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Abstract

Mechanical wave propagation in partially saturated porous media is of great inter-
est in science and applications because it involves the interaction of various physical
phenomena and can be used for non-destructive testing. Moreover, it plays a vital
role in modern technologies such as geophysical exploration in water- and air-filled
rocks, sound-absorbing materials, and support of ganglia mobilization. In all cases,
understanding and predicting wave properties are essential preconditions.
This work models linear, mechanical wave propagation in partially saturated porous
media. Balance laws and constitutive relations are combined to describe waves in a
solid matrix and two continuous fluid phases. Three longitudinal waves and one shear
wave are predicted and studied by means of their dispersion relations. Investigation
of smaller-scale, oscillatory flow yields a generalized, characteristic frequency and fur-
ther modes of solid deformation.
A study of the special case of residual saturation completes the theoretical approach.
The corresponding heterogeneous structure of disconnected fluid clusters, such as wa-
ter bridges, is considered via an oscillator-like rheology. Resonance oscillations pro-
duce an additional damping mechanism. An appropriate classification of oscillating
fluid clusters follows, with a theoretical, numerical, and experimental investigation.
The proposed conceptual approach allows a flexible implementation and investigation
of individual phenomena, including damping mechanisms or grain compressibility.
Using this approach, the developed models can be applied to the study of material
properties, stimulation of enclosed fluids, and of frequency-dependent attenuation
bands. In addition, the two-scale view extends understanding of the related processes
and yields a generalization of characteristic wave properties.



Zusammenfassung

Mechanische Wellenausbreitung in teilgesättigten, porösen Medien ist von großem
Interesse für die wissenschaftliche Forschung, z. B. durch die Kopplung verschiedener
physikalischer Phänomene sowie den Einsatz in zerstörungsfreien Prüfmethoden. Zu-
dem ist sie ein wesentlicher Bestandteil in modernen, technischen Anwendungen wie
geophysikalischen Erkundungen in wasser- und luftgefülltem Gestein, schallabsorbie-
renden Materialien und der Mobilisierung von Fluidansammlungen. Zwei grundle-
gende Voraussetzungen sind dabei das physikalische Verständnis sowie die darauf
aufbauenden Vorhersagen der Welleneigenschaften.
Mit diesem Ziel modelliert und untersucht die vorliegende Arbeit lineare, mechanis-
che Wellen in teilgesättigten, porösen Medien. Zur Beschreibung eines Festkörpers,
welcher mit zwei kontinuierlichen Fluiden gefüllt ist, werden Bilanzgleichungen und
konstitutive Beziehungen genutzt. Dabei werden drei longitudinale und eine Scher-
welle anhand ihrer Dispersionsrelationen untersucht. Ein zusätzlicher Fokus liegt auf
den kleinskaligen, oszillierenden Flüssen und führt zu einer verallgemeinerten Defini-
tion der charakteristischen Frequenz sowie weiteren Freiheitsgrade der Festkörperde-
formation.
Der Fall residualer Sättigung vervollständigt den theoretischen Ansatz für Situationen
mit einer heterogenen Struktur verschiedener, diskontinuierlicher Fluidansammlungen
wie z. B. Wasserbrücken. Diese wird durch eine Oszillatorrheologie charakterisiert
und bindet einen zusätzlichen Dämpfungsmechanismus mittels Resonanzschwingun-
gen ein. Anschließend erfolgt eine Klassifizierung der Resonanzeffekte von oszillieren-
den Liquidclustern durch eine theoretische, numerische und experimentelle Studie.
Das vorgestellte Konzept erlaubt eine flexible Umsetzung und individuelle Unter-
suchung einzelner Phänomene wie Dämpfungsmechanismen oder Kornkompressibili-
tät. Damit können die entwickelten Modelle auf die Untersuchung von Materialeigen-
schaften, die Stimulation von unerwünschten Fluideinschlüssen sowie frequenzspez-
ifische Dämpfungsbänder angewendet werden. Zusätzlich erweitert die zweiskalige
Betrachtungsweise das Verständnis der beteiligten, physikalischen Prozesse und ver-
allgemeinert die bestehende Charakterisierung von Welleneigenschaften.
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Notations and conventions

General comments on notations and conventions
All symbols are introduced throughout the text and a comprehensive overview of
the symbols used is given below. For convenient access, however, main aspects of
the used notation should be mentioned beforehand. Scalars denote scalar properties
while lower case (upper case), boldface characters refer to first (second or higher)
order tensors. Lower or upper indices basically express a connection to the respec-
tive bulk phase, interface, or curve. Following a convention within theories of porous
media, lower phase indices are used for kinematic quantities and upper phase indices
for the remaining ones. Despite phase indices, general indices may illustrate special
conditions or physical origins.
Note that indices are used to distinguish between phases, which is the most important
distinction in the present treatise. They do not indicate covariance or contravariance
of tensors. For convenience, (index-free) tensor notation is mostly used. Furthermore,
a distinction between micro- and macroscale is avoided because it is obvious within
the self-consistent parts. This compromise - against multiple kinds of indices to dis-
tinguish phases, tensorial bases, and scale affiliation - was made to aid readability.
Few exceptions (use of index notation, mixture of micro- and macroscale properties)
occur very rarely and are explicitly mentioned.
Also note that some parts of this work have been previously published and are indi-
cated appropriately. However, such publications may differ with respect to the used
notation or formulations, due to deviating requirements or context, respectively.

