}}} \frac{\partial \tilde{\boldsymbol{F}}_{\boldsymbol{\phi} \mathrm{p}}(\boldsymbol{U}_{\mathrm{p}})}{\partial \boldsymbol{U}_{\mathrm{p}}} V_{\mathrm{p}} = \bigwedge_{\mathrm{p}=1}^{\mathrm{N}_{\mathrm{P}}} \tilde{\boldsymbol{K}}_{\mathrm{T} \boldsymbol{\phi} \mathrm{p}}(\boldsymbol{U}_{\mathrm{p}}) V_{\mathrm{p}}$$
(6.95)

Für den Beitrag eines Integrationspunktes zur Tangente der inneren Kräfte ergibt sich unter Ausnutzung der Beziehungen (6.63) und (6.83)

$$\boldsymbol{K}_{\mathrm{T\,int\,p}} = \frac{\partial \tilde{\boldsymbol{F}}_{\mathrm{int\,p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} V_{\mathrm{p}} = \frac{\partial \tilde{\boldsymbol{F}}_{\mathrm{int\,p}}}{\partial \boldsymbol{\sigma}_{\mathrm{p}}} \frac{\partial \boldsymbol{\sigma}_{\mathrm{p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} V_{\mathrm{p}} = \boldsymbol{B}^{\mathrm{T}} \left[\boldsymbol{C}_{\mathrm{T}} + \alpha_{4} \boldsymbol{D}_{\mathrm{T}} \right] \boldsymbol{B} V_{\mathrm{p}} \qquad (6.96)$$

mit Materialtangenten nach (6.84) und (6.85).

Die globale Tangente der Massenkraft lässt sich unmittelbar aus (6.64) berechnen:

$$\boldsymbol{K}_{\mathrm{T}\,\mathrm{m}} = \frac{\partial \boldsymbol{F}_{\mathrm{m}}}{\partial \boldsymbol{U}} = \alpha_1 \, \boldsymbol{M} \tag{6.97}$$

Hierin ist M die globale Massenmatrix und α_1 ein Parameter des Newmark-Verfahrens. Für den Beitrag eines Integrationspunktes zur Tangente der Massenkraft ergibt sich aus (6.64)

$$\boldsymbol{K}_{\mathrm{T\,m\,p}} = \frac{\partial \tilde{\boldsymbol{F}}_{\mathrm{m\,p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} V_{\mathrm{p}} = \alpha_{1} \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{L}_{\mathrm{p}} \rho_{\mathrm{p}} V_{\mathrm{p}} = \alpha_{1} \boldsymbol{M}_{\mathrm{p}} \quad .$$
(6.98)

 $M_{\,\mathsf{p}}$ ist der Beitrag eines Integrationspunktes zur globalen MassenmatrixM.

Das totale Differential einer aus einer Oberflächenintegration stammenden Kraft ist

$$\Delta \boldsymbol{F}_{\Diamond}(\boldsymbol{U}) = \Delta \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{RP}}} \tilde{\boldsymbol{F}}_{\Diamond \mathbf{p}}(\boldsymbol{U}_{\mathbf{p}}) A_{\mathbf{p}} = \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{RP}}} \Delta \boldsymbol{F}_{\Diamond \mathbf{p}}(\boldsymbol{U}_{\mathbf{p}})$$
$$= \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{RP}}} \frac{\partial \boldsymbol{F}_{\Diamond \mathbf{p}}(\boldsymbol{U}_{\mathbf{p}})}{\partial \boldsymbol{U}_{\mathbf{p}}} \Delta \boldsymbol{U}_{\mathbf{p}} = \bigwedge_{\mathbf{p}=1}^{N_{\mathrm{RP}}} \boldsymbol{K}_{\mathrm{T} \Diamond \mathbf{p}}(\boldsymbol{U}_{\mathbf{p}}) \Delta \boldsymbol{U}_{\mathbf{p}}$$
$$= \left[\bigwedge_{\mathbf{p}=1}^{N_{\mathrm{P}}} \boldsymbol{K}_{\mathrm{T} \Diamond \mathbf{p}}(\boldsymbol{U}_{\mathbf{p}})\right] \Delta \boldsymbol{U} = \boldsymbol{K}_{\mathrm{T} \Diamond}(\boldsymbol{U}) \Delta \boldsymbol{U} \quad . \tag{6.99}$$

Zur Berechnung der globalen Tangente $K_{T\Diamond}$ werden für jeden Randintegrationspunkt die Tangenten $K_{T\Diamond p}$ berechnet und assembliert:

$$\boldsymbol{K}_{\mathrm{T}\Diamond}(\boldsymbol{U}) = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{RP}}} \frac{\partial \boldsymbol{F}_{\Diamond\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}})}{\partial\,\boldsymbol{U}_{\mathsf{p}}} = \bigwedge_{\mathsf{p}=1}^{\mathsf{N}_{\mathrm{P}}} \boldsymbol{K}_{\mathrm{T}\Diamond\,\mathsf{p}}(\boldsymbol{U}_{\mathsf{p}})$$
(6.100)

Mit (4.31) und (6.67) ergibt sich für den Beitrag eines Randintegrationspunktes zur
globalen Tangente der Randbedingungsstrafkräfte:

$$\boldsymbol{K}_{\mathrm{T\,rnd\,p}} = \frac{\partial \boldsymbol{F}_{\mathrm{rnd\,p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} = \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \frac{\partial \boldsymbol{f}_{\mathrm{rnd\,p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} = \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \frac{\partial \boldsymbol{f}_{\mathrm{rnd\,p}}}{\partial g_{\mathrm{p}}} \frac{\partial g_{\mathrm{p}}}{\partial u_{\mathrm{p}}} \frac{\partial u_{\mathrm{p}}}{\partial \boldsymbol{U}_{\mathrm{p}}}$$

$$= -\alpha \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{n}_{\mathrm{p}} \boldsymbol{n}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{L}_{\mathrm{p}}$$

$$(6.101)$$

Entsprechend wird mit (4.33) und (6.68) der Beitrag eines Randintegrationspunktes zur globalen Tangente der Kontaktstrafkräfte berechnet:

$$\boldsymbol{K}_{\mathrm{T\,kon\,p}} = \frac{\partial \boldsymbol{F}_{\mathrm{kon\,p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} = \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \frac{\partial \boldsymbol{f}_{\mathrm{kon\,p}}}{\partial \boldsymbol{U}_{\mathrm{p}}} = \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \frac{\partial \boldsymbol{f}_{\mathrm{kon\,p}}}{\partial g_{\mathrm{p}}} \frac{\partial g_{\mathrm{p}}}{\partial \boldsymbol{u}_{\mathrm{p}}} \frac{\partial \boldsymbol{u}_{\mathrm{p}}}{\partial \boldsymbol{U}_{\mathrm{p}}}$$
$$= \begin{cases} -\alpha \boldsymbol{L}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{n}_{\mathrm{p}} \boldsymbol{n}_{\mathrm{p}}^{\mathrm{T}} \boldsymbol{L}_{\mathrm{p}} & \text{für } g < 0 \\ \boldsymbol{0} & \text{für } g \ge 0 \end{cases}$$
(6.102)

Damit sind alle Bestandteile der globalen Steifigkeitsmatrix nach (6.91) berechnet. Die Linearisierung der Material- und Bilanzgleichungen ist abgeschlossen.

6.5.3 Erweiterung auf große Verformungen

Der größte Nachteil des Deformators als vollständig linearisiertes Verzerrungsmaß ist die fehlende Rotationsinvarianz: Wird ein Körper um endliche Winkel gedreht, so ändert er dabei infolge der Drehung sein Volumen. Wird die Volumenänderung behindert, so entstehen durch die Drehung Spannungen.

Liegen Probleme mit finiten Rotationen aber kleinen Verzerrungen vor, reicht es den Deformator durch ein rotationsinvariantes Verzerrungsmaß zu ersetzen. Die Materialgesetze können beibehalten werden, solange die Verzerrungen hinreichend klein bleiben.

Wenn man bei einer total Lagrangeschen Betrachtungsweise bleibt (d. h. wenn die Linearisierung der schwachen Form in der Ausgangskonfiguration erfolgt), ist der Deformator durch den Green-Lagrangeschen Verzerrungstensor zu ersetzen. Die **B**-Matrizen sind entsprechend anzupassen. Bei der Berechnung der tangentialen Steifigkeitsmatrix ist zusätzlich der Term der geometrischen Matrix bzw. Anfangsspannungsmatrix zu berücksichtigen (siehe z.B. WRIGGERS (2001)).

Kapitel 7

Algorithmen

In diesem Kapitel werden die verwendeten Algorithmen in knapper Form angegeben. Ausführliche Darstellungen der mathematischer Sachverhalte finden sich in der Literatur zur Numerischen Mathematik (z.B. in VOSS (2001) oder SZYLER (1997)). ENGELN-MÜLLGES & UHLIG (1996) und PRESS (2002) bieten zusätzlich Hinweise zur numerischen Umsetzung und in C bzw. C++ implementierte mathematische Bibliotheken.

7.1 Lösung linearer Gleichungssysteme und linearer Ausgleichsprobleme

Lineare Gleichungssysteme

$$\begin{array}{c} \boldsymbol{A} \quad \boldsymbol{x} = \boldsymbol{b} \\ {}_{\langle \mathsf{M} \times \mathsf{N} \rangle} \quad \langle \mathsf{N} \rangle \quad \langle \mathsf{N} \rangle \end{array} \tag{7.1}$$

sind nur für den Sonderfall einer quadratischen (M = N) und regulären (Rang(A)=N) Koeffizientenmatrix A lösbar. Im allgemeinen Fall ist stattdessen das dazugehörige Ausgleichsproblem

$$\| \underset{\scriptscriptstyle \langle \mathsf{M}\times\mathsf{N}\rangle}{\boldsymbol{A}} \boldsymbol{x} - \boldsymbol{b} \| \stackrel{!}{=} \min$$
(7.2)

zu lösen.

7.1.1 Lösung linearer Gleichungssysteme mit quadratischer und regulärer Koeffizientenmatrix

Zur Lösung linearer Gleichungssysteme mit quadratischer und regulärer Koeffizientenmatrix werden in der Regel Standardverfahren wie z.B der *Gauß-Algorithmus* oder die *Cholesky-Zerlegung* verwendet. Der numerische Aufwand beider Verfahren ist vergleichbar. Rechenzeit und Speicherbedarf lassen sich reduzieren, wenn die Koeffizientenmatrix besondere Eigenschaften hat und daher spezialisierte Löser eingetzt werden können. Sind Gleichungssysteme sehr groß, so werden diese aus numerischen Gründen meist iterativ gelöst. Eine ausführliche Diskussion verschiedener Löser findet sich in PRESS (2002).

7.1.2 Lösung linearer Ausgleichsprobleme

Ist \mathcal{L} die Lösungsmenge des Ausgleichsproblems (7.2), so heißt $\tilde{x} \in \mathcal{L}$ Pseudonormallösung des Ausgleichsproblems, falls $\|\tilde{x}\| \leq \|x\|$ für alle $x \in \mathcal{L}$.

Es gibt genau eine Pseudonormallösung.

Die Matrix A^{\dagger} für die durch

$$\boldsymbol{x}_{\mathsf{N}\rangle} = \boldsymbol{A}^{\dagger}_{\langle\mathsf{N}\times\mathsf{M}\rangle} \boldsymbol{b} \tag{7.3}$$

für alle b die Pseudonormallösung des Ausgleichsproblems gegeben ist, heißt Pseudoinverse von A.

Die Lösung des Ausgleichsproblems (7.2) mit Hilfe einer Pseudoinvertierung ist mathematisch gleichwertig mit der Anwendung der *Methode der kleinsten Quadrate* (*Least Squares Method*).

Alternativ kann die Pseudoinverse auch über die *Moore-Penrose-Bedingungen* definiert werden:

$$\boldsymbol{A} \, \boldsymbol{A}^{\dagger} = \begin{bmatrix} \boldsymbol{A} \, \boldsymbol{A}^{\dagger} \end{bmatrix}^{\mathrm{T}} \tag{7.4}$$

$$\boldsymbol{A}^{\dagger} \boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}^{\dagger} \boldsymbol{A} \end{bmatrix}^{\mathrm{T}}$$
(7.5)

$$\boldsymbol{A} \boldsymbol{A}^{\dagger} \boldsymbol{A} = \boldsymbol{A} \tag{7.6}$$

$$\boldsymbol{A}^{\dagger} \boldsymbol{A} \boldsymbol{A}^{\dagger} = \boldsymbol{A}^{\dagger} \tag{7.7}$$

Die Pseudoinverse hat die Eigenschaften

$$\begin{bmatrix} \mathbf{A}^{\dagger} \end{bmatrix}^{\dagger} = \mathbf{A} \tag{7.8}$$

$$\left[\boldsymbol{A}^{\dagger}\right]^{\mathrm{T}} = \left[\boldsymbol{A}^{\mathrm{T}}\right]^{\dagger} \quad , \tag{7.9}$$

aber im Allgemeinen ist

$$\left[\boldsymbol{A} \; \boldsymbol{B}\right]^{\dagger} \neq \boldsymbol{B}^{\dagger} \; \boldsymbol{A}^{\dagger} \quad . \tag{7.10}$$

Für den Fall einer regulären quadratischen Matrix \boldsymbol{A} stimmt die Pseudoinverse mit der Inversen überein ($\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{-1}$). Die Pseudoinverse kann daher als Verallgemeinerung der Inversen angesehen werden.

Bei der Bestimmung der Pseudoinversen ist es sinnvoll hinsichtlich der Dimensionen und des Ranges der Matrix A drei Fälle zu unterscheiden:

1. M = N, Rang(A) = N: Ist die Matrix A quadratisch und regulär, so stimmt ihre Pseudoinverse mit ihrer Inversen überein:

$$\mathbf{A}^{\dagger}_{(\mathsf{N}\times\mathsf{N})} = \mathbf{A}^{-1}_{(\mathsf{N}\times\mathsf{N})} \tag{7.11}$$

2. M > N, $Rang(\mathbf{A}) = N$: Die Beziehung (7.1) wird von links mit \mathbf{A}^{T} multipliziert:

$$\mathbf{A}_{(\mathsf{N}\times\mathsf{M})}^{\mathrm{T}}\mathbf{A}_{(\mathsf{M}\times\mathsf{N})}\mathbf{x} = \mathbf{A}_{(\mathsf{N}\times\mathsf{M})}^{\mathrm{T}}\mathbf{b}$$
(7.12)

Da A den Rang N hat, hat auch die quadratische Matrix $A^{T} A$ den Rang N, ist regulär und lässt sich invertieren. Damit kann (7.12) nach x aufgelöst werden:

$$\boldsymbol{x}_{(N)} = \left[\boldsymbol{A}_{(N\times N)}^{\mathrm{T}}\boldsymbol{A}\right]^{-1} \boldsymbol{A}_{(N\times M)}^{\mathrm{T}} \boldsymbol{b}$$
(7.13)

Wird (7.13) mit der Definition der Pseudoinversen (7.3) verglichen, so ergibt sich für die Pseudoinverse von A:

$$\mathbf{A}^{\dagger}_{\langle \mathsf{N}\times\mathsf{M}\rangle} = \left[\mathbf{A}^{\mathrm{T}}_{\langle \mathsf{N}\times\mathsf{N}\rangle}\mathbf{A}\right]^{-1} \mathbf{A}^{\mathrm{T}}_{\langle \mathsf{N}\times\mathsf{M}\rangle}$$
(7.14)

3. M und N beliebig, $\operatorname{Rang}(A)$ beliebig :

Die Bestimmung der Pseudoinversen oder ggfs. die numerische Bestimmung der effektiven Pseudoinversen über eine Singulärwertzerlegung sind stets möglich. Die Singulärwertzerlegung wird im Abschnitt 7.1.3 beschrieben.

7.1.3 Singulärwertzerlegung

Eine ausführliche Herleitung der Singulärwertzerlegung findet sich in Voss (2001). Berechnungsverfahren werden in PRESS (2002) beschrieben. An dieser Stelle werden nur kurz die Eigenschaften der Singulärwertzerlegung und der Zusammenhang zur Pseudoinvertierung dargestellt.

Jede Matrix A lässt sich in zwei orthogonale Matrizen U und V und eine Diagonalmatrix S zerlegen:

$$\begin{array}{l}
\boldsymbol{A}_{\langle \mathsf{M}\times\mathsf{N}\rangle} = \boldsymbol{U} \quad \boldsymbol{S} \quad \boldsymbol{V}^{\mathrm{T}} \\
\boldsymbol{W}_{\langle \mathsf{M}\times\mathsf{N}\rangle} \quad \boldsymbol{W}_{\langle \mathsf{M}\times\mathsf{M}\rangle} = \boldsymbol{1} \\
\boldsymbol{W}_{\langle \mathsf{M}\times\mathsf{M}\rangle} \quad \boldsymbol{W}_{\langle \mathsf{M}\times\mathsf{M}\rangle} = \boldsymbol{1} \\
\boldsymbol{V} \quad \boldsymbol{V} \quad \boldsymbol{V}^{\mathrm{T}} = \boldsymbol{1} \\
\boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} \quad \boldsymbol{V}^{\mathrm{T}} = \boldsymbol{1} \\
\boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} \quad \boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} \quad \boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} = \boldsymbol{1} \\
\boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} \quad \boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} = \boldsymbol{1} \\
\boldsymbol{V}_{\langle \mathsf{N}\times\mathsf{N}\rangle} \quad \boldsymbol{V$$

Die Werte auf der Diagonalen der Matrix S werden als Singulärwerte bezeichnet. Ist A symmetrisch, so stimmen die Singulärwerte s_i mit den Eigenwerten λ_i überein. Andernfalls gilt:

$$s_{i}(\boldsymbol{A}) = \sqrt{\lambda_{i}(\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}})}$$
 (7.16)

D.h. die Singulärwerte von A sind gleich der Quadratwurzel aus den Eigenwerten von $A A^{T}$. Nach erfolgter Singulärwertzerlegung lässt sich die Pseudoinverse einfach berechnen:

$$\begin{array}{l}
\boldsymbol{A}^{\dagger}_{\langle \mathsf{N}\times\mathsf{M}\rangle} = \boldsymbol{V} \quad \boldsymbol{S}^{\dagger}_{\langle \mathsf{N}\times\mathsf{M}\rangle} \quad \boldsymbol{U}^{\mathrm{T}}_{\langle \mathsf{M}\times\mathsf{M}\rangle} \\
\left[\boldsymbol{S}^{\dagger}_{\langle \mathsf{N}\times\mathsf{M}\rangle}\right]_{ij} = \begin{cases} s_{i}^{-1} \quad \text{für} \quad i=j \quad \text{und} \quad s_{i} > 0 \\
0 \quad \text{ansonsten} \end{cases}$$
(7.17)

Sehr kleine Singulärwerte kennzeichnen eine schlecht konditionierte Matrix A. Die Matrixkondition wird verbessert, wenn Singulärwerte, die eine Grenze ε unterschreiten unterdrückt werden. ε ist eine von der Rechnergenauigkeit abhängige kleine Zahl.

Die effektive Pseudoinverse wird dann mit

$$\boldsymbol{A}_{(N \times M)}^{\dagger(\text{eff})} = \boldsymbol{V} \boldsymbol{S}_{(N \times M)}^{\dagger(\text{eff})} \boldsymbol{U}^{\mathrm{T}} \\
\overset{(N \times M)}{\underset{(N \times M)}{\overset{(N \times M)}{\overset{(N \times M)}{\overset{(N \times M)}{\overset{(N \times M)}{\overset{(M \times M)}$$

erhalten.

7.1.4 Matrixkondition

Besteht die Gefahr, dass eine zu invertierende Matrix schlecht konditioniert ist, so sollte die Güte des Ergebnisses der Inversion überprüft werden.

Die Kondition einer Matrix A wird als das Produkt der (quadratischen) Normen der Matrix und ihrer Inversen definiert:

$$\kappa(\boldsymbol{A}) = \|\boldsymbol{A}^{-1}\| \|\boldsymbol{A}\| \tag{7.19}$$

Dann kann der Verlust an Rechengenauigkeit näherungsweise wie folgt abgeschätzt werden (Voss (2001)):

$$\kappa(\mathbf{A}) = 10^{\gamma} \quad \leftrightarrow \quad \gamma = \log_{10}(\kappa(\mathbf{A}))$$
(7.20)

 γ gibt den Verlust an geltenden Ziffern an. Wird z.B. mit doppelter Genauigkeit (d.h. auf üblichen Rechnern mit 15 gültigen Ziffern) gerechnet und verlangt, dass das Ergebnis auf 6 Stellen genau ist, so darf die Konditionszahl κ höchstens $10^{\gamma} = 10^{15-6} = 10^9$ betragen.

7.2 Iterative Lösung nichtlinearer Gleichungssysteme

Nichtlineare Gleichungssysteme können stets in die Residualform

$$r(\mathbf{x}) = \mathbf{0} \tag{7.21}$$

gebracht werden. Gesucht wird eine Lösung (oder ggfs. Pseudonormallösung) \boldsymbol{x} des Gleichungssystems in der Nähe eines Startwertes $\boldsymbol{x}_{\text{Start}}$ Die Lösung wird im Allgemeinen iterativ bestimmt.