The most important symbols and abbreviations are summarized in the following. For
the sake of brevity and clarity, all individual combinations of indices are not listed.
Special characters appearing only in a limited context (especially in the appendix)
are neglected in the following lists.
Two chapters of Part II and the entire Part IV are based on microscopic properties.
Although the corresponding notations are similar to those of the other parts, it is
convenient to introduce the microscopic properties in their own context. This avoids
confusion with other definitions that are relevant for macroscopic theories. For accu-
rate handling, they are also listed separately. Some properties appear for micro- and
macroscale theories.

XI



XII NOTATIONS AND CONVENTIONS

Miscellaneous

∂
∂∗ (•) partial derivative with respect to general variable ∗
∂
∂t (•), ∂t(•), ˙(•) partial time derivative
Dζ(•)
Dt material time derivative with respect to phase ζ
∂
∂x (•) partial, local derivative with respect to x-direction;

note the difference between position vectors x and X (or Xζ) of
the current and reference configuration, cf. grad vs. Grad(ζ)

· scalar/inner product
× cross product between vectors (used in equations)

emphasizes (scalar) product between scalars in the normal text,
units, or labels

⊗ dyadic/tensor product
˜(•) characteristic property (length, time, modulus, etc.)
¯(•) dimensionless property
<(•), (•)< real part
=(•), (•)= imaginary part
(•)|a=b • evaluated at a = b
(•)0 0 refers to reference state/configuration; often equilibrium
(•)eq equilibrium part
(•)neq non-equilibrium part
(•)lin linearized
‖ index for waves parallel to propagation direction (longitudinal

waves, later replaced by P)
⊥ indicates orthogonality and index for waves perpendicular to

propagation direction (shear waves, later replaced by S)
[•] unit (types) of •

(classical definition; used in running text, e.g., [T−1])
• [∗] [∗] is used as a suffix with ∗ indicating the units of • with specific

measurement units
(no defined convention but widely used custom in relevant dis-
ciplines; used in labels for the sake of brevity, e.g., [s−1])

[...] squared brackets in formulas do not refer to units but are used
for structuring purposes

Parts I - III and introductory chapters

Latin characters

a0,1,2,... used to represent unspecified constants in equations
aαβ interfacial areas αβ
a00,01,... constants of the quadratic relationship between interfacial areas,

saturation, and equilibrium capillary pressure
asf geometric parameter for mesoscopic loss mechanisms
A, A area
A index indicating a stiff solid skeleton (in Chapter 11)
A0,1,2,3 constant of oscillator solution (in Chapter 3)
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A matrix accounting for inertia terms
AT averaging technique
asw adjacent solid walls
b0,f proportionality factor of viscous (Biot-like) interaction
bosc proportionality factor of momentum interaction of an oscillating

fluid cluster
B index indicating a weak solid skeleton (in Chapter 11)
B(•, •, •, •) beta distribution
B0,1,2,3 constant of oscillator solution (in Chapter 3)
B matrix accounting for viscous terms
c stiffness of oscillator-like rheology
cSLS,1, cSLS,2 the two spring stiffnesses of an SLS-model
cphase phase velocity (in Chapter 3)
cχ phase velocity of wave mode χ
cphase,C complex-valued phase velocity approach (in Chapter 3)
cgroup group velocity
cαβγ curve fractions of curve αβγ
cJKD frequency-dependent correction function of momentum exchange
csf frequency-dependent correction function of mesoscopic loss
ccl frequency-dependent function accounting for momentum inter-

action of fluid clusters
cpc

eq
constant relating saturation rate and production of interfacial
areas of type lg

c index for continuous fluid
C matrix accounting for elasticity terms
d damping coefficient of oscillator-like rheology
dSLS damping coefficient of an SLS-model
dpore characteristic pore diameter
d index for discontinuous fluid
D damping ratio of an oscillator-like rheology
Dl damping ratio of oscillating clusters with index l
DP index for properties of a double pore space extension
E Young’s modulus, indicates extensional waves when used as an

index
Elg production term of interfacial areas of type lg
f frequency
fc,Biot Biot’s characteristic frequency for a mixture with one pore fluid
f ′c,Biot Biot’s microscopic characteristic frequency for a mixture with

one pore fluid
f• (probability) density with respect to distribution •
f index for fluid phases, usually f ∈ {l, g}
f volumetric/body forces, usually due to gravity
F deformation gradient
F external force on an oscillator (in Chapter 3)
F̂ amplitude of F
FE Finite Element
g gravitational acceleration constant
g gravitational acceleration vector
g index for the gas phase
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grad gradient with respect to current configuration
Grad gradient with respect to reference configuration
Gradζ gradient with respect to reference configuration of phase ζ
GW Gassmann-Wood (limit)
i