7.2.1 Newton-Raphson-Verfahren

Es wird beschränkt auf nichtlineare Gleichungssysteme, die ebenso viele Gleichungen wie Unbekannte haben (M = N):

$$\boldsymbol{r}_{(N)}(\boldsymbol{x}_{(N)}) = \boldsymbol{0}_{(N)}$$
(7.22)

 $\boldsymbol{x}^{\mathsf{k}}$ sei ein Vektor, der das Gleichungssystem (7.22) nicht hinreichend erfüllt:

$$\|\boldsymbol{r}(\boldsymbol{x}^{\mathsf{k}})\| \notin \varepsilon \tag{7.23}$$

 ε ist die Abbruchschranke des Iterationsverfahrens. Von einem verbesserten Lösungsvektor

$$\boldsymbol{x}^{\mathsf{k}+1} = \boldsymbol{x}^{\mathsf{k}} + \Delta \, \boldsymbol{x}^{\mathsf{k}+1} \tag{7.24}$$

wird die Erfüllung von (7.22) verlangt:

$$\boldsymbol{r}(\boldsymbol{x}^{\mathsf{k}+1}) \stackrel{!}{=} \boldsymbol{0} \tag{7.25}$$

 $r(x^{k+1})$ wird durch eine nach dem ersten Glied abgebrochene Tylorreihenentwicklung um die Stelle x^k angenähert:

$$\boldsymbol{r}(\boldsymbol{x}^{k+1}) = \boldsymbol{r}(\boldsymbol{x}^{k} + \Delta \boldsymbol{x}^{k+1})$$

= $\boldsymbol{r}(\boldsymbol{x}^{k}) + \frac{\partial \boldsymbol{r}(\boldsymbol{x})}{\partial \boldsymbol{x}} \Big|_{\boldsymbol{x}^{k}} \Delta \boldsymbol{x}^{k+1} + \text{Restglied}(\mathcal{O}^{2})$ (7.26)
 $\approx \boldsymbol{r}(\boldsymbol{x}^{k}) + \frac{\partial \boldsymbol{r}(\boldsymbol{x})}{\partial \boldsymbol{x}} \Big|_{\boldsymbol{x}^{k}} \Delta \boldsymbol{x}^{k+1}$

Aus der vorstehenden Beziehung und der Forderung (7.25) ergibt sich für die Verbesserung des Lösungsvektors:

$$\Delta \boldsymbol{x}^{\mathsf{k}+1} = -\left[\left.\frac{\partial \boldsymbol{r}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right|_{\boldsymbol{x}^{\mathsf{k}}}\right]^{-1} \boldsymbol{r}(\boldsymbol{x}^{\mathsf{k}}) = -\boldsymbol{K}^{-1}(\boldsymbol{x}^{\mathsf{k}}) \boldsymbol{r}(\boldsymbol{x}^{\mathsf{k}})$$
(7.27)

Damit kann das Newton-Raphson-Verfahren zusammengestellt werden.

0 Der erste Iterationschritt (Iterationsschrittindex k=0) wird mit der Zuweisung eines Startwert begonnen:

$$\boldsymbol{x}^{0} = \boldsymbol{x}_{\text{Start}} \tag{7.28}$$

② Der Unbekanntenvektor wird gemäß

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^{k} - \boldsymbol{K}^{-1}(\boldsymbol{x}^{k}) \boldsymbol{r}(\boldsymbol{x}^{k}) \quad , \quad \boldsymbol{K}(\boldsymbol{x}^{k}) = \left. \frac{\partial \boldsymbol{r}(\boldsymbol{x})}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x}^{k}}$$
(7.29)

verbessert.

③ Ist das Abbruchkriterium

$$\|\boldsymbol{r}(\boldsymbol{x}^{k+1})\| < \varepsilon \tag{7.30}$$

erfüllt, so wird die Iteration beendet, andernfalls wird der Iterationsindex inkrementiert und die Iteration bei ^② fortgesetzt.

In der Nähe der Lösung \boldsymbol{x} weist das Newton-Raphson-Verfahren eine quadratische Konvergenz auf:

$$\|\boldsymbol{x}^{\mathsf{k}+1} - \boldsymbol{x}\| \leqslant \|\boldsymbol{x}^{\mathsf{k}} - \boldsymbol{x}\|^2 \tag{7.31}$$

7.2.2 Modifiziertes Newton-Raphson-Verfahren

Bei großen Systemen ist die Berechnung und Inversion der Tangente aufwändig. Um den Rechenaufwand zu reduzieren kann die Tangente für mehrere Iterationsschritte konstant gehalten werden. Das Verfahren konvergiert in der Nähe der Lösung dann allerdings nicht mehr quadratisch.

7.2.3 Gauß-Newton-Verfahren

Werden nichtlineare Gleichungssysteme betrachtet, bei denen die Anzahl der Gleichungen die Anzahl der Unbekannten übersteigt (M > N), so kann, wenn wie beim Newton-Raphson-Verfahren vorgegangen wird, die Tangente nicht invertiert werden, da sie nicht quadratisch ist. Wird die Invertierung durch eine Pseudoinvertierung (siehe Abschnitt 7.1.2) ersetzt, so erhält man das *Gauß-Newton-Verfahren*. Hierbei wird durch die Newton-Iteration das nichtlineare Ausgleichsproblem in eine Folge linearer Ausgleichprobleme zerlegt, die mittels der *Methode der kleinsten Quadrate* gelöst werden.

7.2.4 Diskretisiertes Newton-Verfahren

Die analytische Berechnung der Tangente K(x) ist unter Umständen aufwändig und fehleranfällig. Ersatzweise oder zur Kontrolle kann die Tangente auch numerisch

berechnet werden. Hierzu sind nur Auswertungen des Residualvektors notwendig (der Iterationsindex k wird hier zur Vereinfachung fortgelassen):

$$\left[\boldsymbol{K}_{\text{num}}\right]_{ij} = K_{\text{num}\,ij} = \frac{\partial r_{i}}{\partial x_{j}} \approx \frac{r_{i}(x_{1}, \dots, x_{j} + \Delta x_{j}, \dots, x_{N},) - r_{i}(x_{1}, \dots, x_{N},)}{\Delta x_{j}} \quad (7.32)$$

Die Größen Δx_j sind hinreichend klein zu wählen, um eine gute Näherung für die analytische Tangente zu erhalten, und hinreichend groß, um eine numerische Ungenauigkeit durch die Division zweier zu kleiner Zahlen zu vermeiden. In WRIGGERS (2001) wird die Abschätzung

$$\Delta x_{j} = \nu [||x_{j}|| + \tau] \quad \text{mit} \quad \nu = 10^{-3} \cdots 10^{-5} > \sqrt{\eta} \quad \text{und} \quad \tau = 10^{-3}$$
(7.33)

vorgeschlagen, wobei η die Computergenauigkeit ist.

7.3 Zeitschrittverfahren

Eine ausführliche Darstellung von Zeitschrittverfahren findet sich in WOOD (1990).

7.3.1 Zeitschrittverfahren erster Ordnung

Die allgemeine Form eines Zeitschrittverfahrens erster Ordnung, die das explizite und implizite Euler-Verfahren und die Mittelpunktsregel umfaßt gewinnt man, wenn das Differentialgleichungssystem

$$\dot{\mathbf{x}}_{(N)} = \mathbf{f}_{(N)}(\mathbf{x}) \tag{7.34}$$

zum Zeitpunkt

$$t_{\mathsf{n}+\Theta} = \begin{bmatrix} 1 - \Theta \end{bmatrix} t_{\mathsf{n}} + \Theta t_{\mathsf{n}+1} = t_{\mathsf{n}} + \Theta \begin{bmatrix} t_{\mathsf{n}+1} - t_{\mathsf{n}} \end{bmatrix} \quad \text{mit} \quad 0 \leqslant \Theta \leqslant 1 \tag{7.35}$$

ausgewertet wird

$$\dot{\boldsymbol{x}}_{\mathsf{n}+\Theta} = \boldsymbol{f}(\boldsymbol{x}_{\mathsf{n}+\Theta}) \quad , \tag{7.36}$$

 $x_{\mathsf{n}+\Theta}$ durch einen gewichteteten Wert

$$\boldsymbol{x}_{\mathsf{n}+\Theta} \approx [1-\Theta] \; \boldsymbol{x}_{\mathsf{n}} + \Theta \; \boldsymbol{x}_{\mathsf{n}+1}$$
 (7.37)

und $\dot{x}_{n+\Theta}$ durch einen Differenzenquotienten

$$\dot{\boldsymbol{x}}_{\mathsf{n}+\Theta} \approx \frac{\boldsymbol{x}_{\mathsf{n}+1} - \boldsymbol{x}_{\mathsf{n}}}{\Delta t}$$
(7.38)

ersetzt werden.

$$\frac{\boldsymbol{x}_{\mathsf{n}+1} - \boldsymbol{x}_{\mathsf{n}}}{\Delta t} = \boldsymbol{f}([1 - \Theta] \ \boldsymbol{x}_{\mathsf{n}} + \Theta \ \boldsymbol{x}_{\mathsf{n}+1})$$
(7.39)

$$\rightarrow \quad \boldsymbol{x}_{n+1} = \boldsymbol{x}_n + \Delta t \, \boldsymbol{f}([1 - \Theta] \, \boldsymbol{x}_n + \Theta \, \boldsymbol{x}_{n+1}) \tag{7.40}$$

Mit $\Theta = 0$ wird das Euler-Vorwärts-Verfahren, mit $\Theta = \frac{1}{2}$ die Mittelpunktsregel und mit $\Theta = 1$ wird das das Euler-Rückwärts-Verfahren erhalten. Das Euler-Vorwärts-Verfahren ist ein explizites Zeitschrittverfahren, da nach dem Unbekanntenvektor \boldsymbol{x}_{n+1} aufgelöst werden kann; die übrigen Verfahren sind implizite Zeitschrittverfahren.

7.3.2 Zeitschrittverfahren zweiter Ordnung

Das Standardverfahren zur zeitlichen Diskretisierung von Differentialgleichungssystemen zweiter Ordnung in der Zeit sind das *Newmark-Verfahren* (NEWMARK (1959)) oder Modifikationen dieses Verfahrens (z.B. WOOD (1981), KUHL (1996), DETTMER & PERIC (2003)).

Das Differentialgleichungssystem

$$\boldsymbol{g}\left(\ddot{\boldsymbol{x}}, \dot{\boldsymbol{x}}, \boldsymbol{x}, \boldsymbol{x}\right) = \boldsymbol{0}$$

$$(7.41)$$

wird für den Zeitpunkt t_{n+1} ausgewertet:

$$g(\ddot{x}_{n+1}, \dot{x}_{n+1}, x_{n+1}) = 0$$
 (7.42)

Werden in (7.42) die Vektoren \boldsymbol{x}_{n+1} und $\dot{\boldsymbol{x}}_{n+1}$ gemäß

$$\boldsymbol{x}_{\mathsf{n}+1} \approx \boldsymbol{x}_{\mathsf{n}} + \Delta t \, \dot{\boldsymbol{x}}_{\mathsf{n}} + \frac{[\Delta t]^2}{2} \left[\left[1 - 2 \, \beta \right] \, \ddot{\boldsymbol{x}}_{\mathsf{n}} + 2 \, \beta \, \ddot{\boldsymbol{x}}_{\mathsf{n}+1} \right] \tag{7.43}$$

$$\dot{\boldsymbol{x}}_{\mathsf{n}+1} \approx \dot{\boldsymbol{x}}_{\mathsf{n}} + \Delta t \left[\left[1 - \gamma \right] \, \ddot{\boldsymbol{x}}_{\mathsf{n}} + \gamma \, \ddot{\boldsymbol{x}}_{\mathsf{n}+1} \right] \tag{7.44}$$

ersetzt, so verbleiben die Komponenten des Vektors \ddot{x}_{n+1} als primäre Unbekannte.

$$\hat{\boldsymbol{g}}(\ddot{\boldsymbol{x}}_{\mathsf{n}+1}) = \boldsymbol{0} \tag{7.45}$$

Das Gleichungssystem (7.45) ist im Allgemeinen nichtlinear und muss daher iterativ gelöst werden (siehe Abschnitt 7.2).

Die Wahl der Parameter β und γ beeinflusst die Genauigkeit und die Stabilität des

Verfahrens. Sie sind innerhalb der Grenzen

$$0 \leqslant \beta \leqslant \frac{1}{2}$$
 und $0 \leqslant \gamma \leqslant 1$ (7.46)

festzulegen (BATHE (2002)). Newmark hat als unbedingt stabiles Integrationsschema mit der Fehlerordnung $\mathcal{O}(\Delta t^2)$ die Methode der konstanten mittleren Beschleunigung (Trapezregel) vorgeschlagen, die mit $\beta = \frac{1}{4}$ und $\gamma = \frac{1}{2}$ erhalten wird. Das Verfahren der zentralen Differenzen wird mit $\beta = 0$ und $\gamma = \frac{1}{2}$ erhalten. Es hat die gleiche Fehlerordnung, ist aber nicht unbedingt stabil.

Werden Probleme aus dem Bereich der Festkörpermechanik behandelt, so liegen meist Anfangs- und Randbedingungen für Verschiebungen vor und es werden Verschiebungsfelder gesucht. Es ist daher vorteilhaft, das nichtlineare Gleichungssystem für Verschiebungen und nicht für deren zweite zeitliche Ableitungen aufzustellen. Hierfür werden die Gleichungen (7.43 und 7.44) unter Verwendung der Abkürzungen

$$\alpha_{1} = \frac{1}{\beta [\Delta t]^{2}} \qquad \alpha_{2} = \frac{1}{\beta \Delta t} \qquad \alpha_{3} = \frac{1 - 2\beta}{2\beta}$$
$$\alpha_{4} = \frac{\gamma}{\beta \Delta t} \qquad \alpha_{5} = 1 - \frac{\gamma}{\beta} \qquad \alpha_{6} = \left[1 - \frac{\gamma}{2\beta}\right] \Delta t \qquad (7.47)$$

nach \ddot{x}_{n+1} und \dot{x}_{n+1} umgestellt

$$\ddot{\boldsymbol{x}}_{\mathsf{n}+1} \approx \alpha_1 \left[\boldsymbol{x}_{\mathsf{n}+1} - \boldsymbol{x}_{\mathsf{n}} \right] - \alpha_2 \, \dot{\boldsymbol{x}}_{\mathsf{n}} - \alpha_3 \, \ddot{\boldsymbol{x}}_{\mathsf{n}} \tag{7.48}$$

$$\dot{\boldsymbol{x}}_{\mathsf{n}+1} \approx \alpha_4 \, \left[\boldsymbol{x}_{\mathsf{n}+1} - \boldsymbol{x}_{\mathsf{n}} \right] + \alpha_5 \, \dot{\boldsymbol{x}}_{\mathsf{n}} + \alpha_6 \, \ddot{\boldsymbol{x}}_{\mathsf{n}} \tag{7.49}$$

und in (7.42) eingesetzt (BATHE (2002)). Das Ergebnis ist ein nichtlineares Gleichungssystem für die Unbekannten \boldsymbol{x}_{n+1} .

$$\tilde{\boldsymbol{g}}(\boldsymbol{x}_{\mathsf{n}+1}) = \boldsymbol{0} \tag{7.50}$$

7.4 Zeitschrittsteuerung

Zur zeitlichen Diskretisierung werden die in Abschnitt 7.3 beschriebenen Zeitschrittverfahren eingesetzt. Die Zeitschrittlänge sollte dergestalt gewählt werden, dass einerseits das Lösungsverfahren konvergiert und die zeitliche Auflösung und die Genauigkeit der Ergebnisse hinreichend hoch sind und andererseits der Rechenaufwand erträglich bleibt. Abschätzungsformeln zur Wahl einer sinnvollen Zeitschrittlänge finden sich in der FE-Literatur (z.B. in BATHE (2002)). Möglichkeiten zu Fehleranalysen im Rahmen numerischer Berechnungsverfahren werden in GORN (1954) und speziell im Rahmen der Finite-Elemente-Methode in WOOD (1990) dargestellt. Das bekannte implizite FE-Programm ABAQUS/Standard nutzt ein auf HIBBITT (1979) zurückgehendes Konzept mit der Bezeichnung Half-Step Residual Control. Durch Verfolgung des Residuums der Bilanzgleichungen für den Zeitpunkt $t_n + \Delta t/2$ nachdem die Lösung für $t_n + \Delta t$ bestimmt wurde, kann die Lösungsgenauigkeit abgeschätzt und der Zeitschritt angepasst werden.

Eine für eine Problemstellung sinnvoll abgeschätzte Zeitschrittlänge wird im Folgenden als *Grundzeitschrittlänge* bezeichnet.

Abbildung 7.1: Zeitschrittsteuerung, Zeitunterteilung

Ist für die Konvergenz des Verfahrens eine niedrigere Zeitschrittlänge erforderlich als für die zeitliche Auflösung der Ergebnisse, so ist es sinnvoll, die Ergebnisse nicht in jedem Zeitschritt auszugeben, da ansonsten unnötig große Datenmengen entstehen und Schreibvorgänge (wenn sie schlecht gepuffert sind) die Rechenzeit erhöhen können. Häufig werden Ergebnisse in Form von "Filmen" visualisiert. Hierfür sollte der zeitliche Abstand der Ausgaben konstant sein, da andernfalls ein Zeitlupeneffekt (bei verkleinertem Abstand) oder ein Zeitraffereffekt (bei vergrößertem Abstand) im Film aufträten. Für die Ausgabe der Daten wird ein ganzzahliges Vielfaches der Grundzeitschrittlänge festgelegt.

Im Laufe einer Berechnung kann es notwendig werden, die Zeitschrittlänge zu verkleinern, wenn Zeitschritte nicht erfolgreich abgeschlossen werden können. Ein nicht erfolgreicher Zeitschritt liegt vor, wenn es zu keiner oder zu nicht hinreichender (zu langsamer) Konvergenz in der Materialiteration oder in der Bilanziteration kommt oder wenn das Berechnungsergebnis nicht hinreichend genau ist. Ursachen hierfür können z.B. das Auftreten von Kontakt oder eine sprunghafte Materialantwort auf die Belastung sein.

Der verwendete Algorithmus zur automatischen Zeitschrittlängenanpassung erfüllt folgende Bedingungen:

- 1. Die Zeitschrittlänge wird verkleinert, wenn ein Zeitschritt nicht erfolgreich ist.
- 2. Die Zeitschrittlänge wird nach einem erfolgreichen Zeitschritt bis maximal zur Grundzeitschrittlänge vergrößert, sofern dies im Rahmen des Algorithmus zulässig ist.
- 3. Alle Zeitpunkte, die Vielfache der Grundzeitschrittlänge sind, werden abgedeckt.

Das Schema in Abbildung 7.1 veranschaulicht anhand eines Beispieles die zeitliche Diskretisierung.

Kapitel 8

Rechenregeln

8.1 Voigtsche Notation

Mit Hilfe der Voigtschen Notation können symmetrische Größen platzsparend abgespeichert und Rechenoperationen zwischen symmetrischen Größen ökonomischer ausgeführt werden. Dies wird erreicht, indem die symmetrischen Komponenten einer Größe nur einmal abgespeichert werden. ¹ Ein symmetrischer Tensor zweiter Stufe wird in einen Voigtschen Vektor und ein in den ersten beiden und letzten beiden Indizes symmetrischer Tensor vierter Stufe in einen Voigtschen Tensor zweiter Stufe umgewandelt. Das doppelte Skalarprodukt wird auf ein einfaches Skalarprodukt zwischen Objekten in Voigtscher Darstellung zurückgeführt.

Häufig findet man in der Literatur ein uneinheitliches Übersetzungsschema: Spannungsmaße werden anders übersetzt als Verzerrungsmaße, womit sich dann auch andere Rechenregeln für Spannungsmaße und Verzerrungsmaße ergeben.

In dieser Arbeit wird einem symmetrischen Übersetzungsschema der Vorzug gegeben. Eine ausführliche Darstellung findet sich in TROSTEL (1993). An dieser Stelle werden nur die Übersetzungsschemata für symmetrische Tensoren zweiter und vierter Stufe im dreidimensionalen Raum angegeben. Voigtsche Größen werden durch das hochgestellte Symbol "(·)" gekennzeichnet. Die Übersetzungsschemata für Größen im zweidimensionalen Raum ergeben sich, indem bei den ursprünglichen Größen alle mit einem Index "3" behafteten Komponenten und bei den übersetzten Größen alle mit den Indizes "5" und "6" behafteten Komponenten gestrichen werden.

¹Ein modernerer Ansatz ist die Nutzung einer geeigneter Matrixklasse. Der Matrixklasse werden bei der Konstruktion eines Objektes die Eigenschaften dieses Objektes (symmetrisch, antimetrisch, dünn besetzt, u.s.w.) übergeben. Es ist dann Aufgabe der Matrixklasse, dieses Objekt ökonomisch abzuspeichern und optimierte Rechenoperationen zwischen Objekten mit besonderen Eigenschaften zur Verfügung zu stellen.

Ein symmetrischer Tensor zweiter Stufe

$$\mathbf{A} = \sum_{i,j=1}^{3} A_{ij} \, \mathbf{e}_{i} \otimes \mathbf{e}_{j} \stackrel{\wedge}{=} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{12} & A_{22} & A_{23} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}_{\text{(bzgl. Basis } \mathbf{e}_{i})}$$
(8.1)

hat die Voigtsche Darstellung

$$\mathbf{A} = \sum_{i=1}^{6} \overset{\mathfrak{V}}{A_{i}} \overset{\mathfrak{V}}{\mathbf{e}_{i}} \stackrel{\wedge}{=} \begin{cases} \overset{\mathfrak{V}}{A_{1}} \\ \overset{\mathfrak{V}}{A_{2}} \\ \overset{\mathfrak{V}}{A_{3}} \\ \overset{\mathfrak{V}}{A_{4}} \\ \overset{\mathfrak{V}}{A_{5}} \\ \overset{\mathfrak{V}}{A_{5}} \\ \overset{\mathfrak{V}}{A_{6}} \end{cases} = \begin{cases} A_{11} \\ A_{22} \\ A_{33} \\ \sqrt{2} A_{12} \\ \sqrt{2} A_{23} \\ \sqrt{2} A_{13} \end{cases}$$
(8.2)

Die Voigtschen Basisvektoren $\stackrel{v}{\mathbf{e}_i}$ (mit i = 1, ..., 6) lassen sich durch die Basisdyaden $\mathbf{e}_i \otimes \mathbf{e}_j$ (mit i = 1, ..., 3 und j = 1, ..., 3) darstellen:

$$\overset{\mathfrak{V}}{\mathbf{e}_{1}} = \mathbf{e}_{1} \otimes \mathbf{e}_{1} \qquad \qquad \overset{\mathfrak{V}}{\mathbf{e}_{2}} = \mathbf{e}_{2} \otimes \mathbf{e}_{2} \qquad \qquad \overset{\mathfrak{V}}{\mathbf{e}_{3}} = \mathbf{e}_{3} \otimes \mathbf{e}_{3}$$
$$\overset{\mathfrak{V}}{\mathbf{e}_{4}} = \sqrt{2} \, \mathbf{e}_{1} \otimes \mathbf{e}_{2} \qquad \qquad \overset{\mathfrak{V}}{\mathbf{e}_{5}} = \sqrt{2} \, \mathbf{e}_{2} \otimes \mathbf{e}_{3} \qquad \qquad \overset{\mathfrak{V}}{\mathbf{e}_{6}} = \sqrt{2} \, \mathbf{e}_{1} \otimes \mathbf{e}_{3} \qquad (8.3)$$

Für einen in den ersten beiden und letzten beiden Indizes symmetrischen Tensor vierter Stufe

$\overset{(4)}{C} = $	$\sum^{3} C_{ijk}$	$_{cl} \mathbf{e}_{i} \otimes \mathbf{e}_{j}$	$\otimes e_k \otimes $	el						
i,j,k,l=1										
	C ₁₁₁₁	C_{1112}	C_{1113}	C ₁₂₁₁	C_{1212}	C_{1213}	C ₁₃₁₁	C_{1312}	C ₁₃₁₃]
	C_{1112}	C_{1122}	C_{1123}	C_{1212}	C_{1222}	C_{1223}	<i>C</i> ₁₃₁₂	C_{1322}	C_{1323}	
	<i>C</i> ₁₁₁₃	C_{1123}	C_{1133}	C1213	C_{1223}	C_{1233}	C1313	C_{1323}	C_{1333}	
	C_{1211}	C_{1212}	C_{1213}	C ₂₂₁₁	C_{2212}	C_{2213}	C ₂₃₁₁	C_{2312}	C_{2313}	
$\stackrel{\wedge}{=}$	C_{1212}	C_{1222}	C_{1223}	C ₂₂₁₂	C_{2222}	C_{2223}	C_{2312}	C_{2322}	C_{2323}	
	C ₁₂₁₃	C_{1223}	C_{1233}	C ₂₂₁₃	C ₂₂₂₃	C ₂₂₃₃	C ₂₃₁₃	C_{2323}	C ₂₃₃₃	
	C_{1311}	C_{1312}	C_{1313}	C ₂₃₁₁	C_{2312}	C_{2313}	C ₃₃₁₁	C_{3312}	C_{3313}	
	C_{1312}	C_{1322}	C_{1323}	C ₂₃₁₂	C_{2322}	C_{2323}	C ₃₃₁₂	C_{3322}	C_{3323}	
	C1313	C_{1323}	C_{1333}	C_{2313}	C_{2323}	C_{2333}	C ₃₃₁₃	C_{3323}	C3333	bzgl. Basis e _i)
										(8.4)

(auf der rechten Seite der vorstehenden Gleichung wurde eine Hypermatrixdarstellung gewählt) ergibt sich

$$\begin{split} \mathbf{\hat{C}}^{(4)} &= \sum_{i,j=1}^{6} \overset{w}{C}_{ij} \overset{w}{\mathbf{e}}_{i} \otimes \overset{w}{\mathbf{e}}_{j} \\ &= \begin{bmatrix} \overset{w}{C}_{11} \overset{w}{C}_{12} & \overset{w}{C}_{13} & \overset{w}{C}_{14} & \overset{w}{C}_{15} & \overset{w}{C}_{16} \\ \overset{w}{C}_{21} & \overset{w}{C}_{22} & \overset{w}{C}_{23} & \overset{w}{C}_{24} & \overset{w}{C}_{25} & \overset{w}{C}_{26} \\ \overset{w}{C}_{31} & \overset{w}{C}_{32} & \overset{w}{C}_{33} & \overset{w}{C}_{34} & \overset{w}{C}_{35} & \overset{w}{C}_{36} \\ \overset{w}{C}_{41} & \overset{w}{C}_{42} & \overset{w}{C}_{43} & \overset{w}{C}_{44} & \overset{w}{C}_{45} & \overset{w}{C}_{46} \\ \overset{w}{C}_{51} & \overset{w}{C}_{52} & \overset{w}{C}_{53} & \overset{w}{C}_{54} & \overset{w}{C}_{55} & \overset{w}{C}_{56} \\ \overset{w}{C}_{61} & \overset{w}{C}_{62} & \overset{w}{C}_{63} & \overset{w}{C}_{64} & \overset{w}{C}_{65} & \overset{w}{C}_{66} \end{bmatrix}_{(\text{bzgl. Basis} \overset{w}{\mathbf{e}}_{i})} \\ &= \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & \sqrt{2} C_{1112} & \sqrt{2} C_{1123} & \sqrt{2} C_{1113} \\ C_{2211} & C_{2222} & C_{2233} & \sqrt{2} C_{2212} & \sqrt{2} C_{2223} & \sqrt{2} C_{2213} \\ C_{3311} & C_{3322} & C_{3333} & \sqrt{2} C_{3312} & \sqrt{2} C_{3323} & \sqrt{2} C_{3313} \\ \sqrt{2} C_{1211} & \sqrt{2} C_{1222} & \sqrt{2} C_{1233} & 2 C_{1212} & 2 C_{1223} & 2 C_{1213} \\ \sqrt{2} C_{2311} & \sqrt{2} C_{2322} & \sqrt{2} C_{2333} & 2 C_{2212} & 2 C_{2323} & 2 C_{2313} \\ \sqrt{2} C_{1311} & \sqrt{2} C_{1322} & \sqrt{2} C_{1333} & 2 C_{1312} & 2 C_{1323} & 2 C_{1313} \\ \end{bmatrix}_{(\text{bzgl. Basis} \overset{w}{\mathbf{e}}_{i})} \\ \text{(bzgl. Basis} \overset{w}{\mathbf{e}}_{i}) \end{cases} \\ \end{aligned}$$

Dieser Voigtsche Tensor zweiter Stufe ist im Allgemeinen unsymmetrisch. Nur vollständig symmetrische Tensoren vierter Stufe (neben $C_{ijkl} = C_{ijlk}$ und $C_{ijkl} = C_{jikl}$ muss auch noch $C_{ijkl} = C_{klij}$ gelten) ergeben symmetrische Voigtsche Tensoren zweiter Stufe.

Es ergeben sich einfache Rechenregeln für die in die konsistente Voigtsche Notation übersetzten Größen, da eine doppelte Basisvektorüberschiebung der ursprünglichen Größen durch eine einfache Basisvektorüberschiebung der Voigtschen Größen ersetzt wird. Z.B. gilt für einen symmetrischen Tensor zweiter Stufe **A** und einen in den ersten beiden und den letzten beiden Indizes symmetrischen Tensor vierter Stufe **C**, wenn das einfache skalare Produkt zwischen Voigtschen Größen mit " \odot " symbolisiert wird

$$\|\mathbf{A}\| = \sqrt{\mathbf{A} \, : \, \mathbf{A}} = \sqrt{\overset{\mathfrak{V}}{\mathbf{A}} \, \odot \, \overset{\mathfrak{V}}{\mathbf{A}}}$$

und

$$\stackrel{\scriptscriptstyle{(4)}}{\mathbf{C}}: \mathbf{A} = \stackrel{\mathfrak{V}}{\mathbf{C}} \odot \stackrel{\mathfrak{V}}{\mathbf{A}}$$

8.2 Einheitensysteme

Das Programmsystem nimmt keine Einheitenumrechnungen vor. Alle Eingaben haben in zueinander passenden Einheiten zu erfolgen. Die Tabelle 8.1 gibt Hilfestellung, sofern von den SI-Grundeinheiten abgewichen werden soll.

Zeit	Länge	Masse	Kraft	Dichte	Beschleunigung	Spannung	
ms	mm	g	Ν	$\frac{\text{g}}{\text{mm}^3}$	$\frac{mm}{ms^2} = \frac{N}{g} = \frac{kN}{kg}$	$\frac{N}{mm^2} = \frac{MN}{m^2}$	
${ m ms}$	mm	kg	kN	$\frac{\mathrm{kg}}{\mathrm{mm}^3}$	$\frac{mm}{ms^2} = \frac{kN}{kg}$	$\frac{kN}{mm^2} = \frac{GN}{m^2}$	
ms	mm	t	MN	$\frac{t}{mm^3}$	$\frac{mm}{ms^2} = \frac{MN}{t} = \frac{kN}{kg}$	$\frac{MN}{mm^2} = \frac{TN}{m^2}$	
ms	m	g	kN	$\frac{g}{m^3}$	$\frac{m}{ms^2} = \frac{kN}{g} = \frac{MN}{kg}$	$\frac{\mathrm{kN}}{\mathrm{m}^2}$	
ms	m	kg	MN	$\frac{\mathrm{kg}}{\mathrm{m}^3}$	$\frac{m}{ms^2} = \frac{MN}{kg}$	$\frac{MN}{m^2}$	
${ m ms}$	m	t	GN	$\frac{t}{m^3}$	$\frac{m}{ms^2} = \frac{GN}{t} = \frac{MN}{kg}$	$\frac{GN}{m^2}$	
s	mm	g	μN	$\frac{\text{g}}{\text{mm}^3}$	$\frac{mm}{s^2} = \frac{\mu N}{g} = \frac{mN}{kg}$	$\frac{\mu N}{mm^2} = \frac{N}{m^2}$	
s	mm	kg	mN	$\frac{\mathrm{kg}}{\mathrm{mm}^3}$	$\frac{mm}{s^2} = \frac{mN}{kg}$	$\frac{mN}{mm^2} = \frac{kN}{m^2}$	
S	mm	t	Ν	$\frac{t}{mm^3}$	$\frac{mm}{s^2} = \frac{N}{t} = \frac{mN}{kg}$	$\frac{N}{mm^2} = \frac{MN}{m^2}$	
\mathbf{S}	m	g	mN	$\frac{g}{m^3}$	$\frac{m}{s^2} = \frac{mN}{g} = \frac{N}{kg}$	$\frac{\mathrm{mN}}{\mathrm{m}^2}$	
s	m	kg	Ν	$\frac{\mathrm{kg}}{\mathrm{m}^3}$	$\frac{m}{s^2} = \frac{N}{kg}$	$\frac{N}{m^2}$	
\mathbf{S}	m	t	kN	$\frac{t}{m^3}$	$\frac{m}{s^2} = \frac{kN}{t} = \frac{N}{kg}$	$\frac{\mathrm{kN}}{\mathrm{m}^2}$	

Tabelle 8.1: Einheitensysteme

Kapitel 9

Beispiele

Abbildung 9.1: Berechnungsbeispiele: (a) Quadratscheibe unter Teillast, (b) Extrusion, (c) Tiefziehen, (d) Aufprall

Anhand der folgenden numerischen Beispiele (siehe Abbildung 9.1) wird das Pro-

grammsystem überprüft. Außerdem wird die *Finite-Punkte-Methode* mit der *Finite-Elemente-Methode* verglichen.

Bei den Berechnungsbeispielen wird, sofern nichts anderes angegeben ist, ein ebener Verzerrungszustand angenommen. Alle Programmeingaben und Programmausgaben erfolgen in zueinander passenden Einheiten. Es wird entweder das [kg, m, s, N]-Einheitensystem oder das [t, mm, s, N]-Einheitensystem verwendet (siehe auch Tabelle 8.1).

Unter *http://www.schilling-berlin.de/diss.htm* stehen das mit dem Compiler *gcc 4.02* unter dem Betriebssystem *Suse Linux V10.0* (Kernel 2.6.13-158) übersetzte Programm und die Eingabedateien zu den Berechnungsbeispielen zum Herunterladen zur Verfügung.

9.2 Zeitmessungen

Bei der Gestaltung des Programmsystems wurde Übersichtlichkeit und Erweiterbarkeit ein höherer Stellenwert beigemessen als der Ausführungsgeschwindigkeit. Da absolute Rechenzeiten durch die eingsetzte Hardware und den Optimierungsgrad des Programmsystems bestimmt werden und ein schnellerer Rechner oder ein höherer Optimierungsgrad für einen schnelleren Berechnungsablauf aller Methoden sorgt, ist das Ziel der Zeitmessungen in erster Linie die Ermittlung von Rechenzeitverhältnissen. Die Ergebnisse der Zeitmessungen beider Methoden sind gut vergleichbar, da die Finite-Punkte-Methode und die Finite-Elemente-Methode größtenteils den selben Quellcode nutzen und die restlichen Quellcodeteile "im selben Stil " programmiert wurden.

Die Zeitmessungen wurden auf einem *IBM Thinkpad R52* (Typ 1846) mit 2 GB Hauptspeicher unter *Suse Linux V10.0* (Kernel 2.6.13-158) durchgeführt. Zeitmessungen und Berechnungen wurden über ein Shellscript gestartet. Um gegebenenfalls Messfehler erkennen zu können, wurden die Messreihen dreimal wiederholt.

9.3 Quadratscheibe unter Teillast

Abbildung 9.2: Beispiel Quadratscheibe unter Teillast, System

Die in der Abbildung 9.2 gezeigte quadratische Scheibe mit der Abmessung a = 2 maus linear elastischem Material (Elastizitätsmodul $E = 100 \text{ N/m}^2$ und Querkontraktionszahl $\nu \in \{0.400, 0.495, 0.499\}$) wird unter einer Teilstreckenlast (q = 50 N/m) inhomogen verformt. Ein ähnliches Modellproblem wird von FERNÁNDEZ-MÉNDEZ & HUERTA (2004) verwendet, um die Erzwingung wesentlicher Randbedingungen im Rahmen netzfreier Methoden mit unterschiedlichen Verfahren zu untersuchen.

Es wird keine Massenträgheit berücksichtigt, d. h. die Berechnung erfolgt quasistatisch. Da die Theorie kleiner Verformungen und linear elastisches Materialverhalten verwendet werden, sind die Bestimmungsgleichungen linear. Die Last kann daher in einem Schritt aufgebracht werden, und Konvergenz stellt sich innnerhalb eines Iterationsschrittes ein.

Anhand des ersten Berechnungsbeispieles werden die optimalen Wichtungsfunktionsausdehnungen für die MLS-Approximation (siehe Abschnitt 5.5.3) ermittelt und die Konvergenzeigenschaften der *Finite-Punkte-Methode* mit denen der *Finite-Elemente-Methode* verglichen.

Die Abbildung 9.3 zeigt eine mögliche Diskretisierung des Körpers mit finiten Punkten. Da der Körper regelmäßig berandet ist, ist es leicht möglich das Knotennetz so zu legen, dass Knoten genau auf der Berandung des Körpers liegen, womit die Verschiebungsrandbedingungen richtig vorgegeben werden können. Die Definitionsbereiche der Wichtungsfunktionen der Randknoten umfassen dann aber auch Bereiche, in denen sich kein Material befindet. Daher wird im Randbereich das Volumen

Abbildung 9.3: Diskretisierung mit finiten Punkten: (a) zu diskretisierender Körper, (b) regelmäßiges Knotennetz, (c) den Knoten zugeordnete quadratische Flächen, (d) flächengleiche Kreise mit Radius h_0 , (e) Wichtungsfunktionsbereiche mit $h = 2 h_0$, (f) Wichtungsfunktionsbereiche mit $h = 3.50 h_0$

des Körpers überschätzt, wenn für die Randknoten keine an den Randverlauf angepassten Wichtungsfunktionen definiert werden.

Wird umgekehrt das Knotennetz so gewählt, dass die Summe der den Knoten zugeordneten Volumina gleich dem Volumen des Körpers ist, so liegen die äußersten Knoten innerhalb des Randes und die Verschiebungsrandbedingungen werden ungenau vorgegeben.

Im allgemeinen Falle werden zu diskretisierende Körper unregelmäßig berandet und mit einem regelmäßigen Knotennetz überdeckt sein. Der räumliche Diskretisierungsfehler bei der Angabe von Randbedingungen auf Randknoten hat dann die Größenordnung des halben Knotenabstandes. Damit ist erkennbar, dass das Verfahren schlecht geeignet ist für die Berechnung dünnwandiger Bauteile.

9.3.1 Wichtungsfunktionsausdehnungen

Die Ausdehnung der Wichtungsfunktionen um die Knoten hat bei der Finite-Punkte-Methode einen entscheidenden Einfluss auf die Güte der Berechnungsergebnisse.

Je höher die gewünschte Ansatzfunktionsordnung ist, desto größer muss der Knoteneinflussbereich gewählt werden, damit die Ansatzfunktionen dieser Ordnung berechnet werden können. Bei einer zu kleinen Ausdehnung der Wichtungsfunktionen können nur noch MLS-Ansatzfunktionen 0-ter Ordnung (*Shepard-Interpolation*) berechnet werden. Das Strukturverhalten wird zu steif wiedergegeben (*Locking*).

Eine zu große Ausdehnung der Wichtungsfunktionen führt zu numerischen Schwierigkeiten. Die Knoten weisen unphysikalische gegenseitige Verschiebungen auf. Hier ist eine Parallele zum *Hourglassing* in der Finite-Elemente-Methode zu erkennen, bei dem Elementknoten unphysikalische Verschiebungsmuster zeigen, da einzelnen Elementeigenformen unzureichende Steifigkeiten zugeordnet sind.

Variiert wird der Überlappungsparameter α , der die Ausdehnung der Wichtungsfunktionen gemäß Gleichung (5.50) definiert. Es wird eine Diskretisierung mit $7 \cdot 7 = 49$ Knoten verwendet. Als Querkontraktionszahl wird $\nu = 0.4$ gewählt. Verglichen werden die Vertikalverschiebungen des Punktes \mathcal{A} (Tabelle 9.1) und die Bilder der deformierten Netze (Abbildungen 9.4 bis 9.8). In der Tabelle (9.1) sind die Ergebnisse für die Vertikalverschiebungen, bei denen die zugehörigen Netzbilder ein unphysikalisches Strukturverhalten widerspiegeln, hellgrau dargestellt. Die übrigen Tabellenzellen definieren die zulässigen Variationsbereiche des Überlappungsparameters α in Abhängigkeit von der Ansatzfunktionsordnung N_G. Optimale (sichere) Werte für α liegen in den Mitten der zulässigen Bereiche. Eine Zusammenstellung

	Ansatzfunktionsordnung / Anzahl Basisfunktionen								
α	0 / 1	1/3	2 / 6	3 / 10	4 / 15				
2.00	0.2997	0.6560	0.6560	0.6560	0.6560				
2.50	0.4017	0.8135	0.8135	0.8135	0.8135				
3.00	0.6004	0.7748	0.7847	0.7846	0.7845				
3.50	0.7644	0.7596	0.7515	0.7522	0.7522				
4.00	0.8777	0.7612	0.7695	0.7708	0.7710				
4.50	0.9818	0.7613	0.7717	0.7762	0.7763				
5.00	1.0960	0.7619	0.7744	0.7817	0.7814				
5.50	_	0.7617	0.7717	0.7879	0.7898				
6.00	_	0.7643	0.7701	0.7890	0.7941				
6.50	_	0.7918	0.7682	0.7871	0.8149				
7.00	_	0.9484	0.7682	0.7877	0.8201				
7.50	_	_	_	0.7819	0.8242				
8.00	_	_	_	_	0.8286				

zeigt Tabelle 9.2. In den folgenden Berechnungsbeispielen werden stets die optimalen Werte für die Wichtungsfunktionsüberlappung verwendet.

Tabelle 9.1: Beispiel Quadratscheibe unter Teillast, berechnet mit Finite-Punkte-Methode, Vertikalverschiebungen [m] des Punktes \mathcal{A} in Abhängigkeit vom Wichtungsfunktionsüberlappungsparameter α

N _G	0	1	2	3	4
α	(3.25)	3.50	4.00	4.50	4.50

Tabelle 9.2: Optimaler Wichtungsfunktionsüberlappungsparameter α in Abhängigkeit von der Ansatzfunktionsordnung $N_{\rm G}$

Abbildung 9.4: Beispiel Quadratscheibe unter Teillast, verformte Netze und Dehnungen ε_2 , berechnet mit FPM, Ansatzfunktionsordnung N_G = 0, Variation des Wichtungsfunktionsüberlappungsparameters α

Abbildung 9.5: Beispiel Quadratscheibe unter Teillast, verformte Netze und Dehnungen ε_2 , berechnet mit FPM, Ansatzfunktionsordnung N_G = 1, Variation des Wichtungsfunktionsüberlappungsparameters α

Abbildung 9.6: Beispiel Quadratscheibe unter Teillast, verformte Netze und Dehnungen ε_2 , berechnet mit FPM, Ansatzfunktionsordnung N_G = 2, Variation des Wichtungsfunktionsüberlappungsparameters α

Abbildung 9.7: Beispiel Quadratscheibe unter Teillast, verformte Netze und Dehnungen ε_2 , berechnet mit FPM, Ansatzfunktionsordnung N_G = 3, Variation des Wichtungsfunktionsüberlappungsparameters α

Abbildung 9.8: Beispiel Quadratscheibe unter Teillast, verformte Netze und Dehnungen ε_2 , berechnet mit FPM, Ansatzfunktionsordnung N_G = 4, Variation des Wichtungsfunktionsüberlappungsparameters α

9.3.2 Konvergenzverhalten FPM / FEM

Zum Vergleich der Konvergenzeigenschaften der Finite-Punkte-Methode mit denen der Finite-Elemente-Methode wird die Quadratscheibe unter Teillast mit beiden Methoden und unterschiedlich feinen Diskretisierungen berechnet (siehe Tabelle 9.3). Dabei werden außerdem unterschiedliche Ansatzfunktionsordnungen verwendet: Die Finite-Elemente-Berechnungen erfolgen mit 4-Knoten-, 9-Knoten- oder 16-Knoten-Viereckselementen; die Finite-Punkte-Methode nutzt für die MLS-Approximation Funktionsbasen mit bis zu konstanten, linearen, quadratischen oder kubischen Monomen.