√
−1

I, II, III indicating the linearizion point of the frequency correction for
ω � ωc,Biot, ω ≈ ωc,Biot, ω � ωc,Biot

I three-dimensional unit tensor
IA three-dimensional surface unit tensor
j used as index for different microscopic clusters in Part III
J Jacobian determinant (of F)
k scalar (complex-valued) wave number

used as index for different clusters in Part III
ks intrinsic permeability
kfrel relative permeability factor for fluid f
k (complex-valued) wave vector
Kα bulk modulus of bulk phase α
Kgrains bulk modulus of the bulk material composing the solid skeleton
Klg Reuss-average of fluid bulk moduli
l index for liquid phase
l generally used as length

used as index for different clusters in Part III
lcompl length of compliant pores
lstiff length of stiff pores
m mass
msf exponent for the characteristic frequency of mesoscopic loss
mic indicates microscopic properties in Part III
Ms P-wave modulus
MT mixture theory
nα volume fraction of bulk phase α
nkl volume fraction of clusters with index kl
nsf volume fraction portion of mesoscopic loss mechanisms
n normal vector
nk normal vector of wave propagation direction
pζ partial pressure of phase ζ
pζR real pressure of phase ζ
pc capillary pressure
p∆g|l fluid pressure difference between g and l
pb air-entry/bubbling pressure
p̂•|∗ momentum exchange from • to ∗
p̂• total momentum exchange from •
p̂f

neq,id momentum exchange of fluid f due to inertial drag
p̂f

neq,vd momentum exchange of fluid f due to viscous drag
P index for longitudinal waves
P1, P2, P3 index for first/second/third longitudinal wave
PBW Biot-Willis parameter
q displacement of oscillator or wave (in Chapter 3)
qhom homogeneous solution of q
qpart particular solution of q
q̂ amplitude of q
Q, Q-factor quality factor with Q−1 as the inverse quality factor
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rBerryman geometric factor for tortuosity approximation
rs index to indicate residual saturation
REV representative elementary volume
R radius
RBW Biot-Willis parameter
sf saturation of fluid f
sfres residual saturation of fluid f
slR effective liquid saturation
s index for solid phase
S index for shear wave
SBW Biot-Willis parameter
SLS standard linear solid (model)
t time
t0 reference time
[T] fundamental time unit
T oscillation period
Tζ partial stress tensor of phase ζ
TζR real stress tensor of phase ζ
TPM theory of porous media
u displacement value (scalar, without direction)
û displacement amplitude
u displacement vector
û displacement vector amplitude
v velocity
Vamp amplification function
Vamp,max maximum of amplification function
wf seepage velocity, i.e. relative velocity between fluid f and solid
x, xi used as uni-dimensional spatial coordinate
x position vector
X position vector at reference time
y used as uni-dimensional spatial coordinate

Greek characters

α replacement character for arbitrary bulk phase index
αβ replacement character for arbitrary interface index
αβγ replacement character for arbitrary contact curve index
αBiot Biot’s coefficient
αid inertial drag parameter
αhyd hydraulic tortuosity
αkl volume ratio of cluster with index kl
αpdf continuous volume ratio distribution of clusters
Γ gamma function
δ phase lag
δx delta-distribution around x
∆ indicates a difference (e.g. of pressure), not a diff. operator
ε (linearized) strain tensor
εs linearized solid strain
ε volumetric deformation
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ζ universal replacement character for arbitrary bulk phase/inter-
face/contact curve index

ηfR dynamic viscosity of fluid f
θ temperature
ϑ logarithmic damping decrement
Θ contact angle
ΘYoung Young’s/equilibrium contact angle
κ total curvature
λ wavelength
λs Lamé parameter of the solid skeleton
λsR Lamé parameter of the solid skeleton with respect to real stress
λBC Brooks&Corey parameter
λdistr relative-width scaling of the used beta distribution
Λgrains coupling term of skeleton and grain deformation
µs Lamé parameter of the solid skeleton
µsR Lamé parameter of the solid skeleton with respect to real stress
µdistr mean value of the used beta distribution
ν constant of harmonic approach (in Chapter 3)
ρζ partial density
ρζR real density
ρ̂•|∗ mass exchange from • to ∗
ρ̂• total mass exchange from •
σ surface tension
τ coefficient for dynamic capillary pressure/fluid pressure diff.
φ porosity
φR0 effective initial porosity
ϕζ phase ζ
ϕDP logistic sigmoid function for modeling of a double pore space
χ replacement character for wave modes P1, P2, P3, or S
ψ replacement character for P or S
ω angular oscillation frequency
ω0 undamped, angular oscillation frequency/eigenfrequency
ω0,k undamped, angular oscillation frequency/eigenfrequency; par-

ticularly used for clusters with index k
ωc,Biot Biot’s characteristic (angular) frequency
ω′c,Biot Biot’s microscopic characteristic (angular) frequency
ω∗ alternative characteristic (angular) frequency
ωc,f characteristic (angular) frequency of fluid f in a mixture with

multiple pore fluids; based on ωc,Biot

ωc,VE,f characteristic (angular) frequency for mesoscopic, local flow of
fluid f

ωtrans,P1/P2/S characteristic (angular) transition frequency of the P1/P2/S-
wave