Unterteilung Charakterist.		Unterteilungs- Knoten-		Elementanzahl		
je Richtung	Länge [m]	stufe	anzahl	lin.	quad.	kub.
$N_{\rm h}$	$h = a/N_{\mathrm{h}}$	$\log_2(h_0/h)$	$N_{\rm K} = (N_{\rm h}\!+\!1)^2$	$N_{\rm E}$	N_{E}	N_{E}
6	$0.33333 = h_0$	0	49	36	9	4
12	0.16667	1	169	144	36	16
24	0.041667	2	625	576	144	64

Tabelle 9.3: Beispiel Quadratscheibe unter Teillast, Diskretisierungen

Die Ergebnisse zeigt Abbildung 9.9. Das Konvergenzverhalten der Finite-Punkte-Methode mit der MLS-Ansatzfunktionsordnung 0 ist so schlecht, dass die Ergebnisse größtenteils unterhalb der Darstellungsbereiche liegen. Diese Methode ist damit für praktische Berechnungen unbrauchbar.

Bei nahezu inkompressiblem Materialverhalten ($\nu = 0.495$ oder $\nu = 0.499$) zeigt die Finite-Punkte-Methode mit linearen Ansatzfuntionen eine schnellere Konvergenz als die Finite-Elemente-Methode mit bilinearen 4-Knotenelementen (siehe Abbildung 9.9).

Die besseren Konvergenzeigenschaften der FPM werden mit einem deutlich höheren Rechenzeitbedarf erkauft wie die Zeitmessungen zeigen werden.

9.3.3 Zeitmessungen

Der Rechenzeitbedarf der FPM wird durch folgende Faktoren gegenüber der FEM erhöht:

- Der Aufwand zur Berechnung der MLS-Ansatzfunktionswerte ist hoch (siehe Abschnitt 5.5). Da für FPM und FEM in dieser Arbeit eine total Lagrangesche Betrachtungsweise verwendet wird, sind die Ansatzfunktionswerte nur einmal am Berechnungsbeginn für den unverformten Zustand zu ermitteln. Damit tritt der Aufwand zur Berechnung der Ansatzfunktionen dann gegenüber anderen Faktoren in den Hintergrund, wenn mehrere Zeit- und Iterationsschritte berechnet werden.
- Bei der FEM werden als Integrationspunkte die Gaußpunkte der Elemente verwendet, sodass Polynome mit für die gewählte Integrationspunktzahl maximal möglicher Genauigkeit numerisch integriert werden. Bei der elementnetzfreien FPM wird ein regelmäßiges Raster aus Integrationspunkten verwendet. Bei gleicher Integrationspunktanzahl wäre damit die Qualität der numerischen Integration gegenüber der Gaußintegration um eine Odnung geringer. Daher muß bei der FPM die Integrationspunktanzahl gegenüber der FEM erhöht werden. In den Berechnungsbeispielen wurden beispielsweise für lineare 4-Knoten-Elemente 4 Gaußpunkte und für eine lineare MLS-Approximation auf der gleichen Fläche 9 Integrationspunkte eingesetzt.
- Im Abschnitt 9.3.1 wurde gezeigt, dass zur zuverlässigen Berechnung von MLS-Ansatzfunktionen einer gewünschten Ordnung Mindestwerte für die Wichtungsfunktionsüberlappungen eingehalten werden müssen. Damit wird die Bandbreite des globalen Gleichungssystems gegenüber der FEM erhöht.

Da es sich bei der Quadratscheibe unter Teillast um ein vollständig lineares Berechnungsbeispiel handelt (das Materialverhalten ist linear elastisch), erfolgt die Berechnung in einem Schritt.

Abbildung 9.10 zeigt in doppeltlogarithmischer Darstellung die Rechenzeiten von FEM und FPM unterschiedlicher Ansatzfunktionsordnung über der Knotenanzahl. Die Rechenzeiten der FEM liegen noch bei doppelt so feiner Diskretisierung unter den Rechenzeiten der FPM.

In der Darstellung 9.11 (a) kann abgelsen werden, wie sich die Ansatzfunktionsordnung auf die Rechenzeit auswirkt. Hierzu werden die Rechenzeiten der FPM und

Abbildung 9.10: Beispiel Quadratscheibe, Zeitmessungen, Berechnungen mit FPM und FEM, Variation der räumlichen Diskretisierung

der FEM mit unterschiedlicher Ansatzfunktionsordnung jeweils auf die Rechenzeiten der linearen FPM und der linearen FEM bezogen. Bei der FPM bestehen deutlich größere Rechenzeitunterschiede für unterschiedliche Ansatzfunktionsordnungen. Bei größerer Knotenanzahl werden die Rechenzeitunterschiede geringer, da die Zeit zur Lösung des globalen Gleichungssystems gegenüber der Zeit zur Berechnung der Ansatzfunktionswerte dominiert. Bei der FEM wird bei geringer Knotenanzahl sogar Rechenzeit mit einer höheren Ansatzfunktionsordnung gespart, da für die Ansatzfunktionen von 4 kubische Elementen die Ansatzfunktionen von 9 quadratischen Elemente oder 36 linearen Elementen berechnet werden müssen. Bei einer höheren Knotenanzahl bewirkt die größere Bandbreite des globalen Gleichungssystems bei Verwendung von Elementen höherer Ordnung einen Anstieg der Rechenzeit gegenüber linearen Elementen.

In der Darstellung 9.11 (b) sind die Rechenzeiten der FPM bezogen auf die Rechenzeiten der FEM mit gleicher Ansatzfunktionsordnung. Bei niedriger Knotenanzahl dominiert der Aufwand zur Berechnung der Ansatzfunktionen, bei höherer Knotenanzahl die Einfluß der Bandbreite des globalen Gleichungssystems. Im Mittel ist die Rechenzeit der FPM um den Faktor 16 höher als die Rechenzeit der FEM. Abschließend wird in Abbildung 9.12 der Einfluss der Wichtungsfunktionsgröße in der FPM auf die Rechenzeit untersucht. Es wird eine lineare MLS-Approximation verwendet. Der Wichtungsfunktionsüberlappungsparameter und die Knotenanzahl werden variiert. Abbildung 9.12 (a) zeigt die absoluten Rechenzeiten und 9.12 (b) die auf die Rechenzeit bei empfohlender Wichtungsfunktionsüberlappung bezogenen Rechenzeiten. Mit ca 10% Rechenzeitunterschied bei extremer Wahl des Wichtungsfunktionsüberlappungsparameters ist der Einfluss gering.

(b) Rechenzeitverhältnis über Knotenanzahl

Abbildung 9.11: Beispiel Quadratscheibe, Zeitmessungen, Berechnungen mit FPM und FEM, Variation der räumlichen Diskretisierung

(b) Rechenzeitverhältnis über Wichtungsfunktions
überlappungsparameter $% \left({{\left({{{{\bf{b}}}} \right)}_{i}}} \right)$

Abbildung 9.12: Beispiel Quadratscheibe, Zeitmessungen, Berechnungen mit FPM 1. Ordnung, Variation des Wichtungsfunktionsüberlappungsparameters und der räumlichen Diskretisierung

9.4 Extrusion

Abbildung 9.13: Beispiel Extrusion, System

Ein Block aus Aluminium (Dichte $\rho = 2700 \text{ kg/m}^3$, Elastizitätsmodul $E = 72000 \cdot 10^6 \text{ N/m}^2$, Querkontraktionszahl $\nu = 0.33$, Anfangsfließspannung $\sigma_{y_0} = 150 \cdot 10^6 \text{ N/m}^2$ und isotroper Verfestigungsparameter $H_{\text{iso}} = 200 \cdot 10^6 \text{ N/m}^2$) wird mit einem Stempel durch eine Düse gedrückt.

Das Materialverhalten des Aluminiums wird mit dem verwendeten elasto-plastischen Materialmodell mit isotroper Verfestigung (siehe Abschnitt 4.3.3) nur angenähert, da Aluminium und Aluminiumlegierungen keine ausgeprägte Fließgrenze besitzen.

Stempel und Wandung werden starr und mit C^1 -stetigen Kontaktelementen diskretisiert. Die Verschiebung des Stempels wird vorgegeben.

Ein Vergleich der Bilder der deformierten Netze (Abbildungen 9.14 und 9.15) zeigt eine gute Übereinstimmung zwischen den Ergebnissen der Finite-Punkte-Methode und der Finite-Elemente-Methode.

Abbildung 9.14: Beispiel Extrusion, verformte Netze und Dehnung $\varepsilon_1,$ berechnet mit FPM

Abbildung 9.15: Beispiel Extrusion, verformte Netze und Dehnung $\varepsilon_1,$ berechnet mit FEM

Abbildung 9.16: Beispiel Extrusion, Zeitmessungen, Berechnungen mit FPM und FEM, Variation der räumlichen Diskretisierung

Die Knoten der FPM-Berechnung werden durch Kreisscheiben visualisiert. Hierdurch entsteht der fälschliche Eindruck, die Knoten würden die Kontaktlinie überschreiten. Tatsächlich ist die Penetration, die sich bei dem gewählten Strafparameter $\alpha = 1 \cdot 10^{-6}$ ergibt, nur sehr gering.

Da ein Knoten-zu-Segment Kontaktalgorithmus eingesetzt wird, schneiden die Ränder der linearen finiten Elemente die gekrümmte Kontaktlinie in Form von Sehnen zwischen den Kontaktpunkten.

Da die Kontaktlinien C^1 -stetig diskretisiert sind, sind auch die zeitlicher Zustandsgrößenverläufe der Punkte \mathcal{A} und \mathcal{C} (Abbildungen 9.17 bis 9.19) glatt.

Der Zeitbedarf für die Berechnung der Ansatzfunktionen tritt bei diesem wie auch bei den folgenden Berechnungsbeispielen in den Hintergrund, da eine hohe Anzahl an Zeit- und Iterationsschritten benötigt wird. (Der FPM und FEM wurde eine total Lagrangesche Betrachtungsweise zugrunde gelegt. Die Ansatzfunktionen werden also nur einmal für die Ausgangskonfiguration berechnet.)

Als Unterschiede zwischen FPM und FEM, die einen Einfluss auf den Zeitbedarf der Rechnungen haben, verbleiben die Art der Ansatzfunktionen, die Integrationspunktanzahl und die Bandbreite des globalen Gleichungssystems. Bei der FPM reduzieren die "besseren" MLS-Ansatzfunktionen die Rechenzeit, da gegenüber der FEM weniger Iterationsschritte benötigt werden, und erhöhen die größere Integrationspunktanzahl und höhere Bandbreite des gloablen Gleichungssystems die Rechenzeit.

Abbildung 9.17: Beispiel Extrusion, Verzerrung und Spannung des Punktes \mathcal{A} in 2-Richtung, berechnet mit FPM und FEM, Variation der räumlichen Diskretisierung

Abbildung 9.18: Beispiel Extrusion, Verzerrung und Spannung des Punktes C in 2-Richtung, berechnet mit FPM und FEM, Variation der räumlichen Diskretisierung

Abbildung 9.19: Beispiel Extrusion, Verschiebung des Punktes C in 2-Richtung, berechnet mit FPM und FEM, Variation der räumlichen Diskretisierung

9.5 Tiefziehen

Abbildung 9.20: Beispiel Tiefziehen, System

Ein Aluminiumblech (Materialeigenschaften wie beim vorangegangenen Extrusionsbeispiel) wird tiefgezogen. Matrize und Stempel sind so geformt, dass bei niedrigster Stempelposition der Abstand zwischen beiden an allen Stellen genau der Blechdicke entspricht. Die Krümmungsradien bezogen auf die Mittellinie des Bleches betragen 25 mm. Ein Niederhalter verhindert am Rand Vertikalverschiebungen des Bleches.

Alle Werkzeuge sind starr und mit C^1 -stetigen Kontaktelementen diskretisiert. Die Verschiebungen des Stempels und des Niederhalters werden vorgegeben.

Bei diesem Beispiel zeigen sich die Beschränkungen der Theorie kleiner Verformungen: Die Verformung des Bleches in vertikaler Richtung führt zu keinem Einzug des Bleches am Rand und die Rotation des Bleches im mittleren Bereich führt zu einer unphysikalischen Blechdickenänderung. Letzterer Effekt ist darauf zurückzuführen, dass der Deformator nicht invariant gegenüber Starrkörperdrehungen ist (siehe Abschnitt 4.2). Die durch Schrägstellung unphysikalisch verdickten Bereiche des Bleches verformen sich beim Schließen des Stempels plastisch. Tatsächlich dominieren bei Tiefzievorgängen plastische Verformungen infolge Biegung und Zug.

Auch wenn die Ergebnisse der Simulation durch die unzureichende kinematische Beschreibung des Kontinuums unphysikalisch sind, ist das Beispiel gut geeignet, um den Kontaktalgorithmus zu überprüfen, da sich die Kontaktsituation zwischen dem Werkstück und den Werkzeugen während des Umformvorganges ständig verändert.

Abbildung 9.21: Beispiel Tiefziehen, verformte Netze und Dehnung $\varepsilon_1,$ berechnet mit FPM, Knotenanzahl ${\sf N}_{\rm K}=243$

Abbildung 9.22: Beispiel Tiefziehen, verformte Netze und Dehnung $\varepsilon_1,$ berechnet mit FEM, Knotenanzahl ${\sf N}_{\rm K}=243$

Abbildung 9.23: Beispiel Tiefziehen, verformte Netze und Dehnung $\varepsilon_1,$ berechnet mit FPM, Knotenanzahl ${\sf N}_{\rm K}=805$

Abbildung 9.24: Beispiel Tiefziehen, verformte Netze und Dehnung $\varepsilon_1,$ berechnet mit FEM, Knotenanzahl ${\sf N}_{\rm K}=805$

9.6 Aufprall

Abbildung 9.25: Beispiel Aufprall, System

Ein häufiges Einsatzgebiet elementnetzfreier Methoden ist die Untersuchung von Aufprallproblemen. Früh wurden hierfür die SPH (JOHNSON & BEISSEL (1996)) oder die MPM (SULSKY & SCHREYER (1996)) verwendet.

Eine Aluminiumscheibe (Radius 20 mm, Materialeigenschaften wie beim Extrusionsbeispiel) wird mit 300 m/s auf eine starre Barriere geschossen. Es wird ein ebener Spannungszustand angenommen. Beim Berechnungsbeginn hat der Körper einen Abstand von 2 mm von der Barriere.

Neben der räumlichen Diskretisierung wird bei diesem Beispiel auch die zeitliche Diskretisierung variiert. Die Berechnungsergebnisse für die Zeitschrittlängen $dt = 1 \cdot 10^{-7}$ s und $dt = 1 \cdot 10^{-8}$ s unterscheiden sich nur unwesentlich.

Die Zeitschrittlänge $dt = 1 \cdot 10^{-6}$ s ist zu groß gewählt. Hier zeigen sich bei den zeitlichen Verläufen der Geschwindigkeit (Abbildung 9.31 oben) und der Spannung (Abbildung 9.30 unten) unphysikalisch starke Oszillationen, die bei der FEM-Rechnung stärker ausgeprägt sind. Die FEM-Berechnung bricht für diese Zeitschrittlänge mit der feineren räumlichen Diskretisierung nach ca $3.5 \cdot 10^{-5}$ s ab, wohingegen die FPM-Berechnung durchläuft. Mit der gröberen räumlichen Diskretisierung konvergiert die FEM schlechter als die FPM.

Abbildung 9.26: Beispiel Aufprall, Zeitmessungen, Berechnungen mit FPM und FEM, Variation der Zeitschrittlänge und der räumlichen Diskretisierung

Um den Aufprall realer Projektile zu berechnen, sollte entweder ein rotationsymmetrisches Modell (wenn die Projektile rotationssymmetrisch sind und keine die Rotationssymmetrie störenden Imperfektionen berücksichtigt werden sollen) oder besser ein dreidimensionales Modell verwendet werden.

Abbildung 9.27: Beispiel Aufprall, verformte Netze und akkumulierte plastische Dehnung λ , berechnet mit FPM und FEM, Knotenanzahl N_K = 67, Zeitschrittlänge $dt = 1 \cdot 10^{-7}$

Abbildung 9.28: Beispiel Aufprall, verformte Netze und akkumulierte plastische Dehnung λ , berechnet mit FPM und FEM, Knotenanzahl N_K = 253, Zeitschrittlänge $dt = 1 \cdot 10^{-7}$

Abbildung 9.29: Beispiel Aufprall, Geschwindigkeit und Verschiebung des Punktes \mathcal{A} in 2-Richtung, berechnet mit FPM und FEM, Knotenanzahl $N_{\rm K} = 253$, Variation der Zeitschrittlänge

Abbildung 9.30: Beispiel Aufprall, Verzerrung und Spannung des Punktes \mathcal{A} in 2-Richtung, berechnet mit FPM und FEM, Knotenanzahl $N_{\rm K}=253$, Variation der Zeitschrittlänge

Abbildung 9.31: Beispiel Aufprall, Geschwindigkeit und Verschiebung des Punktes \mathcal{A} in 2-Richtung, berechnet mit FPM und FEM, Zeitschrittlänge $dt = 1 \cdot 10^{-8}$, Variation der räumlichen Diskretisierung

Kapitel 10

Zusammenfassung

Netzfreie Methoden bieten genüber der Finite-Elemente-Methode den Vorteil einer einfacheren Diskretisierung einschließlich leicht zu realisierender h- und p-Adaptivität. Außerdem neigen Punktnetze bei ihrer Deformation weniger zur Entartung als Elementnetze.

Durch Abstraktionen war es möglich, eine Gruppe netzfreier Methoden gemeinsam mit der Finite-Elemente-Methode in einem Programmsystem zu implementieren. Da der überwiegende Teil des Quellcodes von allen Methoden gemeinsam genutzt wird, konnte dieser Teil des Quellcodes mit der in der Literatur besser dokumentierten Finite-Elemente-Methode überprüft werden.

Um den Programmieraufwand in einem vertretbaren Rahmen zu halten, wurde das Programmsystem auf kleine Verformungen und ebene Probleme beschränkt und auf eine grafische Benutzeroberfläche verzichtet. Ansonsten wird der Funktionsumfang eines vollwertigen FEM-Programmes geboten (dynamische Berechnungen, nichtlineares Materialverhalten, Kontakt, zeitabhängige Belastungen, übersichtliche Syntax der Eingabedatensätze, u.s.w).

Für die elementfreien Methoden wird eine Moving Least Square Approximation mit wählbarer Ansatzfunktionsordnung eingesetzt. Bei der Berechnung jedes Ansatzfunktionswertes ist eine Matrix zu invertieren, deren Dimension von der Anzahl der Basisfunktionen abhängt. Bereits im zweidimensionalen Fall wächst die Anzahl der Basisfunktionen und damit der numerische Aufwand bei der Berechnung der Ansatzfunktionen sehr schnell mit der Ansatzfunktionsordnung an.

Mit steigender Ansatzfunktionsordnung muss die Überlappung der Wichtungsfunktionen vergrößert werden, da ansonsten die zu invertierende Matrix singulär wird. Es wurden untere und obere Grenzen und optimale Werte für die Wichtungsfunktionsüberlappungen in Abhängigkeit von der Ansatzfunktionsordnung ermittelt. Die Wichtungsfunktionsüberlappungen bestimmen, welche Knoten über Steifigkeitsbeiträge miteinander gekoppelt sind. Die sich hieraus ergebene Bandbreite des globalen Koordinatensystems ist bei gleicher Ansatzfunktionsordnung größer als die Bandbreite in einer FEM-Berechnung.

Die MLS-Approximation 0-ter Ordnung ist im Rahmen netzfreier Methoden unbrauchbar, da sie das Strukturverhalten deutlich zu steif wiedergibt. Wird nahezu inkompressibles Materialverhalten verwendet, so ist die netzfreie Methode mit linearen MLS-Ansatzfunktionen der Finite-Elemente-Methode mit bilinearen 4-Knoten-Elementen in Bezug auf das Konvergenzverhalten überlegen.

Ein Nachteil der meisten netzfreien Methoden besteht darin, dass Knotenwerte approximiert und nicht interpoliert werden. Wesentliche Randbedingungen und Kontaktbedingungen können daher nicht auf direktem Wege berücksichtigt werden. Im Rahmen der vorliegenden Arbeit werden die wesentlichen Randbedingungen und Kontaktbedingungen durch ein Strafverfahren erzwungen. Das Strafverfahren lässt sich physikalisch einfach interpretieren, übersichtlich implementieren und ist robust. Bei Berechnungen mit doppelter Genauigkeit besteht ein großer Spielraum für die Wahl des Strafparameters.

 C^1 -stetige Hermite-Elemente werden eingesetzt, um gekrümmte Oberflächen mit wenigen Kontaktelementen zutreffend ("glatt") diskretisieren zu können.

Die Funktionsfähigkeit des Programmcodes wurde auf der Basis von numerischen Beispielen nachgewiesen.

Das Programmsystem ist flexibel gestaltet, sodass es einfache Möglichkeiten bietet, die implementierten Methoden zu verändern und mit netzfreien Methoden zu experimentieren.

Für die Zukunft wäre es sinnvoll, die Theorie großer Verformungen und eine Erweiterung auf dreidimensionale Probleme zu implementieren.

Anhang A

Eingabedatei

Anhand der Eingabebefehle werden die Berechnungsmöglichkeiten des Programmsystems dargestellt.

Bevor im Abschnitt A.4 eine Beschreibungen aller in der Eingabedatei möglichen Befehle erfolgt, werden in den Abschnitten A.1, A.2 und A.3 das Format der Eingabedatei angegeben, die Befehle in Gruppen eingeteilt und die Syntax der Befehlsbeschreibungen erklärt.

A.1 Dateiformat

Das Format der Eingabedatei ist zeilenorientiert. Ein Befehl nimmt genau eine Zeile ein und setzt sich aus einem Befehlsnamen und Argumenten zusammen. Befehlsnamen bestehen aus einer Folge von Buchstaben und gegebenenfalls dem Unterstrich. Zwischen Groß- und Kleinschreibung wird bei den Befehlsnamen nicht unterschieden. Die Befehlsargumente haben die in Tabelle A.1 angegebenen Formate. Als Trennzeichen dienen Kommata. Leerzeichen und Tabulatorzeichen (im Folgenden werden beide als Leerzeichen bezeichnet) werden überlesen. Argumente, bei denen von einer vorhandenen Voreinstellung nicht abgewichen werden soll, dürfen ausgelassen werden, die Kommata sind aber vollständig anzugeben.

Kommentare werden mit dem Zeichen "!" eingeleitet. Ab einem Kommentarzeichen wird der Rest der Zeile überlesen. Zeilen, die nur einen Kommentar enthalten, und Leerzeilen sind zulässig.

Die Reihenfolge der Befehlszeilen ist beliebig, da die Eingaberoutine die Befehlszeilen vor der Auswertung sortiert.

Format	Kürzel	Beschreibung	Beispiele
Zeichenkette	ß	durch Anführungszeichen eingeschlossene Zeichenfolge, darf Leerzeichen und Kommata enthalten	"Kragbalken, 10 Lastschritte"
Wort	W	aus alphanumerischen Zeichen gebildet, darf keine Leerzei- chen oder Kommata enthalten, Groß- und Kleinschreibung wird nicht unterschieden	emill3 $\stackrel{\wedge}{=}$ Emill3 $\stackrel{\wedge}{=}$ EMIL13
Logische Variable	d	Wert der Variablen ist $wahr$ bei Eingabe von W, w, T, t oder 1 oder $falsch$ bei Eingabe von F, f oder O	W
Natürliche Zahl	u	positive ganze Zahl, einschließlich 0	$2836 \stackrel{\wedge}{=} +2836$
Ganze Zahl	1	positive oder negative ganze Zahl, einschließlich 0	-845
Gleitkommazahl	f	besteht aus einem optionalen Vorzeichen, einer Ziffernfolge,	3456 $\stackrel{\wedge}{=}$ +3456.0 $\stackrel{\wedge}{=}$ 3.456e3 $\stackrel{\wedge}{=}$ +3.456e+03
		die auch einen Dezimalpunkt enthalten darf und einem op- tionalen Exponenten (zur Basis 10), bestehend aus e oder E und einer ganzen Zahl mit optionalem Vorzeichen	
Liste logischer Variablen	В	durch Klammern eingeschlossene und durch Kommata ge- trennte Folge logischer Variablen	(1, 1, 0, 1) $\stackrel{\wedge}{=}$ (W, W, F, W)
Liste natürlicher	U	durch Klammern eingeschlossene und durch Kommata ge-	(18, 23, 28, 33, 38) $\stackrel{\wedge}{=}$ (s, 18, 38, 5)
Zahlen		trennte Folge natürlicher Zahlen, kann auch über eine Schleifenkonstruktion in der Form (s. <i>Startwert</i> , <i>Stopwert</i> , <i>Inkrement</i>) eingegeben werden	
Liste ganzer Zah- len	Ι	durch Klammern eingeschlossene und durch Kommata ge- trennte Folge ganzer Zahlen, kann auch über eine Schleifen- konstruktion in der Form (s, <i>Startwert</i> , <i>Stopwert</i> , <i>Inkre-</i> <i>ment</i>) eingegeben werden	(13, 8, 3, -2, -7) [△] (s, 13, -7, -5)
Liste von Gleit-	F	durch Klammern eingeschlossene und durch Kommata ge- trennte Folge von Cleitkommersblan	(1.66667e+00, 9.44444e-01)

Tabelle A.1: Formate der Argumente von Eingabebefehlen

152

A.2 Einteilung der Befehle

Die Eingabebefehle lassen sich nach ihrem Verwendungszweck in Gruppen aufteilen:

- Befehl zur Festlegung des Berechnungstitels
- Befehle zur Auswahl der Ausgaben
- Befehle zur Festlegung der Steuerwerte
- Befehle zur Definition der Berechnungsobjekte (Materialien, Materialpunkte, Knoten, Elementtypen, Elemente, Punktlasten und Kontaktlinien)

In dieser Reihenfolge werden die Befehle weiter unten dargestellt.

Die Befehle zur Festlegung des Berechnungstitels und der Steuerwerte sollten in jeder Eingabedatei nur jeweils einmal auftreten. Werden sie mehrfach verwendet, so werden sie nur an der Stelle ihres ersten Auftretens eingelesen.

Die Befehle zur Definition der Berechnungsobjekte dürfen beliebig häufig verwendet werden. Die den Objekten gegebenen Nummern müssen aber je Objekttyp eindeutig sein. (Es dürfen z.B. nicht zwei Elemente dieselbe Nummer haben, aber ein Element darf dieselbe Nummer haben wie ein Knoten.) Die Nummerierung der Objekte muß nicht notwendigerweise fortlaufend erfolgen.¹

A.3 Syntax der Befehlsbeschreibungen

Zu jedem Befehl werden in einer Übersicht der Befehlsname, symbolische Namen für die Befehlsargumente und eine Kurzbeschreibung des Befehls angegeben:

Übersicht

befehlsname, argumentname1, argumentname2, ..., argumentnameN — Kurzbeschreibung des Befehls.

Der Befehlsname sollte in der angegebenen Schreibweise in der Eingabedatei erscheinen. Die Argumentnamen sind durch passende Argumente zu ersetzen, wobei eine Beschreibung der Befehlsargumente Hilfestellung leistet:

 $^{^{1}}$ Lücken in der Numerierung haben keinen Einfluss auf den Speicherbedarf des Programmes, da die Nummern nur als Namen der Objekte dienen. Programmintern wird die Zuordnung zwischen den Objektnummern und den Speicheradressen der Objekte mit Hilfe einer von der STL-Container-Klasse *map* abgeleiteten Klasse vorgenommen.

Argumente
argumentname1 [Formatkürzel, Voreinstellung]
Beschreibung des ersten Argumentes
argumentname2 [Formatkürzel, Voreinstellung]
Beschreibung des zweiten Argumentes
÷
argumentnameN [Formatkürzel, Voreinstellung]
Beschreibung des N-ten Argumentes

Den symbolischen Argumentnamen sind jeweils ein Formatkürzel (siehe Tabelle A.1), die Voreinstellung und eine Beschreibung des Argumentes zugeordnet.

Teilweise folgen noch Anmerkungen:

Anmerkungen

Weitere Informationen zum Befehl.

A.4 Befehlsbeschreibungen

A.4.1 Befehl titel

Übersicht

titel, *strtitel* — Legt den Berechnungstitel fest.

Argument

strtitel [s, ""] Zeichenkette zur Beschreibung der Berechnung

A.4.2 Befehl aus_dat_gid

Übersicht

aus_dat_gid, baus — Legt fest, ob Daten zur Nachbearbeitung mit GID ausgegeben werden sollen.

baus [b, F]Ausgabe im GID-Format?

Anmerkungen

Zur Visualisierung können Ergebnisse in einem vom Pre- und Postprozessor *GiD* lesbaren Format herausgeschrieben werden. Mit der unter *http://gid.cimne.upc.es/* kostenlos erhältlichen akademischen Version lassen sich kleinere Modelle (bis 1000 Knoten) visualisieren.

A.4.3 Befehl aus_dat_gnupl

Übersicht

aus_dat_gnup, *baus*, *bfarbe* — Legt fest, ob eine Steuerdatei zur Erzeugung von Gnuplot-Diagrammen generiert werden soll.

Argumente

baus [b, F]

Ausgabe einer Steuerdatei?

bfarbe [b, W]

Gnuplot-Einstellungen in Steuerdatei für farbige Diagramme?

Anmerkungen

Mit dem kostenlos unter *http://www.gnuplot.info/* erhältlichen Programm *Gnuplot* lassen sich Darstellungen von Daten und Funktionen in verschiedenen Grafikformaten über die Kommandozeile erzeugen. Vom vorliegenden Programm wird Gnuplot speziell genutzt, um Bilder von zeitlichen Zustandsgrößenverläufen von Knoten oder Materialpunkten im Encapsulated Postscript Format zu erzeugen.

Hierzu werden alle Einstellungen für Gnuplot in einer Steuerdatei abgelegt. Diese erhält den Namen *berechnungsname*.gpl. Die Objekte, deren Zustandsgrößenverläufe visualisiert werden sollen, werden mit dem Befehl obj_ausdat festgelegt. Die Daten werden während der Berechnung in die Dateien *berechnungsname*.dat.kno.txt und *berechnungsname*.dat.mpu.txt geschrieben. Nach Abschluß der Berechnung werden die Grafikdateien erzeugt, indem auf der Kommandozeile im Berechnungsverzeichnis der Befehl gnuplot berechnungsname.gpl eingegeben wird.

A.4.4 Befehl obj_ausdat

Übersicht

obj_ausdat, *objtyp*, *objnumlist* — Legt die Objekte fest, deren zeitliche Zustandsgrößenverläufe, z.B. mit Gnuplot, dargestellt werden sollen.

Argumente

objtyp [w, kno]

Objektauswahl (kno für Knoten und mpu für Materialpunkte)

objnumlist [U, ()]

Liste mit Objektnummern

A.4.5 Befehl stw_berechverf

Übersicht

stw_berechverf bknokoerperfest, bmpukoerperfest, bipukoerperfest, bmpuaufkno, bipuaufmpu, bipuaufkno, ansatz_kno_zu_pu, ansatz_mpu_zu_ipu, ansatz_pu_zu_kno, konfigur, verzerr — Definition des Berechnungsverfahrens.

Argumente

bknokoerperfest [b , W]
Sind die Knoten körperfest?
bmpukoerperfest [b , W]
Sind die Materialpunkte körperfest? (Als Einstellung ist nur W zulässig.)
bipukoerperfest [b , W]
Sind die Integrationspunkte körperfest?
bmpuaufkno [b , F]
Liegen die Materialpunkte auf den Knoten?

bipuaufmpu [b, W]
Liegen die Integrationspunkte auf den Materialpunkten?
bipuaufkno [b,F]
Liegen die Integrationspunkte auf den Knoten?
ansatz_kno_zu_pu [w,ele]
Auswahl des Ansatzes mit Knoten als Stützpunkte und Materialpunkten oder Integrationspunkten als Auswertungsorte.
ansatz_mpu_zu_ipu [w,kopieren]
Auswahl des Ansatzes mit Materialpunkten als Stützpunkte und Integrati- onspunkten als Auswertungsorte.
ansatz_pu_zu_kno [w,eleinv]
Auswahl des Ansatzes mit Materialpunkten oder Integrationspunkten als Stützpunkte und Knoten als Auswertungsorte.
konfigur [w, refkonf]
Konfiguration bzgl. der die schwache Form aufgestellt wird, refkonf für Referenzkonfiguration und momkonf für Momentankonfiguration
verzerr [w,klnverz]
Art der Verzerrungsberechnung, klnverz für Theorie kleine Verformungen, groverz für Theorie großer Verformungen (nicht implementiert)
A.4.6 Befehl stw_dimension

Übersicht

stw_dimension, dim, sym — Festlegung der Dimension.

Argument

```
dim [w, 2d]
```

Räumliche Dimension, nur die Auswahl 2d für zweidimensionale Berechnungen ist implementiert

```
sym [w, sp0]
```

Ergänzende Angabe zur räumlichen Dimension

Anmerkungen

Der ebene Spannungszustand wird mit dim=2d und sym=sp0 ausgewählt, der ebene Verzerrungszustand mit dim=2d und sym=vz0.

A.4.7 Befehl stw_zeitschrittverf

Übersicht

stw_zeitschrittverf, art, param1, param2 — Festlegung des Zeitschrittverfahrens.

Argument

art [w,impldyn]

Auswahl eines impliziten Zeitschrittverfahrens mit impldyn und eines expliziten Zeitschrittverfahrens mit expldyn (nicht implementiert)

param1 [f, 0.25]

Erster Parameter des Newmark-Zeitschrittverfahrens (β)

param2 [f, 0.5]

Zweiter Parameter des Newmark-Zeitschrittverfahrens (γ)

A.4.8 Befehl stw_m

Übersicht

stw_m, bmasse, konzfak — Einstellungen zur Berücksichtigung der Massenträgheit.

Argument

bmasse [b, W]

Masse berücksichtigen?

konzfak [f, 0.]

Konzentrationsfaktor der Massenmatrix, 1. für vollständig auf Hauptdiagonale konzentrierte Massenmatrix, 0. für konsistente Massenmatrix

Anmerkungen

Bei Wahl von bmasse=F werden weder Massenmatrizen noch Massenkräfte berücksichtigt.

A.4.9 Befehl stw_strafverf

Übersicht

stw_strafverf, bstrafverf, param — Einstellungen zum Strafverfahren.

Argument

bstrafverf [b, ₩] Alle wesentlichen RBs über Strafverfahren berücksichtigen?

param [f, 1.E6] Strafparameter

Anmerkungen

Je nach verwendetem Berechnungsverfahren und der Art der Verschiebungsrandbedingungen können diese zum Teil auch ohne Strafverfahren berücksichtigt werden. Bei Wahl von bstrafverf = W wird das Strafverfahren stets für alle Verschiebungsrandbedingungen verwendet.

A.4.10 Befehl stw_kontakt

Übersicht

stw_kontakt, bkont, ggrenz, straffunkparam — Einstellungen zum Kontakt.

Argument

bkont [b,F]
Kontakt verwenden?
ggrenz [f, 1.]
Grenze für Eindringung
straffunkparam [F, (1.E6)]
Strafparameter

Anmerkungen

Bei einer sinnvollen Wahl des Strafparameters dringen Knoten nur sehr wenig in Kontaktoberflächen ein. Überschreiten Knoten die mit dem Parameter *ggrenz* vorgegebene Grenze für die Eindringung, so wird davon ausgegangen, dass die Knoten nicht in die Kontaktoberfläche eingedrungen sind, sondern sich aus anderen Gründen (z.B. komplexe Geometrie) hinter der Kontaktoberfläche befinden. Diese Knoten werden daher beim Kontakt übergangen.

A.4.11 Befehl stw_nummattangente

Übersicht

stw_nummattangente, *bnummattang* — Einstellungen zur numerischen Materialtangente.

Argument

bnummattang [b,F] Numerische Materialtangente verwenden?

dz [f, 1.E-8]

Parameter zur Berechnung der numerischen Materialtangente

Anmerkungen

Die Berechnung der numerischen Tangente wird im Abschnitt 7.2.4 im Zusammenhang mit dem diskretisierten Newton-Verfahren beschrieben.

A.4.12 Befehl stw_wolken

Übersicht

stw_wolken, ng, bvollst, a_mpu, a_ipu, a_kno — Einstellungen zu elementfreien Ansätzen (MLS-Approximation).

ng [u, 1]

Polynomgrad der Funktionsbasis, zulässig sind die Polynomgrade 0 bis 4

bvollst [b, F]

Funktionsbasis vollständig bis zum gewählten Polynomgrad?

a_mpu [*f*, 3.25]

Wichtungsfunktionsüberlappungsparameter für Ansätze mit Materialpunkten als Stützpunkte

a_ipu [*f*, 3.25]

Wichtungsfunktionsüberlappungsparameter für Ansätze mit Integrationspunkten als Stützpunkte

a_kno [*f*, 3.25]

Wichtungsfunktionsüberlappungsparameter für Ansätze mit Knoten als Stützpunkte

Anmerkungen

Als Basisfunktionen dienen Monome (siehe Abschnitt 5.5.2), die sich im zweidimensionalen Fall in Form eines Pascaleschen Dreiecks anordnen lassen. Wird bvollst=Fgewählt, so werden die Basisfunktionen den ersten ng+1 Zeilen des Pascaleschen Dreiecks entnommen. Mit bvollst=W werden zusätzlich die Monome des dreiecksförmigen Bereiches unterhalb der (ng+1)-ten Zeile des Pascaleschen Dreiecks der Funktionsbasis hinzugefügt. Letztere Einstellung führt zu numerischen Schwierigkeiten bei der Berechnung der MLS-Ansatzfunktionen und sollte daher nicht verwendet werden.

Welche der Parameter *a_mpu*, *a_ipu* und *a_kno* benötigt werden, hängt vom Berechnungsverfahren ab.

A.4.13 Befehl stw_bneuberech

Übersicht

stw_bneuberech, bneuberech — Einstellung, ob Neuberechnung oder Aufsetzen auf Restart-Datei erfolgen soll.

bneuberech [b, W] Neuberechnung?

Anmerkungen

Aufsetzen auf Restart-Datei ist nicht implementiert.

A.4.14 Befehl stw_uebtragrichtstart

Übersicht

stw_uebtragrichtstart, *uebtragrichtstart* — Einstellung zur Datenübertragungsrichtung beim Berechnungsbeginn.

Argumente

uebtragrichtstart [w, kno_zu_mpu] Bei kno_zu_mpu Datenübertragung von Knoten zu Materialpunkten, bei mpu_zu_kno Datenübertragung von Materialpunkten zu Knoten

Anmerkungen

Einstellung hat nur Auswirkung auf Methoden, bei denen die Knoten nicht körperfest sind.

A.4.15 Befehl stw_numplus

Übersicht

stw_numplus, *dnum_mpu*, *dnum_ipu*, *dnum_kno*, *dnum_ele* — Erhöht Objektnummern.

dnum_mpu [u, 0] Zahl, um die alle Materialpunktnummern erhöht werden dnum_ipu [u, 0] Zahl, um die alle Integrationspunktnummern erhöht werden dnum_kno [u, 0] Zahl, um die alle Knotennummern erhöht werden dnum_ele [u, 0] Zahl, um die alle Elementnummern erhöht werden

Anmerkungen

Sollen die Ausgabedaten mehrerer Berechnungen kombiniert werden, um sie gemeinsam mit einem Postprocessing-Tool zu visualisieren, so kann mit Hilfe des Befehls stw_numplus ohne größere Änderungen an den Eingabedateien sichergestellt werden, daß die Objektnummern in der zusammengefügten Ausgabedatei eindeutig sind.

A.4.16 Befehl stw_t

Übersicht

stw_t, ta, te, dt, nt, tta, dtkontakt — Einstellungen zur zeitlichen Diskretisierung.

Argumente

ta [f, 0.]Zeit am Berechnungsbeginn te [f, 0.]

Zeit am Berechnungsende

dt [f, 0.]Zeitschrittlänge nt [u, 1]

Anzahl Zeitschritte

tta [u, 0]

Zeitschrittnummer am Berechnungsanfang

dtkontakt [f, 0.]

Zeitschrittlänge bei Kontakt, ohne Angabe gilt dtkontakt = dt

Anmerkungen

Es ist nur die Eingabe eines Teiles der Argumente notwendig, da die Argumente voneinander abhängen. Fehlende Angaben werden vom Programm ergänzt.

A.4.17 Befehl stw_zstrg

Übersicht

stw_zstrg, bzstrg, unterteilung, tiefe — Einstellungen zur Zeitschrittsteuerung.

Argumente

bzstrg [b, W] Zeitschrittsteuerung verwenden?

unterteilung [u,2] Zeitschrittunterteilung bei Zeitschrittverfeinerung

tiefe [u, 20]

Maximale Anzahl Zeitschrittverfeinerungsstufen

Anmerkungen

Die Zeitschrittsteuerung wird in Abschnitt 7.4 beschrieben.

A.4.18 Befehl stw_t_aus_dat

Übersicht

stw_t_aus_dat, bimmer, dt, tlist, dnt, ttlist — Einstellungen zu Datenausgaben.

bimmer [b, F]

Stets ausgeben? bimmer=W bewirkt Ausgaben in jedem erfolgreich abgeschlossenen Zeitschritt

dt [f, 0.]

Zeitdifferenz zwischen Ausgaben

tlist [F, ()]Zeitpunkte für Ausgaben

dnt [u, 0]

Zeitschrittdifferenz zwischen Ausgaben

ttlist [U, O]

Zeitschritte für Ausgaben

A.4.19 Befehl stw_t_aus_ktr

Übersicht

stw_t_aus_ktr, *bimmer*, *dt*, *tlist*, *dnt*, *ttlist* — Einstellungen zu Kontrollausgaben.

Argumente

bimmer [b, F]

Stets ausgeben? bimmer=W bewirkt Ausgaben in jedem erfolgreich abgeschlossenen Zeitschritt

 $dt \ [f \ , \texttt{O.}]$

Zeitdifferenz zwischen Ausgaben

tlist [F, ()]

Zeitpunkte für Ausgaben

 $dnt \,\left[\,u\,, \mathsf{O}\,\right]$

Zeitschrittdifferenz zwischen Ausgaben

ttlist [U, ()]

Zeitschritte für Ausgaben
A.4.20 Befehl stw_autodtparam

Übersicht

stw_autodtparam, paramlist — Angaben zur Zeitschrittlängenabschätzung.

Argumente

```
paramlist [F, (1., 1., 1., 1., 1., 0.)]
Länge, Breite, Dicke, kleinste Elementabmessung, Dichte, E-Modul, Quer-
kontraktionszahl
```

Anmerkungen

Werden keine hinreichenden Angaben zur zeitlichen Diskretisierung über den Befehl stw_t gemacht, so kann eine sinnvolle Zeitschrittlänge vom Programm geschätzt werden, wenn über den Befehl stw_autodtparam für das Problem charakteristische Werte angegeben werden.