ωtrans, osc characteristic (angular) transition frequency of an oscillating
fluid cluster

ω• with • containing the name of a wave mode and index A, B,
I, II, and/or III: analytical solution of the respective transition
frequency

Ω driving angular frequency of external stimulation
Ωres angular resonance frequency
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Special microscopic properties in Part II

c0,f fluid speed of sound
cBernab frequency-dependent phase velocity after Bernabé
Eu Euler number
J0, J1 Bessel functions of first kind
Fr Froude number
Sr Strouhal number
R tube radius
Re Reynolds number
vf,i fluid velocity component in i-direction
vax axial velocity of oscillatory flow in a tube
VS bulk solid shear velocity
Wo Womersley number
xi spatial coordinate in i-direction
Xex external tube flow stimulation due to pressure gradient or gravity
y radial coordinate
δvs viscous skin depth

Part IV

Latin characters

aαβ interfacial areas αβ
A area
b index for the boundary
c stiffness of a harmonic oscillator
C curve
Ca capillary number
d damping of a harmonic oscillator
D damping ratio of a harmonic oscillator
div divergence operator
divA surface divergence operator
divC curve divergence operator
flgs contact line resistance
f replacement character for fluid phase indices
f volume force
f0 excitation amplitude
g index for the gas bulk phase
gs index for the gas-solid interface
lgs index for the liquid-gas-solid contact curve
g gravitational acceleration vector
grad gradient operator
gradA surface gradient operator
gradC curve gradient operator
h characteristic length for frequency dependence
I three-dimensional unit tensor
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IA three-dimensional surface unit tensor
IC three-dimensional curve unit tensor
Kf fluid bulk modulus
Kgrains bulk modulus of the solid (bulk) phase
l̃ typical length
l index for the liquid bulk phase
ls index for the liquid-solid interface
lg index for the liquid-gas interface
m mass
N dimensionless number for frequency dependence
n normal vector
pζR (real) pressure of ζ
q0 amplitude of oscillation
R Radius
s index for the solid bulk phase
text external load vector at the boundary
TζR (real Cauchy) stress tensor of ζ
TextraR extra stress tensor
v velocity
V volume
V liquid cluster volume Vl
x position vector

Greek characters

α replacement character for arbitrary bulk phase index
αβ replacement character for arbitrary interface index
αβγ replacement character for arbitrary contact curve index
γ line tension/energy
εs linearized solid strain
ζ replacement character for universal index of bulk phases/inter-

faces/contact curves
ηfR dynamic viscosity of fluid f
θ temperature
Θ contact angle
ΘYoung Young’s/equilibrium contact angle
κ total curvature
κc curve/line curvature
κg geodesic curvature
κn normal curvature
λgrains Lamé parameter of the solid (bulk) phase
Λ slenderness
µgrains Lamé parameter of the solid (bulk) phase
ρζR (real) density of ζ
σ surface tension/energy
ω angular oscillation frequency
ω0 undamped, angular oscillation frequency/eigenfrequency
Ωres angular resonance frequency
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Chapter 1

Introduction

1.1 Motivation
Fluid-filled porous media and waves have always been part of our environment. Con-
sciously or unconsciously, porous media belong to our everyday experience, for ex-
ample, footprints in wet sand or shaping of snowballs. Moreover, our environment is
significantly influenced by fluids in porous media. For instance, the porosity of soil
is an essential precondition for water storage and it made settlement near the fertile
Nile Delta possible.
Today, porous materials are even more important than ever. On the one hand, proper-
ties such as storage capacity are utilized for fuel cells, aquifers, diapers, or geothermal
reservoirs. On the other hand, fluid-filled porous media can be hazardous, for example,
landslides caused by liquefaction. Thus, control, adjustment, and characterization of
such materials are major goals for science and industry. For instance, geoengineering
aims at forming inorganic material or to restrict deformation in tunnel bores. Fur-
thermore, characterization of organic, porous materials such as bones is important for
medical applications.
In all cases, the fluid content plays a vital role for the physical behavior. For exam-
ple, the speed of an earthquake wave strongly depends on whether the earth is fully
saturated with water or only partially.

Whereas fluid-filled, porous media are the object of investigation, wave propaga-
tion is the physical phenomenon that will be studied in this work. Waves are often
encountered more directly: waves in the ocean, the sound of thunder, or vibrations
of an earthquake. Moreover, they appear in a variety of forms (body waves, surface
waves, planar waves, rotational waves, . . . ) and in various media (mechanical waves
in solids or electromagnetic waves without a carrier medium). Applications involving
waves are varied and range from radio waves in signal transmission over seismic waves
in geophysical exploration to ultrasonic waves for prenatal care. Waves from natural
sources also play an important role in fields such as risk management or energy sup-
ply. Yet, we are also not able to follow Jules Verne’s [213] journey to the center of
the earth. But seismic waves provide information directly from what holds the world
together in its innermost folds.