Als sinnvolle Zeitschrittlänge wird ein Viertel der Periodendauer der Kompressionswelle im kleinsten Element angenommen. Hierzu werden als Angaben die kleinste Elementabmessung, die Dichte, der E-Modul und die Querkontraktionszahl benötigt. Zusätzlich werden zum Vergleich die Periodendauern der freien Längsschwingung und der freien Querschwingung (Biegeschwingung) berechnet und in die Kontrollausgabedatei geschrieben. Hierzu sind (wenn dies beim zu berechnenden Problem sinnvoll ist) zusätzlich charakteristische Werte für Länge, Breite und Dicke anzugeben.

A.4.21 Befehl stw_gleichloes_bil

Übersicht

stw_gleichloes_bil, *loeser* — Auswahl des Gleichungslösers zur Lösung des linearisierten globalen Gleichungssystems innerhalb der Bilanziteration.

Argument

```
loeser [w, profil]
Löser
```

Argument	Verfahren	Erforderliche Matrixeigenschaften
loeser		
gauss	Gauß-Algorithmus	regulär
lu	LU-Zerlegung	regulär
profil	Cholesky-Zerlegung,	regulär, symmetrisch, positiv definit
	Profilspeichertechnik	
svd	Singulärwertzerlegung	_

Tabelle A.2: Gleichungslöser

Anmerkungen

Die Auswahlmöglichkeiten für das Befehlsargument *loeser* zeigt Tabelle A.2.

A.4.22 Befehl stw_gleichloes_mat

Übersicht

stw_gleichloes_mat, *loeser* — Auswahl des Gleichungslösers zur Lösung des linearisierten Materialgleichungssystems innerhalb der Materialiterationen.

Argumente

```
loeser [w,gauss]
Löser
```

Anmerkungen

Von den Auswahlmöglichkeiten für das Befehlsargument *loeser* nach Tabelle A.2 darf der Profillöser nicht verwendet werden, da er symmetrische Matrizen vorausetzt.

A.4.23 Befehl stw_gleichloes_ans

Übersicht

stw_gleichloes_ans, *loeser* — Auswahl des Gleichungslösers zur Berechnung der elementfreien Ansatzfunktionen.

loeser [w,gauss] Löser

Anmerkungen

Die Auswahlmöglichkeiten für das Befehlsargument loeser zeigt Tabelle A.2.

A.4.24 Befehl stw_bilanzit

Übersicht

stw_bilanzit, maxnit, schranke_normdU, schranke_normG, bkonvkontr, minkonv — Einstellungen für die globale Iteration.

Argumente

maxnit [u, 10] Maximale Anzahl Iterationsschritte im Zeitschritt

 $schranke_normdU[f, 1.E-6]$

Abbruchschranke der Iteration, Norm der Verbesserung des Unbekanntenvektors im Iterationsschritt

 $schranke_normG[f, 1.E-6]$

Abbruchschranke der Iteration, Norm des Residualvektors im Iterationsschritt (nicht verwendet)

bkonvkontr [b, F]

Konvergenzrate kontrollieren?

```
minkonv [f, 1.]
```

Minimale Konvergenzrate

Anmerkungen

Ist die Konvergenzkontrolle eingeschaltet (bkonvkontr=W), so wird ab dem zweiten Iterationschritt kontrolliert, ob die geforderte Konvergenzrate eingehalten wird. Andernfalls wird die Iteration abgebrochen und die Berechnung mit reduzierter Zeitschrittlänge fortgesetzt.

A.4.25 Befehl stw_matit

Übersicht

stw_matit, maxnit, schranke_normdz, schranke_normr, bkonvkontr, minkonv — Einstellungen für die Materialiteration.

Argumente

maxnit [u, 10] Maximale Anzahl Iterationsschritte

schranke_normdz [f, 1.E-6]

Abbruchschranke der Iteration, Norm der Verbesserung des Vektors der zusätzlichen (inneren) Variablen im Iterationsschritt

```
schranke_normr [f, 1.E-6]
```

Abbruchschranke der Iteration, Norm des Residualvektors im Iterationsschritt

bkonvkontr [b, F]

Konvergenzrate kontrollieren?

```
minkonv [f, 1.]
```

Minimale Konvergenzrate

Anmerkungen

Die Iteration wird beendet, wenn beide Abbruchschranken erfüllt sind.

Ist die Konvergenzkontrolle eingeschaltet (bkonvkontr=W), so wird ab dem zweiten Iterationschritt kontrolliert, ob die geforderte Konvergenzrate eingehalten wird. Andernfalls werden die Materialiteration und die globale Iteration abgebrochen und die Berechnung wird mit reduzierter Zeitschrittlänge fortgesetzt.

A.4.26 Befehl stw_schrankefliess

Übersicht

stw_schrankefliess, schranke — Einstellung zur Fließbedingung.

schranke [f, -1.E-12] Schranke fuer Fließbedingung

Anmerkungen

Die Materialiteration bei elastoplastischem Materialverhalten zeigt ein besseres Konvergenzverhalten, wenn in der Fliessbedingung nicht mit 0, sondern mit einem sehr kleinen negativen Wert verglichen wird.

A.4.27 Befehl mat

Übersicht

mat, num, mattyp, matkennwerte, farbe — Erzeugt Material-Objekt.

Argumente

num [u, 0]Nummer des Materials

mattyp [u, 1] Materialtyp

matkennwerte [*F*, (1., 1., 0., 1., 0.)] Materialkennwerte

farbe [u, 1]

Kennzeichnung

Anmerkungen

Tabelle A.3 zeigt die zur Verfügung stehenden Materialmodelle und die dazugehörigen Materialparameter. Mit dem Argument *num* wird dem Material eine Zahl zugeordnet, über die in anderen Befehlen Bezug auf das Material-Objekt genommen werden kann.

Tabelle A.3: Materialmodelle und Materialparameter

A.4.28 Befehl mpu

Übersicht

mpu, num, matnum, vol, x0, u, ut, utt, z, farbe — Erzeugt Materialpunkt.

Argumente

num [u, 0]Nummer des Materialpunktes

 $matnum \; \left[\; u \; , \mathsf{1} \;
ight]$

Nummer des zugeordneten Materials

vol [f, 1.]

Volumen

 $x\theta [F, ()]$

Materialpunktposition in Referenzkonfiguration

u [F, O]
Verschiebung am Berechnungsanfang
ut [F, O]
Geschwindigkeit am Berechnungsanfang
utt [F, O]
Beschleunigung am Berechnungsanfang
z [F, ()]
zusätzliche Variablen am Berechnungsanfang
$farbe \ [\ u \ , 1 \]$
Kennzeichnung
A.4.29 Befehl kno

Übersicht

kno, num, res, vol, x0, u, ut, utt, z, farbe — Erzeugt Knoten.

Argumente

```
num [u, 0]
       Nummer
res [u, 1]
       (reserviert)
vol [f, 1.]
       Volumen
x\theta [F, ()]
       Knotenposition in Referenzkonfiguration
u [F, \bigcirc]
       Verschiebung am Berechnungsanfang
ut [F, O]
       Geschwindigkeit am Berechnungsanfang
utt [F, O]
       Beschleunigung am Berechnungsanfang
z [F, ()]
       Zusätzliche Variablen am Berechnungsanfang
farbe [u, 1]
       Kennzeichnung
```

A.4.30 Befehl eletyp

Argument	Elementgestalt
form	
dreieck	Dreieck
viereck	Viereck

Tabelle A.4: Geometrische Elementformen

Argument ansfunkx	Ansatzfunktionstyp	
oder ansfunku		
lagro1	Lagrange, linear	
lagro2	Lagrange, quadratisch	
lagro3	Lagrange, kubisch	
sereo1	Serendipity, linear $^{\rm 1}$	
sereo2	Serendipity, quadratisch	
sereo3	Serendipity, kubisch	
1 identical mit Lemenne lineen		

identisch mit Lagrange, linear

Tabelle A.5: Elementansatzfunktioner	n
--------------------------------------	---

Argument	Argument	Argument	Elementart
form	ans funkx	ans funku	
dreieck	lagro1	lagro1	isoparametrisch
viereck	lagro1	lagro1	
	lagro2	lagro2	
	lagro3	lagro3	
	sereo2	sereo2	
	sereo3	sereo3	
	lagro1	lagro2	subparametrisch
	lagro1	lagro3	
	lagro2	lagr01	superparametrisch
	lagro3	lagr01	

Tabelle A.6: Kombinationen der Elementansätze für Geometrie und Unbekannte

Übersicht

eletyp, *num*, *form*, *ansfunkx*, *ansfunku*, *iputyp*, *nipu*, *farbe* — Definition eines Elementtypes.

Argument	Integrationsart	zul. Werte für Argument <i>nipu</i>	
iputyp		form=dreieck	form=viereck
leer	(Punkte werden direkt definiert)	0	0
gauss	Gauß	1, 3, 4, 6, 7, 9, 12, 13	1, 3, 4, 7, 9, 16
newcotgeschl	Newton-Cotes geschlossen	3, 6, 10	4,9,16
rasteroffen regelmäßiges Raster offen		_	1, 4, 9, 16
rastergeschl	regelmäßiges Raster geschlossen	3, 6, 10	4,9,16

Tabelle A.7: Arten o	der numerischer	Integration
----------------------	-----------------	-------------

```
num [u,0]
```

Nummer des Elementtypes

form [w,viereck]

Geometrische Form

```
ansfunkx [w,lagr01]
```

Ansatzfunktionen zur Beschreibung der Geometrie

ansfunku [w,lagr01]

Ansatzfunktionen zur Beschreibung der Unbekannten

iputyp [w,gauss]

Art der numerischen Integration

```
nipu [u, 4]
```

Anzahl Integrationspunkte

```
farbe [u, 1]
Kennzeichnung
```

Anmerkungen

Die Auswahlmöglichkeiten für die Befehlsargumente form, ansfunkx, ansfunku, iputyp und nipu zeigen die Tabellen A.4 bis A.7.

A.4.31 Befehl ele

Übersicht

ele, num, matnum, eletypnum, knonumlist, farbe — Definition eines Elementes.

Argumente

num [u, 0]Nummer des Elementes matnum [u, 1]Nummer des zugeordneten Materials eletypnum [u, 1]Nummer des zugeordneten Elementtypes knonumlist [U, 0]Knotennummern farbe [u, 1]Kennzeichnung

A.4.32 Befehl ele_c

Übersicht

ele_c, *elenumlist*, *farbe* — Kennzeichnung von Elementen.

Argumente

elenumlist [U, ()]Elementnummern

farbe [u, 1]

Kennzeichnung

A.4.33 Befehl pu_u

Übersicht

pu_u, puobjtyp, punumlist, ulist — Festlegung der Verschiebung von Punkten am Berechnungsanfang.

puobjtyp [w, kno]

Objekttyp, kno für Knoten oder mpu für Materialpunkt

punumlist [U, O]

Objektnummern

 $u \ [F, ()]$ Anfangsverschiebung

A.4.34 Befehl pu_ut

Übersicht

pu_ut, puobjtyp, punumlist, utlist — Festlegung der Geschwindigkeit von Punkten am Berechnungsanfang.

Argumente

 $puobjtyp \;[\;w\;,\texttt{kno}\;]$

Objekttyp, kno für Knoten oder mpu für Materialpunkt

punumlist [U, O]

Objektnummern

ut [F, ()]

Anfangsgeschwindigkeit

A.4.35 Befehl pu_utt

Übersicht

pu_utt, puobjtyp, punumlist, uttlist — Festlegung der Beschleunigung von Punkten am Berechnungsanfang.

Argumente

 $utt \ [F, ()]$ Anfangsbeschleunigung

A.4.36 Befehl pu_z

Übersicht

pu_z, *puobjtyp*, *punumlist*, *zustvarlist* — Festlegung der zusätzlichen Variablen von Punkten am Berechnungsanfang.

Argumente

puobjtyp [w, kno]

Objekttyp, kno für Knoten oder mpu für Materialpunkt

punumlist [U, ()]

Objektnummern

z [F, O]

zusätzliche (innere) Variablen

A.4.37 Befehl pu_c

Übersicht

pu_c, puobjtyp, punumlist, farbe — Kennzeichnung von Punkten.

Argumente

 $puobjtyp \; [\; w \; , \texttt{kno} \;]$ Objekttyp, <code>kno</code> für Knoten, <code>mpu</code> für Materialpunkt und <code>ipu</code> für Integrationspunkt

punumlist [U, ()]Objektnummern

farbe [u, 1]

Kennzeichnung

Argument	Last wirkt auf
puobjtyp	
kno	Knoten
mpu	Materialpunkt

Tabelle A.8: Punktlastziele

Argument	Lastart
lastart	
beschleunigung	massenbezogene Kraft
kraft	Kraft
verschiebung	Verschiebung

Tabelle A.9: Punktlastarten

Argument	Funktion	Argument
funktyp		funkparamlist
kon	Polynom Grad 0	(Konstante)
lin	Polynom Grad 1	(linker Randwert, rechter Randwert)
qua	Polynom Grad 2	(linker Randwert, rechter Randwert,
		Wert in Zeitintervallmitte)
kub	Polynom Grad 3	(linker Randwert, rechter Randwert,
		linker Randwert der Ableitung,
		rechter Randwert der Ableitung)
sin	Sinusfunktion	(Amplitude, Periode,
		zeitliche Verschiebung, additive Konstante)
COS	Kosinusfunktion	(Amplitude, Periode,
		zeitliche Verschiebung, additive Konstante)

A.4.38 Befehl punktlast

Übersicht

punktlast, num, puobjtyp, lastart, punumlist, richtung, funktyp, zeitlist, funkparamlist — Definition einer Punktlast.

```
num [u, 0]
       Nummer der Punktlast
puobjtyp [w, kno]
       Objekttyp, kno für Knoten oder mpu für Materialpunkt
lastart [w, kraft]
       Lastart
punumlist [U, ()]
       Punktnummern
richtung [f, 0.]
       Richtung in Grad bezüglich der globalen x-Achse
funktyp [w, kon]
       Funktionstyp
zeitlist [F, (0., 0.)]
       Anfangszeit und Endzeit
funkparamlist [F, (0.)]
       Funktionsparameter
```

Anmerkungen

Die Auswahlmöglichkeiten für die Befehlsargumente *puobjtyp*, *lastart* und *funktyp* zeigen die Tabellen A.4.38 bis A.4.38.

A.4.39 Befehl konlin

Übersicht

konlin, num, puobjtyp, konlintyp, punumlist — Definition einer Kontaktlinie.

Argumente

num [u,0] Nummer der Kontaktlinie puobjtyp [w,kno] Punktobjekttyp konlintyp [w,splele] Kontaktlinientyp punumlist [U, ()] Punktnummern

Anmerkungen

Das Argument *puobjtyp* bestimmt, welche Objekte (kno für Knoten oder mpu für Materialpunkte) mit der Kontaktlinie in Kontakt treten können.

Die Kontaktlinien setzen sich aus Hermite-Elementen zusammen, deren Knoten entweder auf den Mitten linearer Stützelemente (*konlintyp*=**splele**) oder auf den Knoten dieser Stützelemente (*konlintyp*=**splkno**) liegen.

Die im Argument *punumlist* übergebenen Punktobjektnummern definieren einen polygonalen Linienzug aus linearen Stützelementen. Die Punktobjekte, in der Regel handelt es sich um Knoten, müssen bereits definiert sein.

Eine ausführliche Beschreibung der Kontaktlinien findet sich in Abschnitt 6.3.2.

Abbildungsverzeichnis

1.1	Beispiele für Umformprozesse	2
3.1	Netzausschnitte zu Methoden 1a (FEM) und 1b (FPM)	18
3.2	Netzausschnitte zu Methoden 2a (MPM) und 2b	18
3.3	Netzausschnitte zu Methoden 3a und 2b	19
4.1	Viskoelastische 2-Element-Körper	27
4.2	Viskoelastische 3- und 4-Element-Körper	27
4.3	Zener-M-Körper	28
4.4	Elastoplastischer Körper	29
4.5	Elastoplastisch-viskoser Körper	30
4.6	We sentliche Randbedingungen und Kontaktbedingungen $\ . \ . \ .$.	33
4.7	Beispiele für Umformprozesse	33
4.8	Strafverfahren, Geometrie einer Verschiebungsrandbedingung	34
4.9	Strafverfahren, Geometrie einer Kontaktbedingung	35
4.10	Strafverfahren, Federkraftgesetz für wesentliche Randbedingung $\ .\ .$	37
4.11	Strafverfahren, Federkraftgesetz für Kontaktbedingung $\ . \ . \ . \ .$	37
5.1	Krummlinig berandetes Viereckselement	43
5.2	Krummlinig berandetes Dreieckselement	43
5.3	Punkt in konvex polygonal begrenztem Element	46
5.4	Fehlerfunktion und Gammafunktion	54

5.5	Normierte Wichtungsfunktionen (Exponentialfunktion und Polynom 2 <i>n</i> -ten Grades), 1D	55
5.6	Normierte Wichtungsfunktion (Exponentialfunktion), 1D	56
5.7	Normierte Wichtungsfunktion (Polynom 2 n -ten Grades), 1D \ldots	57
5.8	Normierte Wichtungsfunktion (Exponentialfunktion), 2D $\ldots\ldots\ldots$	58
5.9	Normierte Wichtungsfunktion (Polynom 2 <i>n</i> -ten Grades), 2D \ldots .	59
5.10	Netzausschnitte zur elementnetzfreien FPM und zur FEM $\ .\ .\ .$.	65
6.1	Hermite-Element	74
6.2	Hermite-Ansatzfunktionen und ihre Ableitungen	75
6.3	Hermite-Element, Einfluss des Tangentenwichtungsfaktors	77
6.4	Kontaktliniendiskretisierung Variante 1 und 2 $\ldots \ldots \ldots \ldots \ldots$	78
6.5	Hermite-Interpolation eines Kreises	79
6.6	Hermite-Interpolation eines Quadrates mit abgerundeten Ecken $\ .\ .$.	80
6.7	Hermite-Element, Geometrie einer Kontaktbedingung	82
7.1	Zeitschrittsteuerung, Zeitunterteilung	105
9.1	Berechnungsbeispiele	111
9.2	Beispiel Quadratscheibe unter Teillast, System	113
9.3	Diskretisierung mit finiten Punkten	114
9.4	Beispiel Quadratscheibe, MLS-Ansatzfunktionsordnung 0, Variation des Wichtungsfunktionsüberlappungsparameters	117
9.5	Beispiel Quadratscheibe, MLS-Ansatzfunktionsordnung 1, Variation des Wichtungsfunktionsüberlappungsparameters	118
9.6	Beispiel Quadratscheibe, MLS-Ansatzfunktionsordnung 2, Variation des Wichtungsfunktionsüberlappungsparameters	119
9.7	Beispiel Quadratscheibe, MLS-Ansatzfunktionsordnung 3, Variation des Wichtungsfunktionsüberlappungsparameters	120
9.8	Beispiel Quadratscheibe, MLS-Ansatzfunktionsordnung 4, Variation des Wichtungsfunktionsüberlappungsparameters	121

9.9	Beispiel Quadratscheibe unter Teillast, Konvergenzvergleich FEM, FPM123 $$
9.10	Beispiel Quadratscheibe, Zeitmessungen, FPM und FEM, Variation der räumlichen Diskretisierung
9.11	Beispiel Quadratscheibe, Zeitmessungen, FPM und FEM, Variation der räumlichen Diskretisierung
9.12	Beispiel Quadratscheibe, Zeitmessungen, FPM, Variation des Wich- tungsfunktionsüberlappungsparameters und der räumlichen Diskreti- sierung
9.13	Beispiel Extrusion, System
9.14	Beispiel Extrusion, verformte Netze und Dehnung, FPM
9.15	Beispiel Extrusion, verformte Netze und Dehnung, FEM 131
9.16	Beispiel Extrusion, Zeitmessungen, FPM und FEM, Variation der räumlichen Diskretisierung
9.17	Beispiel Extrusion, Verzerrung und Spannung, FPM und FEM, Variation der räumlichen Diskretisierung
9.18	Beispiel Extrusion, Verzerrung und Spannung, FPM und FEM, Variation der räumlichen Diskretisierung
9.19	Beispiel Extrusion, Verschiebung, FPM und FEM, Variation räumli- chen Diskretisierung
9.20	Beispiel Tiefziehen, System
9.21	Beispiel Tiefziehen, verformte Netze und Dehnung, FPM
9.22	Beispiel Tiefziehen, verformte Netze und Dehnung, FEM
9.23	Beispiel Tiefziehen, verformte Netze und Dehnung, FPM
9.24	Beispiel Tiefziehen, verformte Netze und Dehnung, FEM
9.25	Beispiel Aufprall, System
9.26	Beispiel Aufprall, Zeitmessungen, FPM und FEM, Variation der Zeit- schrittlänge und der räumlichen Diskretisierung
9.27	Beispiel Aufprall, verformte Netze und akkumulierte plastische Deh- nung, FPM und FEM, grobe Diskretisierung
9.28	Beispiel Aufprall, verformte Netze und akkumulierte plastische Deh- nung, FPM und FEM, feine Diskretisierung

9.29	Beispiel Aufprall, Geschwindigkeit und Verschiebung, FPM und
	FEM, Variation der Zeitschrittlänge
9.30	Beispiel Aufprall, Verzerrung und Spannung, FPM und FEM, Varia- tion der Zeitschrittlänge
	tion der Zeitschrittlange
9.31	Beispiel Aufprall, Geschwindigkeit und Verschiebung, FPM und
	FEM, Variation räumlichen Diskretisierung