3
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Figure 1.1: Examples of porous media (from left to right, top to bottom): rock, alu-
minum foam, synthetic foam, sand, soil, foam for household use, bread, and sintered
glass beads.

Figure 1.2: Examples of waves (from left to right): Water waves at the surface of the
ocean (coast of Australia), air waves made visible by oscillations of grass (Ireland),
and monitoring of earthquake waves at Ruhr-Universität Bochum (Germany).
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Consequently, the scientific investigation of wave propagation involves almost all nat-
ural sciences and technical disciplines. Major applications include signal transmission
and stimulation in industry as well as destruction-free testing in scientific research.
In the process, interpretation and prediction of wave propagation strongly depend on
understanding the relevant physical processes and appropriate mathematical model-
ing.

Combining both - the system of partially saturated porous media with the phe-
nomenon of wave propagation - yields a multifaceted research area with interesting
applications. This combination constitutes the central focus of investigation in this
treatise.
Characterizing partially or fully saturated porous media via waves is highly impor-
tant. For example, it complements other methods that may disturb fragile mixtures,
cf. [81, 196, 198]. Furthermore, exploration techniques [119], sound-absorbing materi-
als [231, 235], and ganglia stimulation [38, 174] rely on understanding of this research
area. The intricate structure of porous media is a major challenge for two reasons:
Detailed information is often missing and - if available - difficult to process. For in-
stance, determining of a rock’s permeability by characterizing the properties of each
single pore misses the target. Instead and almost intuitively, expressions such as
porosity or saturation are used. Figuratively, the term porosity unifies the individual
pores by means of a superordinate description. Similarly, current scientific studies
make use of superordinate concepts.
As such, fundamental contributions to understanding waves in fully saturated porous
media were made during the last century, for instance, [24, 25, 74, 76, 160, 226].
Additional aspects include phenomena such as layered structures or squirt-flow, cf.
[54, 56, 140, 223]. Basic elements are an elastic, solid skeleton that is composed of
elastic grains and coupled to one pore fluid. The more general case of partial satura-
tion adds at least one more fluid phase. Relevant wave propagation theories developed
significantly during the last quarter century, for example, [3, 22, 121, 128, 132, 181,
198, 211, 220].
In recent years, improvements in imaging techniques, computational capabilities, and
conceptual frameworks have made more sophisticated studies possible and more pre-
cise information has become available. Nevertheless, this topic is young and many
areas remain to be explored, including, amongst many others: origins of attenuation,
interaction between length scales, stimulation of wave types, or dynamics of residu-
ally saturated porous media. This understanding is not only of immanent scientific
interest but also contributes to safe, responsible design in engineering and accurate
detection of environmental processes.

Welcome to a topic that unifies fundamental physical phenomena, via scale-bridging
and conceptual strategies, with modern applications!
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1.2 Scope and outline

The present thesis focuses on propagation of linear, mechanical waves in partially and
residually saturated porous media. It aims to

• understand the relevant physical processes
(what are the origins of attenuation, how do the constituents move, . . . ?)

• predict the wave behavior
(which waves can be stimulated, how fast do they travel, . . . ?)

• compare assumptions with possible observations
(do grains deform less than fluids, which processes can be neglected on the basis
of the available data, . . . ?)

• interpret phenomena on different length scales
(are tube surface waves observable in a network, which information has to be
transferred, . . . ?)

The structure of this treatise follows the related research process and its resulting
publications. The two major topics of wave propagation in partially and residually
saturated porous media constitute the classical thread (Part I & III). Additionally,
they are extended by two parts of microscale investigations as they occurred during
the research process (Part II & IV). These extensions are implemented in a logical
order and with respect to the physical processes involved, cf. Fig. 1.3.
Thus, the entire work is divided into seven parts. In addition to the introduction,
treatise conclusion, and appendix, four main parts (I, II, III, and IV) constitute the
central treatise. They build on each other but are self-contained. With regard to
their foci, each part contains its specific motivation, literature survey, and discussion.

• Two chapters follow this introductory part, presenting the fundamentals of
porous media theory and wave propagation. They provide historical overviews
and establish basic terms and definitions.

• Part I develops a basic framework for describing wave propagation in porous
media that are filled with two continuous fluid phases. In a first step, lead-
ing equations of the physical principles are presented and combined into a final
mathematical model. This model is the fundamental basis for the following
investigations identifying the principles of wave propagation in porous media.
Additionally, it will be applied to specific examples with an excursion into meso-
scopic losses.

• Part II turns to microscopic processes of wave propagation described in Part I.
Thereby, it specifically addresses questions raised by current research. Three
chapters focus on: oscillatory flow in a rigid pipe, characteristic frequencies, and
the influence of microscopic tube elasticity. These smaller scale phenomena are
studied with respect to their influence on macroscopic models.

• While Part I presents a modeling technique for a porous medium with two
continuous fluids, Part III completes the theory by extending it to a fluid
in the state of residual saturation. This fluid fills the pore space as distinct
conglomerations/clusters, each with a separate dynamic behavior. Such clusters
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are modeled as oscillators and combined with the findings of Part I via a two-
scale approach. Various examples of cluster distributions are studied and include
resonance effects as an additional damping mechanism.

• Part IV constitutes the microscale study of residually saturated porous me-
dia. Fluid clusters are described theoretically and classified with respect to
their dynamic properties. Thereafter, a systematic, numerical study provides
an overview of eigenfrequencies and damping. It accounts for different material
and geometric parameters and is supported by an elementary experiment. This
part completes the microscopic study of oscillatory pore channel flow described
in Part II by considering fluid-fluid interface effects.

• Finally, the previous parts are summarized within a general treatise review and
conclude with a preview of further amendments and future research.

• The appendix provides material data, more detailed explanations, and a compre-
hensive overview of numerical results that supports the main parts with further
details.
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Part I

Part III

Part II

Part IV

Conclusion

Appendix

wavesporous media

Introduction

Figure 1.3: Overview of the outline.



Chapter 2

Basic principles of porous media
theories

This chapter introduces basic terms and well-established concepts describing fluid-filled
porous media. It starts with a historical overview and classifies modern research ap-
proaches. Finally, an explanation of the terms multiphase, multiscale, upscaling, and
scale separation is given. The expressions and definitions used will appear throughout
the entire treatise.

2.1 Some history
In a general sense, porous media and mixtures have been studied for centuries. For
example, a concept of weighting factors was introduced by the use of mole fractions in
Dalton’s law, which was motivated by the work of J. Dalton in the early 19th century.
Some decades later, Darcy was probably the first scientist to initiate the development
of the distinct research field of porous media in 1856 [43]. He postulated, empirically,
a linearity between fluid flow rate through a porous medium and pressure gradient.
During the following decades, consolidation and storage in a confined aquifer were the
driving topics, cf. Wang’s work [217], which also serves as a basis for the following
survey and provides further details. Three disciplines can be considered as starting
points for modern theories of porous media: geomechanics, petroleum engineering,
and hydrogeology [217].
In 1892, King [46] examined the rise of the water level in a well that depended on the
load of bypassing trains. Observations at that time were restricted to natural, porous
media because man-made materials such as synthetic foam were not available. In 1909
and in addition to the empirical observations of that early century, the Cosserat broth-
ers [40] laid the foundation for the theory of extended continua of higher kinematic
order. This approach was later extended by investigators like Mindlin and Eringen
[61, 146]. Meinzer [141] related the flow process in an aquifer to its compressibility
in the beginning 20th century. In the same period, the investigations of large scale
coupling between fluid and porous solid by Pratt & Johnson [162] and Muskat [152]
were motivated by petroleum engineering.

9
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The analogy of transient flow in porous media and heat conduction as diffusion equa-
tions is based on the work of Terzaghi, Theis & Lubin, and Jacob, cf. [99, 206].

Figure 2.1: Example of a partially sat-
urated porous medium: sandstone, air,
and ink.

Terzaghi contributed to the theory of
porous media in many ways [204, 205].
Uni-dimensional consolidation in soils is
known as the Terzaghi problem. It reveals
that a load is first carried by the pore fluid
and transferred to the solid skeleton with
delay because fluid outflow is hindered by
viscous effects. He was also instrumen-
tal (perhaps next to other scientists like
Fillunger [68] who, unfortunately, was in-
volved in an intractable debate with Terza-
ghi) in developing the effective stress prin-
ciple, which is important for deformation

of the solid skeleton or soil liquefaction; also cf. Terzaghi’s experimental devices in
Fig. 2.2. Another important landmark is Biot’s [23] contribution to the theory of
poroelasticity in the middle of the last century.