Tabellenverzeichnis

3.1	Methoden und Ansatzfunktionen 1	.6
3.2	Symbole	7
4.1	Rheologische Grundelemente	26
5.1	Fallunterscheidung bei der Bestimmung der (pseudo)inversen Ele- mentansatzfunktionsmatrix	18
5.2	Eigenschaften der Approximation von Elementknotenwerten über die (pseudo)inverse Elementansatzfunktionsmatrix	60
5.3	Wichtungsfunktionen und Faktoren zur Normierung	53
5.4	Grundwerte der Wichtungsfunktionsfunktionsbereiche für regelmäßi- ge Punktgitter	60
5.5	Grundwerte der Wichtungsfunktionsfunktionsbereiche für unregelmäßige Punktgitter	61
5.6	Funktionsbasen im Zweidimensionalen	52
5.7	Basisfunktionsanzahl	52
5.8	Vergleich der Ansätze zur räumlichen Diskretisierung in FPM und FEM 6	55
8.1	Einheitensysteme	.0
9.1	Beispiel Quadratscheibe unter Teillast, Verschiebungen in Abhängig- keit vom Wichtungsfunktionsüberlappungsparameter	6
9.2	Optimaler Wichtungsfunktionsüberlappungsparameter in Abhängig- keit von der Ansatzfunktionsordnung	-6
9.3	Beispiel Quadratscheibe unter Teillast, Diskretisierungen 12	22

A.1	Formate der Argumente von Eingabebefehlen	52
A.2	Gleichungslöser	67
A.3	Materialmodelle und Materialparameter	71
A.4	Geometrische Elementformen	73
A.5	Elementansatzfunktionen	73
A.6	Kombinationen der Elementansätze für Geometrie und Unbekannte . 1	73
A.7	Arten der numerischen Integration	74
A.8	Punktlastziele	78
A.9	Punktlastarten	78
A.10	Punktlastfunktionen	78

Literaturverzeichnis

- Altenbach, J., H. Altenbach (1994). Einführung in die Kontinuumsmechanik. Teubner, Stuttgart.
- Askes, H., E. C. Aifantis (2002). Numerical modeling of size effects with gradient elasticity - Formulation, meshless discretization and examples. *International Journal of Fracture*, 117:347–358.
- Askes, H., J. Pamin, R. de Borst (2000). Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models. *International Journal for Numerical Methods in Engineering*, 49:811–832.
- Babuska, I. (1973a). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20:179–192.
- Babuska, I. (1973b). The finite element method with penalty. *Mathematics of Computation*, 122:221–228.
- Babuska, I., J. M. Melenk (1997). The partition of unity method. International Journal for Numerical Methods in Engineering, 40:727–758.
- Bardenhagen, S. G., J. U. Brackbill, D. Sulsky (2000). The material-point method for granular materials. *Computer Methods in Applied Mechanics and Engineering*, 187:529–541.
- Bathe, K.-J. (2002). Finite-Elmente-Methoden. Springer.
- Belytschko, T., W. J. T. Daniel, G. Ventura (2002). A monolithic smoothing-gap algorithm for contact-impact based on the signed distance function.
- Belytschko, T., Fleming (1999). Smoothing, enrichment and contact in the elementfree Galerkin method. *Computers and Structures*, 71:173–195.
- Belytschko, T., Y. Krongauz, J. Dolbow, C. Gerlach (1998). On the completeness of meshfree particle methods. *International Journal for Numerical Methods in Engineering*, 43:785–819.

- Belytschko, T., Y. Krongauz, D. Organ, Fleming, Krysl (1996). Meshless methods: An overview and recent developments. *Computer Methods in Applied Mechanics* and Engineering, 139:3–47.
- Belytschko, T., Y. Y. Lu, L. Gu (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37:229–256.
- Belytschko, T., Y. Y. Lu, L. Gu (1995a). Crack propagation by element-free Galerkin methods. *Engineering Fracture Mechanics*, 51,2:295–315.
- Belytschko, T., Y. Y. Lu, L. Gu, M. Tabarra (1995b). Element-free Galerkin methods for static and dynamic fracture. *International Journal of Solids and Structures*, 32,17/18:2547–2570.
- Belytschko, T., D. Organ, C. Gerlach (2000). Element-free Galerkin methods for dynamic fracture in concrete. Computer Methods in Applied Mechanics and Engineering.
- Bonet, J., S. Kulasegaram (2000). Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. *International Journal for Numerical Methods in Engineering*, 47:1189–1214.
- Bonet, J., S. Kulasegaram, M. X. Rodriguez-Paz, M. Profit (2004). Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. *Computational Mechanics: Theory and Applications*, 193:1245– 1256.
- Brackbill, J. U. (1987). On modeling angular and vorticity in compressible fluid flow. *Computer Physics Communications*, 47:1–.
- Brackbill, J. U. (1988). The ringing instability in particle-in-cell calculations of low speed flow. *Journal of Computational Physics*, 75:469–.
- Brackbill, J. U. (1991). FLIP-MHD: A particle-in-cell method for magnetohydrodynamics. Journal of Computational Physics, 96:163–192.
- Brackbill, J. U., D. B. Kothe, H. M. Ruppel (1988). FLIP: A low-dissipation, particlein-cell method for fluid flow. *Computer Physics Communications*, 48:25–38.
- Brackbill, J. U., H. M. Ruppel (1986). FLIP: A method for adoptively zoned, particle-in-cell calculations in two dimensions. *Journal of Computational Phy*sics, 65:314–343.

- Brezzi, F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d'automatique, informatique, recherche opérationnelle / Série rouge, 8:129–151.
- Brokken, F. B. (2003). C++ Annotations Version 5.2.1. Computer Center, University of Groningen, http://www.icce.rug.nl/documents/.
- Chadwick, P. (1999). Continuum Mechanics, Consise Theory and Problems. Dover Publications, Mineola, New York.
- Chen, J.-S., W. Han, Y. You, X. Meng (2003). A reproducing kernel method with nodal interpolation property. *International Journal for Numerical Methods in Engineering*, 56:935–969.
- Chen, J.-S., C. Pan, C.-T. Wu, W. K. Liu (1996). Reproducing kernel particle methods for large deformation analysis of non-linear structures. *Computational Mechanics: Theory and Applications*, 139:195–227.
- Cleveland, W. S. (1993). Visualizing Data. AT&T Bell Laboratories, Murray Hill, NJ.
- Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and Structures, vol 1. J. Wiley, Chichester.
- Crisfield, M. A. (1997). Non-linear Finite Element Analysis of Solids and Structures, vol. 2. J. Wiley, Chichester.
- Dettmer, W., D. Peric (2003). An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation. *Computational Mechanics: Theory and Applications*, 192:1177–1226.
- Dhatt, G., G. Touzot, G. Cantin (1984). The Finite Element Method Displayed. John Wiley and Sons.
- Duarte, C. A., J. T. Oden (1995a). A review of some meshless methods to solve partial differential equations. Techn. Ber.
- Duarte, C. A., J. T. Oden (1995b). Hp clouds a meshless method to solve boundaryvalue problems. Techn. Ber.
- Duarte, C. A., J. T. Oden (1996). An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 139:237–262.

- El-Abbasi, N., S. Meguid, A. C. (2001). On the modelling of smooth contact surfaces using cubic splines.
- Engeln-Müllges, G., F. Uhlig (1996). Numerical Algorithms with C. Springer-Verlag.
- Fasshauer, G. E. (2004). Toward approximate moving least squares approximation with irregularly spaced centers. Computer Methods in Applied Mechanics and Engineering, 193:1231–1243.
- Fernández-Méndez, S., A. Huerta (2004). Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 193:1257–1275.
- Fries, T.-P., H.-G. Matthies (2004). Classification and Overview of Meshfree Methods. Techn. Ber.
- Gingold, R. A., J. J. Monaghan (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. *Monthly Notices of the Royal Astronomical Society*, 181:375–389.
- Girault, V. (1974). Theory of a finite difference method on irregular networks. SIAM Journal on Numerical Analysis, 11:260–282.
- Gordon, W. J., J. A. Wixom (1978). Shepard's method of 'metric interpolation' to bivariate and multivariate data. *Mathematics of Computation*, 32:253–264.
- Gorn, S. (1954). The Automatic Analysis and Control of Computing Errors. *Journal* of the Society for Industrial and Applied Mathematics, 2 (2):69–81.
- Griebel, M., M. A. Schweitzer (2002a). A particle-partition of unity method. Part V: Boundary conditions, 517–540. Springer-Verlag, Berlin.
- Griebel, M., M. A. Schweitzer, Hg. (2002b). Meshfree Methods for Partial Differential Equations, Bd. 26.
- Guilkey, J. E., J. A. Weiss (2003). Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method. *International Journal for Numerical Methods in Engineering*, 57:1323–1338.
- Gummert, P., K.-A. Reckling (1986). Mechanik. Vieweg, Braunschweig, Wiesbaden.
- Hansbo, P., M. G. Larson (2002). Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitschet's method. *Computer Methods in Applied Mechanics and Engineering*, 191:1895–1908.

- Harlow, F. H. (1964). The particle-in-cell computing method for fluid dynamics. Methods in computational physics, 3:319–343.
- Hibbitt, B. I., H. D.; Karlsson (1979). Analysis of Pipe Whip.
- Huerta, A., S. Fernández-Méndez (2000). Enrichment and coupling of the finite element and meshless methods. International Journal for Numerical Methods in Engineering, 48:1615–1636.
- Huerta, A., S. Fernández-Méndez, W. K. Liu (2004a). A comparison of two formulations to blend finite elements and mesh-free methods. *Computer Methods in Applied Mechanics and Engineering*, 193:1105–1117.
- Huerta, A., Y. Vidal, P. Villon (2004b). Pseudo-divergence-free Galerkin method for incompressible fluid flow. Computer Methods in Applied Mechanics and Engineering, 193:1119–1136.
- Johnson, G. R., S. R. Beissel (1996). Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering, 39:2725–2741.
- Knothe, K., H. Wessels (1991). *Finite Elemente*. Springer-Verlag, Berlin, Heidelberg.
- Krok, O. J., J. (1989). A unified approach to the adaptive meshless FDM and FEM. In Discretization methods in structural mechanics, 353–362. IUTAM Symposium.
- Kuhl, D. (1996). Stabile Zeitintegrationsalgorithmen in der nichtlinearen Elastodynamik dünnwandiger Tragwerke. Dissertation, Universität Stuttgart, Lehrstuhl für Baustatik.
- Lagally, M. (1964). Vorlesungen über Vektorrechnung. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig.
- Lancaster, P., H. Salkauskas (1981). Surfaces generated by moving least sqares methods. *Mathematics of Computation*, 37,155:141–158.
- Liszka, T. J. (1984). An interpolation method for an irregular net of nodes. *Inter*national Journal for Numerical Methods in Engineering, 20:1599–1612.
- Liszka, T. J., C. A. M. Duarte, W. W. Tworzydlo (1996). hp-Meshless cloud method. Computer Methods in Applied Mechanics and Engineering, 139:263–288.

- Liszka, T. J., J. Orkisz (1977). The finite difference method at arbitrary irregular meshes in non-linear problems of applied mechanics. In Proc. 4th Int. Conference on Structural Mechanics in Reactor Technology, San Francisco, California, Bd. M 3/8, 1–10.
- Liszka, T. J., J. Orkisz (1980). The finite difference method at arbitrary irregular grids and its application in applied mechanics. *Computers and Structures*, 11:83– 95.
- Liu, W. K., Y. Chen (1995). Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids, 21:901–933.
- Liu, W. K., Y. Chen, R. A. Uras, C. T. Chang (1996). Generalized multiple scale reproducing kernel particle methods. *Computer Methods in Applied Mechanics* and Engineering, 139:91–157.
- Liu, W. K., S. Jun, S. Li, J. Adee, T. Belytschko (1995a). Reproducing kernel particle methods for structural dynamics. *International Journal for Numerical Methods in Engineering*, 38:1655–1679.
- Liu, W. K., S. Jun, Y. F. Zhang (1995b). Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20:1081–1106.
- Liu, W. K., S. Li, T. Belytschko (1997). Moving least-square reproducing kernel methods; (I) Methodology and convergence. *Computer Methods in Applied Mechanics and Engineering*, 143:113–154.
- Liu, W. K., et al. (2004). Reproducing kernel element method. Part I Part IV. Computer Methods in Applied Mechanics and Engineering, 193:933–1034.
- Lu, Y. Y., T. Belytschko, L. Gu (1994). A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 113:397–414.
- McLain (1974). Drawing contours from arbitrary data points. *Computer Journal*, 17:318–324.
- Melenk, J. M., I. Babushka (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139:289–314.
- Mendez, B., A. Velazquez (2004). Finite point solver for the simulation of 2-D laminar incompressible unsteady flows. Computer Methods in Applied Mechanics and Engineering, 193:825–848.

- Meyers, S. (1997). Mehr Effektiv C++ programmieren. Addison-Wesley.
- Meyers, S. (1998). Effectiv C++ programmieren. Addison-Wesley.
- Monaghan, J. J. (1982). Why particle methods work. SIAM Journal on Scientific and Statistical Computing, 3(4):422–433.
- Monaghan, J. J. (1988). An introduction to SPH. Computer Physics Communications, 48:89–96.
- Monaghan, J. J., A. Kocharyan (1995). SPH simulation of multi-phase flow. Computer Physics Communications, 87:225–235.
- Moresi, L., F. Dufour, H.-B. Mühlhaus (2003). A Lagrangian integration point finite element method for large deformation modeling viscoelastic geomaterials. *Journal* of Computational Physics, 184:476–497.
- Nay, R. A., S. Utku (1972). An alternative for the finite element method. Bd. 3, 62–74. Variational methods in engineering : proceedings of an International Conference held at the University of Southampton 25th September, 1972.
- Nayroles, B., G. Touzot, P. Villon (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. *Computational Mechanics: Theory* and Applications, 10:307–318.
- Newmark, N. M. (1959). A method of computation for structural dynamics. In Proceedings of ASCE, Journal of Engineering Mechanics, Bd. 85, 67–94.
- Nitsche, J. (1970). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36:9– 15.
- Oden, J. T., C. A. M. Duarte, O. C. Zienkiewicz (1998). A new cloud-based hp finite element method. Computer Methods in Applied Mechanics and Engineering, 153:117–126.
- Onate, E., S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor (1996a). A Finite Point Method in Computational Mechanics. Applications to Convective Transport and Fluid Flow. *International Journal for Numerical Methods in Engineering*, 39:3839–3866.

- Onate, E., S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, C. Sacco (1996b). A stabilized finite point method for analysis of fluid mechanics problems. *Computer Methods in Applied Mechanics and Engineering*, 139:315–346.
- Pamin, J., H. Askes, R. de Borst (2003). Two gradient plasticity theories discretized with the element-free Galerkin method. *Computer Methods in Applied Mechanics* and Engineering, 192:2377–2403.
- Pavlin, V., N. Peronne (1975). Finite difference energy techniques for arbitrary meshes. Computers and Structures, 5:45–58.
- Perrone, N., R. Kao (1975). A general finite difference method for arbitrary meshes. Computers and Structures, 5:45–48.
- Prager, W. (1955). Probleme der Plastizitätstheorie.
- Press, W. H. (2002). Numerical Recipes in C++, The Art of Scientific Computing, Second Edition. Cambridge University Press.
- Puso, M. A., T. A. Laursen (2002). A 3D contact smoothing method using Gregory patches.
- Reckling, K. A. (1967). Plastizitätstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer-Verlag, Berlin, Heidelberg.
- Reese, S. (2000). Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitationsschrift, Universität Hannover, Institut für Baumechanik und Numerische Mechanik.
- Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In ACM National Conference, Proceedings, 517–524.
- Snell, C., D. G. Vesey, P. Mullord (1981). The application of a general finite difference method to some boundary value problems. *Computers and Structures*, 13:547–552.
- Stadler, M., G. A. Holzapfel, J. Korelc (2003). C1-continuous modelling of smooth contact surfaces using NURBS and application to 2D problems.
- Stroustrup, B. (2000). The C++ Programming Language, Special Edition. Addison-Wesley.
- Sulsky, D., A. Kaul (2004). Implicit dynamics in the material-point method. Computer Methods in Applied Mechanics and Engineering, 193:1137–1170.

- Sulsky, D., H. L. Schreyer (1996). Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. *Computer Methods* in Applied Mechanics and Engineering, 139:409–429.
- Sulsky, D., Zhou, H. L. Schreyer (1995). Application of a particle-in-cell method to solid mechanics. *Computer Physics Communications*, 87:236–252.
- Swegle, J. W., D. L. Hicks, S. W. Attaway (1995). Smoothed particle hydrodynamics stability analysis. *Journal of Computational Physics*, 116:123–134.
- Szabó, I. (1984a). Einführung in die Technische Mechanik. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- Szabó, I. (1984b). Höhere Technische Mechanik. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- Szyler, P. (1997). Numerische Mathematik, Teil 1 bis 3. Skript, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Institut für Analysis und Numerik.
- Tabbara, M., T. Blacker, T. Belytschko (1994). Finite element derivative recovery by moving lest square interpolants. *Computer Methods in Applied Mechanics and Engineering*, 117:211–223.
- Taylor, R. L., O. C. Zienkiewicz, Onate, E. (1998). A hierarchical finite element method based on the partition of unity. *Computer Methods in Applied Mechanics* and Engineering, 152:73–84.
- Trostel, R. (1993). Mathematische Grundlagen der Technischen Mechanik I, Vektorund Tensoralgebra. Vieweg, Braunschweig, Wiesbaden.
- Trostel, R. (1997). Mathematische Grundlagen der Technischen Mechanik II, Vektorund Tensoranalysis. Vieweg, Braunschweig, Wiesbaden.
- Trostel, R. (1999). Mathematische Grundlagen der Technischen Mechanik III, Materialmodelle in der Ingenieurmechanik. Vieweg, Braunschweig, Wiesbaden.
- Voß, H. (2001). Grundlagen der Numerischen Mathematik. Skript, Technische Universität Hamburg-Harburg, Arbeitsbereich Mathematik, www.tuharburg.de/mat/LEHRE/material/grnummath.pdf.
- Waller, H. (1989). Schwingungslehre für Ingenieure. BI-Wissenschaftsverlag.

- Wood, W. L. (1981). An alpha modification of newmark's method. International Journal for Numerical Methods in Engineering, 15:1562–1566.
- Wood, W. L. (1990). Practical Time-stepping Schemes. Clarendon Press, Oxford.
- Wriggers, P. (2001). Nichtlineare Finite-Element-Methoden. Springer.
- Wriggers, P., L. Krstulovic-Opara, J. Korelc (2001). Smooth C1-interpolations for two-dimensional frictional contact problems. *International Journal for Numerical Methods in Engineering*, 51:1469–1495.
- York II, A. R., D. Sulsky, H. L. Schreyer (1999). The material point method for simulation of thin membranes. *International Journal for Numerical Methods in Engineering*, 44:1429–1456.
- York II, A. R., D. Sulsky, H. L. Schreyer (2000). Fluid-membrane interaction based on the material point method. *International Journal for Numerical Methods in Engineering*, 48:901–924.
- Zavarise, G., P. Wriggers, B. A. Schrefler (1998). A method for solving contact problems. International Journal for Numerical Methods in Engineering, 42:473– 498.
- Zhu, T., S. N. Atluri (1998). A modified collocation method and a penalty formulation for enforcing the essential boundary in the element free Galerkin method. *Computational Mechanics: Theory and Applications*, 21 (3):211–222.
- Zienkiewicz, O. C., R. L. Taylor (2000a). The Finite Element Method, Volume 1, The Basics. Butterworth-Heinemann.
- Zienkiewicz, O. C., R. L. Taylor (2000b). The Finite Element Method, Volume 2, Solid Mechanics. Butterworth-Heinemann.
- Zienkiewicz, O. C., R. L. Taylor (2000c). The Finite Element Method, Volume 3, Fluid Mechanics. Butterworth-Heinemann.

Lebenslauf

Olaf Schilling	Am Panorama 1, 15834 Rangsdorf
29.01.1966	geboren in Berlin
08/1972 - 07/1978	Clemens-Brentano-Grundschule in Berlin Lichterfelde
08/1978 - 12/1984	Goethe-Oberschule (Gymnasium) in Berlin-Lichterfelde
01/1985 - 03/1985	Praktikum bei der SUSPA Spannbeton GmbH in Langenfeld/Rhld.
04/1985	Beginn des Bauingenieurstudiums mit der Fachrichtung Konstruktiver Ingenieurbau an der Technischen Universität Berlin
02/1988	Vordiplom
04/1988 - 03/1992	Studentischer Mitarbeiter mit Unterrichtsaufgaben am 1. Institut für Mechanik an der Technischen Universität Berlin
05/1992 - 11/1994	Studentischer Mitarbeiter bei der INPRO in Berlin
10/1993 - 09/2000	Selbstständige Tätigkeit als Programmierer Freiberuflicher Mitarbeiter in einem Statikbüro
03/2000	Hauptdiplom
10/2000 - 10/2005	Wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Numerische Mechanik und Simulationstechnik an der Ruhr-Universität Bochum
seit $11/2005$	CAE Ingenieur bei der TECOSIM in Rüsselsheim

Mitteilungen aus dem Institut für Mechanik

Nr.	1	Theodor Lehmann:Dezember 1976Große elasto-plastische Formänderungen
Nr.	2	Bogdan Raniecki/Klaus Thermann: Juni 1978 Infinitesimal Thermoplasticity and Kinematics of Finite Elastic-Plastic Deformations. Basic Con- cepts
Nr.	3	Wolfgang Krings: Januar 1976 Beitrag zur Finiten Element Methode bei linearem, viskoelastischem Stoffverhalten Stoffverhalten
Nr.	4	Burkhard Lücke: Januar 1976 Theoretische und experimentelle Untersuchen der zyklischen elastoplastischen Blechbiegung bei endlichen Verzerrungen
Nr.	5	Knut Schwarze: Februar 1976 Einfluß von Querschnittsverformungen bei dünnwandigen Stäben mit stetig gekrümmter Profilmit- tellinie
Nr.	6	Hubert Sommer: Januar 1977 Ein Beitrag zur Theorie des ebenen elastischen Verzerrungszustandes bei endlichen Formänderun- gen
Nr.	7	H. Stumpf/F. J. Biehl: März 1977 Die Methode der orthogonalen Projektionen und ihre Anwendungen zur Berechnung orthotroper Platten
Nr.	8	Albert Meyers: April 1977 Ein Beitrag zum optimalen Entwurf von schnellaufenden Zentrifugenschalen
Nr.	9	Berend Fischer: April 1977 Zur zyklischen, elastoplastischen Beanspruchen eines dickwandigen Zylinders bei endlichen Verzer- rungen
Nr.	10	Wojciech Pietraszkiewicz:Mai 1977Introduction to the Non-Linear Theory of Shells
Nr.	11	Wilfried Ullenboom:Juni 1977Optimierung von Stäben unter nichtperiodischer dynamischer BelastungJuni 1977
Nr.	12	Jürgen Güldenpfennig: Juli 1977 Anwendung eines Modells der Vielkristallplastizität auf ein Problem gekoppelter elastoplastischer Wellen
Nr.	13	Pawel Rafalski: März 1978 Minimum Principles in Plasticity
Nr.	14	Peter Hilgers: Juli 1978 Der Einsatz eines Mikrorechners zur hybriden Optimierung und Schwingungsanalyse
Nr.	15	Hans-Albert Lauert: August 1979 Optimierung von Stäben unter dynamischer periodischer Beanspruchung bei Beachtung von Span- nungsrestriktionen
Nr.	16	Martin Fritz: Juli 1979 Berechnund der Auflagerkräfte und der Muskelkräfte des Menschen bei ebenen Bewegungen auf- grund von kinematographischen Aufnahmen
Nr.	17	H. Stumpf/F. J. Biehl: Dezember 1979 Approximations and Error Estimates in Eigenvalue Problems of Elastic Systems with Application to Eigenvibrations of Orthotropic Plates

Nr. 18	Uwe Kohlberg: Juli 1979 Variational Principles and theirNumerical Application to Geometrically Nonlinear v. Karman Pla- tes
Nr. 19	Heinz Antes: Januar 1980 Über Fehler und Möglichkeiten ihrer Abschätzung bei numerischen Berechnungen von Schalentrag- werken
Nr. 20	Czeslaw Wozniak: März 1980 Large Deformations of Elastic and Non-Elastic Plates, Shells and Rods
Nr. 21	Maria K. Duszek: Juni 1980 Problems of Geometrically Non-Linear Theory of Plasticity
Nr. 22	Burkhard von Bredow:Dezember 1980Optimierung von Stäben unter stochastischer Erregung
Nr. 23	Jürgen Preuss: Februar 1981 Optimaler Entwurf von Tragwerken mit Hilfe der Mehrzielmethode Februar 1981
Nr. 24	Ekkehard Großmann: Februar 1981 Kovarianzanalyse mechanischer Zufallsschwingungen bei Darstellung der mehrfachkorrelierten Er- regungen durch stochastische Differentialgleichungen
Nr. 25	Dieter Weichert: März 1981 Variational Formulation and Solution of Boundary-Value Problems in the Theory of Plasticity and Application to Plate Problems
Nr. 26	Wojciech Pietraszkiewicz: Juni 1981 On Consistent Approximations in the Geometrically Non-Linear Theory of Shells Juni 1981
Nr. 27	Georg Zander: September 1981 Zur Bestimmung von Verzweigungslasten dünnwandiger Kreiszylinder unter kombinierter Längs- und Torsionslast
Nr. 28	Pawel Rafalski: September 1981 An Alternative Approach to the Elastic-Viscoplastic Initial-Boundary Value Problem
Nr. 29	Heinrich Oeynhausen: November 1981 Verzweigungslasten elastoplastisch deformierter, dickwandiger Kreiszylinder unter Innendruck und Axialkraft
Nr. 30	FJ. Biehl: Dezember 1981 Zweiseitige Eingrenzung von Feldgrößen beim einseitigen Kontaktproblem
Nr. 31	Maria K. Duszek: Juni 1982 Foundations of the Non-Linear Plastic Shell Theory
Nr. 32	Reinhard Piltner: Juli 1982 Spezielle finite Elemente mit Löchern, Ecken und Rissen unter Verwendung von analytischer Teillösungen
Nr. 33	Petrisor Mazilu: Dezember 1982 Variationsprinzipe der Thermoplastizität I. Wärmeausbreitung und Plastizität
Nr. 34	Helmut Stumpf: Dezember 1982 Unified Operator Description, Nonlinear Buckling and Post-Buckling Analysis of Thin Elastic Shells
Nr. 35	Bernd Kaempf: März 1983 Ein Exremal-Variationsprinzip für die instationäre Wärmeleitung mit einer Anwendung auf ther- moelastische Probleme unter Verwendung der finiten Elemente

Nr.	36	Alfred Kraft: Juli 1983 Zum methodischen Entwurf mechanischer Systeme im Hinblick auf optimales Schwingungsverhal- ten	
Nr.	37	Petrisor Mazilu: August 1983 Variationsprinzipe der Thermoplastizität II. Gekoppelte thermmomechanische Prozesse	
Nr.	38	Klaus-Detlef Mickley: November 1983 Punktweise Eingrenzung von Feldgrößen in der Elastomechanik und ihre numerische Realisierung mit Fundamental-Splinefuntionen	
Nr.	39	Lutz-Peter Nolte: Dezember 1983 Beitrag zur Herleitung und vergleichende Untersuchung geometrisch nichtlinearer Schalentheorien unter Berücksichtigung großer Rotationen	
Nr.	40	Ulrich Blix: Dezember 1983 Zur Berechnung der Einschnürung von Zugstäben unter Berücksichtigung thermischer Einflüsse mit Hilfe der Finite-Element-Methode	
Nr.	41	Peter Becker: Februar 1984 Zur Berechnung von Schallfeldern mit Elemtmethoden	
Nr.	42	Diemar Bouchard: Februar 1984 Entwicklung und Anwendung eines an die Diskrete-Fourier-Transformation angepaßten direkten Algorithmus zur Bestimmung der modalen Parameter linearer Schwingungssysteme	
Nr.	43	Uwe Zdebel: Dezember 1984 Theoretische und experimentelle Untersuchungen zu einem thero-plastischen Stoffgesetz	
Nr.	44	Jan Kubik: April 1985 Thermodiffusion Flows in a Solid with a Dominant Constituent	
Nr.	45	Horst J. Klepp: Juni 1985 Über die Gleichgewichtslagen und Gleichgewichtsbereiche nichtlinearer autonomer Systeme	
Nr.	46	J. Makowski/LP. Nolte/H. Stumpf: Juli 1985 Finite In-Plane Deformations of Flexible Rods - Insight into Nonlinar Shell Problems	
Nr.	47	Franz Karl Labisch: August 1985 Grundlagen einer Analyse mehrdeutiger Lösungen nichtlinearer Randwertprobleme der Elastostatik mit Hilfe von Variationsverfahren	
Nr.	48	J. Chroscielewski/LP. Nolte: Oktober 1985 Strategien zur Lösung nichtlinearer Probleme der Strukturmechanik und ihre modulare Aufberei- tung im Konzept MESY	
Nr.	49	Karl-Heinz Bürger: Dezember 1985 Gewichtsoptimierung rotationssymmetrischer Platten unter instationärer Erregung	
Nr.	50	Ulrich Schmid: Februar 1987 Zur Berechnung des plastischen Setzens von Schraubenfedern	
Nr.	51	Jörg Frischbier: März 1987 Theorie der Stoßbelastung ortotroper Platten und ihr experimentelle Überprüfung am Beispiel einer unidirektional verstärkten CFK-Verbundplatte	
Nr.	52	W. Tampczynski: Juli 1987 Strain history effect in cyclic plasticity	
Nr.	53	Dieter Weichert: Dezember 1987 Zum Problem geometrischer Nichtlinearitäten in der Plastizitätstheorie	
Nr.	54	Heinz Antes/Thomas Meise/Thomas Wiebe: Wellenausbreitung in akustischen Medien Randelement-Prozeduren im 2-D Freque 3-D Zeitbereich	Januar 1988 mzraum und im
-----	----	--	----------------------------------
Nr.	55	Wojciech Pietraszkiewicz: Geometrically non-linear theories of thin elastic shells	März 1988
Nr.	56	Jerzy Makowski/Helmut Stumpf: Finite strain theory of rods	April 1988
Nr.	57	Andreas Pape: Zur Beschreibung des transienten und stationären Verfestigungsverhaltens von Stah nichtlinearen Grenzflächenmodells	Mai 1988 l mit Hilfe eines
Nr.	58	Johannes Groß-Weege: Zum Einspielverhalten von Flächentragwerken	Juni 1988
Nr.	59	Peihua LIU: Optimierung von Kreisplatten unter dynamischer nicht rotationssymmetrischer La	Juli 1988 st
Nr.	60	Reinhard Schmidt: Die Anwendung von Zustandsbeobachtern zur Schwingungsüberwachung und Sch- nung auf mechanische Konstruktionen	August 1988 adensfrüherken-
Nr.	61	Martin Pitzer: Vergleich einiger FE-Formulierungen auf der Basis eines inelastischen Stoffgesetzes	Juli 1988
Nr.	62	Jerzy Makowski/Helmut Stumpf: Geometric structure of fully nonlinear and linearized Cosserat type shell theory	Dezember 1988
Nr.	63	O. T. Bruhns: Große plastische Formänderungen - Bad Honnef 1988	Januar 1989
Nr.	64	Khanh Chau Le/Helmut Stumpf/Dieter Weichert: Variational principles of fracture mechanics	Juli 1989
Nr.	65	Guido Obermüller: Ein Beitrag zur Strukturoptimierung unter stochastischen Lasten	Juni 1989
Nr.	66	Herbert Diehl: Juni 198 Ein Materialmodell zur Berechnung von Hochgeschwindigkeitsdeformationen metallischer Wer stoffe unter besonderer Berücksichtigung der Schädigung durch Scherbänder	
Nr.	67	Michael Geis: Zur Berechnund ebener, elastodynamischer Rißprobleme mit der Randelementmet	November 1989 hode
Nr.	68	Günter Renker: Zur Identifikation nichtlinearer strukturmechanischer Systeme	November 1989
Nr.	69	Berthold Schieck: Große elastische Dehnungen in Schalen aus hyperelastischen inkompressiblen Mate	November 1989 erialien
Nr.	70	Frank Szepan: Ein elastisch-viskoplastisches Stoffgesetz zur Beschreibung großer Formänderunger sichtigung der thermomechanischen Kopplung	Dezember 1989 n unter Berück-
Nr.	71	Christian Scholz: Ein Beitrag zur Gestaltsoptimierung druckbelasteter Rotationsschalen	Dezember 1989
Nr.	72	J. Badur/H. Stumpf: On the influence of E. and F. Cosserat on modern continuum mechanics and field	Dezember 1989 theory

Nr.	73	Werner Fornefeld: Januar 1990 Zur Parameteridentifikation und Berechnung von Hochgeschwindigkeitsdeformationen metallischer Werkstoffe anhand eines Kontinuums-Damage-Modells
Nr.	74	J. Saczuk/H. Stumpf: April 1990 On statical shakedown theorems for non-linear problems
Nr.	75	Andreas Feldmüller:April 1991Ein thermoplastisches Stoffgesetz isotrop geschädigter KontinuaApril 1991
Nr.	76	Ulfert Rott: April 1991 Ein neues Konzept zur Berechnung viskoplastischer Strukturen
Nr.	77	Thomas Heinrich Pingel: Juli 1991 Beitrag zur Herleitung und numerischen Realisierung eines mathematischen Modells der menschli- chen Wirbelsäule
Nr.	78	O. T. Bruhns: Dezember 1991 Große plastische Formänderungen - Bad Honnef 1991
Nr.	79	J. Makowski/J. Chroscielewski/H. Stumpf: Computational Analysis of Shells Undergoing Large Elastic Deformation Part I:Theoretical Foun- dations
Nr.	80	J. Chroscielewski/J. Makowski/H. Stumpf: Computational Analysis of Shells Undergoing Large Elastic Deformation Part II: Finite Element Implementation
Nr.	81	R. H. Frania/H. Waller: Mai 1992 Entwicklung und Anwendung spezieller finiter Elemente für Kerbspannungsprobleme im Maschie- nebau
Nr.	82	B. Bischoff-Beiermann: Juli 1992 Zur selbstkonsistenten Berechnung von Eigenspannungen in polykristallinem Eis unter Berücksich- tigung der Monokristallanisotropie
Nr.	83	J. Pohé: Ein Beitrag zur Stoffgesetzentwicklung für polykristallines Eis
Nr.	84	U. Kikillus: Mai 1993 Ein Beitrag zum zyklischen Kiechverhalten von Ck 15
Nr.	85	T. Guo: Juni 1993 Untersuchung des singulären Rißspitzenfeldes bei stationärem Rißwachstum in verfestigendem Ma- terial
Nr.	86	Achim Menne: Januar 1994 Identifikation der dynamischen Eigenschaften von hydrodynamischen Wandlern
Nr.	87	Uwe Folchert: Januar 1994 Identifikation der dynamischen Eigenschaften Hydrodynamischer Kopplungen
Nr.	88	Jörg Körber: April 1994 Ein verallgemeinertes Finite-Element-Verfahren mit asymptotischer Stabilisierung angewendet auf viskoplastische Materialmodelle
Nr.	89	Peer Schieße: April 1994 Ein Beitag zur Berechnung des Deformationsverhaltens anisotrop geschädigter Kontinua unter Berücksichtigung der thermoplastischen Kopplung
Nr.	90	Egbert Schopphoff: Juli 1994 Dreidimensionale mechanische Analyse der menschlichen Wirbelsäule

Nr. 91	Christoph Beerens: Zur Modellierung nichtlinearer Dämpfungsphänomene in der Strukturmechanik	Juli 1994
Nr. 92	K. C. Le/H. Stumpf: Finte elastoplasticity with microstructure	November 1994
Nr. 93	O. T. Bruhns: Große plastische Formänderungen - Bad Honnef 1994	Dezember 1994
Nr. 94	Armin Lenzen: Untersuchung von dynamischen Systemen mit der Singulärwertzerlegung - Erfa turveränderungen	Dezember 1994 ssung von Struk-
Nr. 95	J. Makowski/H. Stumpf: Mechanics of Irregular Shell Structures	Dezember 1994
Nr. 96	J. Chroscielewski/J. Makowski/H. Stumpf: Finte Elements for Irregular Nonlinear Shells	Dezember 1994
Nr. 97	W. Krings/A. Lenzen/u. a.: Festschrift zum 60. Geburtstag von Heinz Waller	Februar 1995
Nr. 98	Ralf Podleschny: Untersuchung zum Instabilitätsverhalten scherbeanspruchter Risse	April 1995
Nr. 99	Bernd Westerhoff: Eine Untersuchung zum geschwindigkeitsabhängigen Verhalten von Stahl	Juli 1995
Nr. 100	Marc Mittelbach: Simulation des Deformations- und Schädigungsverhaltens beim Stoßversuch mit ei Damage-Modell	Dezember 1995 nem Kontinuums-
Nr. 101	Ulrich Hoppe: Über grundlegende Konzepte der nichtlinearen Kontinuumsmechanik und Schale	Mai 1996 entheorie
Nr. 102	Marcus Otto: Erweiterung des Kaustikenverfahrens zur Analyse räumlicher Spannungskonzent	Juni 1996 rationen
Nr. 103	Horst Lanzerath: Zur Modalanalyse unter Verwendung der Randelementemethode	Juli 1996
Nr. 104	Andreas Wichtmann: Entwicklung eines thermodynamisch konsistenten Stoffgesetzes zur Beschreibung	August 1996 der Reckalterung
Nr. 105	Bjarne Fossa: Ein Beitrag zur Fließflächenmessung bei vorgedehnten Stoffen	Oktober 1996
Nr. 106	Khanh Chau Le: Kontinuumsmechanisches Modellieren von Medien mit veränderlicher Mikrostruk	Dezember 1996 xtur
Nr. 107	Holger Behrens: Nichtlineare Modellierung und Identifikation hydrodynamischer Kupplungen mit kreten Modellansätzen	Januar 1997 allge- meinen dis-
Nr. 108	Johannes Moosheimer: Gesteuerte Schwingungsdämpfung mit Elektrorheologischen Fluiden	Juli 1997
Nr. 109	Dirk Klaus Anding: Zur simultanen Bestimmung materialabhängiger Koeffizienten inelastischer Stoff	Oktober 1997 gesetze
Nr. 110	Stephan Weng: Ein Evolutionsmodell zur mechanischen Analyse biologischer Strukturen	Dezember 1997

Nr. 111	Michael Straßberger: Dezember 1997 Aktive Schallreduktion durch digitale Zustandsregelung der Strukturschwingungen mit Hilfe piezo- keramischer Aktoren
Nr. 112	Hans-Jörg Becker: Dezember 1997 Simultation des Deformationsverhaltens polykristallinen Eises auf der Basis eines monokristallinen Stoffgesetzes
Nr. 113	Thomas Nerzak: Dezember 1997 Modellierung und Simulation der Ausbreitung adiabatischer Scherbänder in metallischen Werkstof- fen bei Hochgeschwindigkeitsdeformationen
Nr. 114	O. T. Bruhns: März 1998 Große plastische Formänderungen
Nr. 115	Jan Steinhausen: August 1998 Die Beschreibung der Dynamik von Antriebssträngen durch Black-Box-Modelle hydrodynamischer Kupplungen
Nr. 116	Thomas Pandorf: August 1998 Experimentelle und numerische Untersuchungen zur Kerbspitzenbeanspruchung bei schlagbelaste- ten Biegeproben
Nr. 117	Claus Oberste-Brandenburg: Juni 1999 Ein Materialmodell zur Beschreibung der Austenit-Martensit Phasentransformation unter Berück- sichtigung der transformationsinduzierten Plastizität
Nr. 118	Michael Märtens: Dezember 1999 Regelung mechanischer Strukturen mit Hilfe piezokeramischer Stapelaktoren
Nr. 119	Dirk Kamarys: Dezember 1999 Detektion von Systemveränderungen durch neue Identifikationsverfahren in der experimentellen Modalanalyse
Nr. 120	Wolfgang Hiese:Januar 2000Gültigkeitskriterien zur Bestimmung von Scherbruchzähigkeiten
Nr. 121	Peter Jaschke: Februar 2000 Mathematische Modellierung des Betriebsverhaltens hydrodynamischer Kupplungen mit hybriden Modellansätzen
Nr. 122	Stefan Müller: Februar 2000 Zum Einsatz von semi-aktiven Aktoren zur optimalen Schwingungsreduktion in Tragwerken
Nr. 123	Dirk Eichel: Juni 2000 Zur Kondensation strukturdynamischer Aufgaben mit Hilfe von Polynommatrizen
Nr. 124	Andreas Bürgel: August 2000 Bruchmechanische Kennwerte beim Wechsel im Versagensverhalten dynamisch scherbeanspruchter Risse
Nr. 125	Daniela Lürding: März 2001 Modellierung großer Deformationen in orthotropen, hyperelastischen Schalenstrukturen
Nr. 126	Thorsten Quent: Mai 2001 Ein mikromechanisch begründetes Modell zur Beschreibung des duktilen Verhaltens metallischer Werkstoffe bei endlichen Deformationen unter Berücksichtigung von Porenschädigung
Nr. 127	Ndzi C. Bongmba: Mai 2001 Ein finites anisotropes Materialmodell auf der Basis der Hencky-Dehnung und der logarithmischen Rate zur Beschreibung duktiler Schädigung

Nr. 128	Henning Schütte: August 200 Ein finites Modell für spröde Schädigung basierend auf der Ausbreitung von Mikrorissen
Nr. 129	Henner Vogelsang: Dezember 200 Parameteridentifikation für ein selbstkonsistentes Stoffmodell unter Berücksichtigung von Phaser transformationen
Nr. 130	Jörn Mosler: Dezember 200 Finite Elemente mit sprungstetigen Abbildungen des Verschiebungsfeldes für numerische Analyse lokalisierter Versagenszustände
Nr. 131	Karin Preusch: Mai 200 Hierarchische Schalenmodelle für nichtlineare Kontinua mit der p-Version der Finite-Element Met thode
Nr. 132	Christoph Müller: August 200 Thermodynamic modeling of polycrystalline shape memory alloys at finite strains
Nr. 133	Martin Heiderich: Juni 200 Ein Beitrag zur zerstörungsfreien Schädigungsanalyse
Nr. 134	Raoul Costamagna: Juli 200 Globale Materialbeziehungen für das geklüftete Gebirge
Nr. 135	Markus Böl: Januar 200 Numerische Simulation von Polymernetzwerken mit Hilfe der Finite-Elemente-Methode
Nr. 136	Gregor Kotucha: August 200 Regularisierung von Problemen der Topologieoptimierung unter Einbeziehung von Dichtegradier ten
Nr. 137	Michael Steiner: Februar 200 Deformations- und Versagensverhalten innendruckbeanspruchter Stahlrohre durch Stoßbelastung
Nr. 138	Dirk Bergmannshoff: Dezember 200 Das Instabilitätsverhalten zug-/scherbeanspruchter Risse bei Variation des Belastungspfades
Nr. 139	Olaf Schilling: Januar 200 Über eine implizite Partikelmethode zur Simulation von Umformprozessen

Mitteilungen aus dem Institut für Mechanik RUHR-UNIVERSITÄT BOCHUM Nr. 139

978-3-935892-14-8