Today, current theories can be divided into three categories following the overview
of Hassanizadeh & Gray [86]. First, there are various initial attempts that rely on
descriptive models. They often contain single constitutive laws and/or empirical find-
ings. Their precise description contrasts with their limitation to special applications,
for example, Darcy’s law [43] and its specialized extensions such as anisotropy.
Second, there is the (continuum) theory of mixtures, or mixture theory (MT), cf. the
contributions of Truesdell [209, 210] or Eringen & Ingram [63] and Atkin & Craine
[7]. It basically describes the different constituents as overlapping continua, which
are also called phases. These phases coexist everywhere and each of them is related
to continuous field quantities such as displacement, density, or pressure. Balance
laws and constitutive laws yield a framework that is similar to classical, single-phase
continuum mechanics but with multiple overlapping and interacting phases. Bowen
[29, 30] extended the theory of mixtures by volume fractions to the theory of porous
media (TPM). Further fundamental contributions to TPM were made by Coussy [41]
and, amongst others, by de Boer [47] and Ehlers & Bluhm [59].
The third group is related to local volume averaging and includes works such as
Hassanizadeh & Gray [86–88], Slattery [190], and Whitaker [222]. They should be
abbreviated as AT (averaging techniques). In contrast to the previous category, the
physical description is not developed ab initio. It starts on a smaller scale that is
usually better understood. For example, flow through a single rock pore can often
be analyzed with greater accuracy than through an entire rock. A new theory is de-
veloped from the smaller scale by averaging over a representative elementary volume
(REV). This process is also called upscaling. The averaged quantities and laws build
a new self-consistent theory on the larger scale.
In addition to the three groups of so-called macroscopic theories, two alternative ap-
proaches have to be mentioned. Their development was especially supported by the
capabilities of modern computational calculations and imaging procedures. On the
one hand, a straightforward possibility for studying porous media is to model the so-
called microscopic physics; i.e. to calculate the behavior of each single pore and flow
through it. On the other hand, so-called two-scale approaches combine a macroscopic
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Figure 2.2: Historical devices in the laboratory founded by Karl v. Terzaghi at
Vienna University of Technology in 1929: Worldwide, the first triaxial apparatus for
pore water pressure measurement. Pictures taken at the Institute for Geotechnics and
published with permission of Em. O. Univ.-Prof. Dipl.-Ing. Dr. techn. Dr. h.c. mult.
Heinz Brandl, TU Vienna, Austria.

continuum theory with the study of the smaller, discontinuous scale. The correspond-
ing numerical implementation is also known as FE2, cf. [67, 100, 143]. The physical
system is usually described as a homogeneous continuum whose constitutive behavior
(for example, strain due to stress) is determined by a smaller-scale calculation of the
heterogeneous structure. In particular, regular structures or physical phenomena with
an interaction between multiple length scales can benefit from this strategy.
In addition to further research and application, many textbooks were produced for
comprehensible access. These include [13, 41, 59, 217] as well as [80] with a focus
on averaging and [5, 35, 139] with exclusive discussions of wave propagation. The
scientists and works mentioned above are only a small selection from various research
fields that deal with mixtures and porous media. AT are often more general, the-
oretical approaches. TPM and MT also provide a basic framework but are mostly
(and historically) motivated by direct observations and findings at larger scales. Spe-
cialized and initial concepts are usually helpful but limited to certain questions and
applications.
The present work will follow the framework of AT, especially the work of Hassanizadeh
& Gray [86–89], because of its benefits with respect to generality, consistency, and
physical interpretation. For this reason, basic terms of averaging/homogenization
theory are summarized in the following sections.

2.2 Multiphase
The term multiphase system or multiphase media is generally used to describe a
system with distinguishable constituents. Examples range from steel, which is com-
posed of different crystalline structures, up to Russian chocolate cheesecake or fried
potato chips [218], whose consistency is precisely adjusted in industrial production.
Separation of involved constituents can be visible or invisible to the human eye.
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In the present study, the multiphase system of interest consists of a porous solid
matrix and two immiscible fluids. This can be a rock filled with water and air or
a synthetic foam filled with liquid and gaseous fuel. Each constituent has its own
properties such as density, pressure, or velocity. According to the theory of porous
media, the constituents are also called phases. This name should not be confused
with the description of an aggregate state as it is used in other fields.
A multiphase system can contain interfaces, contact curves (sometimes also called
contact lines), and contact points between the bulk phases. Each of them can, again,
possess their own energy, density, stress, etc.

solidfirst pore fluid

second pore fluid

Figure 2.3: Schematic sketch of a multiphase system.

2.3 Multiscale
The term multiscale is generally used to distinguish between characteristic sizes of a
measurable unit. For example, processes can sometimes be distinguished with respect
to their length scale or time scale (gravitational interaction vs. quantum tunneling
or evolutionary radiation vs. cell division). To account for different spatial lengths or
temporal durations, a prefix will be used in combination with the respective SI unit,
for example, km or µs.
In addition, the terms microscale and macroscale have to be introduced. Their ori-
gins are the ancient Greek words µικρóς (mikros) and µακρóς (makros), indicat-
ing small and long. Here, they account for two characteristic lengths, which are

Figure 2.4:
Micro- and
macroscale of
sand.

not specified by a certain length scale but by a different concept of
physical modeling. The microscale is defined as the scale at which
the heterogeneity of the structure is of major importance. For exam-
ple, flow in arteries and deformation of bulk cargo beads can each be
related to a microstructure. The diameters of an artery and of bulk
cargo pieces constitute the respective microscopic length scales but
they differ.
In contrast, the macroscale is defined as the scale at which the het-
erogeneous structure can be described by homogeneous phases. For
example, the velocity of the Gulf stream is an averaged (macroscopic)
value of the (microscopic) water molecule velocities, and stiffness of
a (macroscopic) sand pile is different from the stiffness of the indi-
vidual (microscopic) sand grains.
From the point of view of current research, there is no definite small-
est or largest length scale and transitions are sometimes continuous.
Thus, the present study cannot account for physical processes on all
possible length scales and therefore focuses on systems within limited

sizes. It is assumed that classical continuum mechanics describes microscale processes
such as Navier-Stokes equations for fluids and Hookean elasticity for solids. Length
scales smaller than approximately 1 µm, for example, molecular dynamics, are not
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taken into account. The macroscopic investigations will focus on length scales from
mm to km and exclude, for example, a variation of the gravitational constant. The
link between micro- and macroscale can be created in many ways of which homoge-
nization or averaging is a fundamental one.

2.4 Upscaling and scale separation

During decades of intensive studies on porous media, analytical tools have continu-
ously improved. Amongst others, upscaling has proved to be a comprehensive ap-
proach for combining well-known microscopic relationships, such as Navier-Stokes
equations and linear elasticity, with macroscopic principles like Darcy’s law. The
term upscaling is sometimes replaced by homogenization or averaging, although these
therms may be used differently in other scientific disciplines.
The present work will be based on the work and understanding of Hassanizadeh &
Gray, especially [79, 86–89]. Their work provides a consistent, theoretical basis for the
macroscale physics that is derived from microscopic balance laws. The basic concept
is to average over one representative elementary volume (REV), cf. Fig. 2.5.

1

VREV

∫
VREV

. . . dv

REV

Figure 2.5: Schematic visualization of the upscaling process. A macroscopic material
point contains all three phases and their properties as averaged, continuous fields.

Averaging conservation of mass, momentum, angular momentum, and energy yields
macroscopic counterparts of density, velocity, etc., for each phase. The resulting
framework is comparable to the framework of classical continuum mechanics, but for
multiple phases. It also allows the use of a concept of objectivity1 and evaluation
of an entropy inequality by development of a macroscopic temperature. Special rela-
tionships, like Darcy’s law, can be derived straightforwardly from the general concept.
Furthermore, the averaging is based on a very general concept, which adds interfa-
cial areas, contact lines, and contact points to volume fractions within the set of
macroscopic geometric properties. The two most fundamental benefits are its self-
consistency and comparison with microscopic physics. Thus, it serves as a strong
basis for a general theory of wave propagation in porous media.
Nevertheless, the use of such macroscopic theory requires appropriate localization of
its validity, namely fulfillment of scale separation2 [84, 153]. To give an example, a
theory describing bridge-deformation cannot be extended unconditionally to molec-
ular motion and vice versa. On the larger scale, a material point may be defined
and measured to be at rest, whereas this statement becomes invalid on the atomistic

1The interested reader is referred to a comment about the concept of objectivity in engineering
science and a misunderstanding with respect to initial configuration in Appendix F.

2The scale separation condition is also known as the so-called MMM-principle, cf. Hashin [84],
Nemat-Nasser & Hori [153]. The (M)icroscale is homogenized over a larger (M)esoscopic REV that is
used to describe the much larger (M)acroscale system. The respective characteristic lengths increase
and necessarily differ, so that the related physical processes can be separated.
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scale. Obviously, different scales can be related to different definitions and processes.
In conclusion, use of the macroscopic theory requires two things in the sense of scale
separation: well-defined and interpretable physical quantities and consideration of all
relevant physical processes.
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appropriate size of an REV

micro- and lower scales describable macroscale

(valid range of theory)

larger scales

Figure 2.6: The concept of scale separation for an averaged macroscopic quantity such
as density measured over an REV, e.g., according to [86] (modified).



Chapter 3

Basic principles of oscillations
and waves

The following chapter introduces the fundamentals of wave theory. Following a his-
torical survey, free and driven harmonic oscillations are characterized. Subsequently,
uni-dimensional, linear waves are described and studied.
This chapter is technical in nature, to achieve a focus on the physical processes in
the later study. It shows mathematical tools and relates physical characteristics of
propagating waves to their mathematical formulation. Derived properties, especially
phase velocity and quality factor, will appear frequently in all parts of this work.

3.1 Some history
This chapter should be introduced by quotation from a collaboratively edited internet
encyclopaedia:

“In physics a wave is a disturbance or oscillation that travels through space and
matter, accompanied by a transfer of energy.”3

It reflects a current, intuitive understanding of waves and was developed against the
educational background of a versatile community. With respect to this treatise, it in-
troduces the physical starting point: oscillations traveling in space. After a historical
survey, fundamentals of oscillation theory are presented first and followed by those of
wave theory.

Generally, waves belong to the basic physical phenomena in the environment and
have always been observed: they are seen in the water of the ocean and heard and
sensed in the ground after a tremor. Their scientific investigation also has a long
history that is not easy to trace. Similar to many other topics, it is likely that the
theory of wave propagation was developed stepwise in different regions and at differ-
ent times. Thus, the following description represents an exemplary extract that can
be reconstructed from available records. It is predominantly based on information
from [45, 131] and contains a list of famous scientists from various fields.

3Wave. (2013, August 17). In Wikipedia, The Free Encyclopedia. Retrieved 12:57, August 19,
2013, from http://en.wikipedia.org/w/index.php?title=Wave&oldid=568924650
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Davis [45] provides a short introduction to the history of wave theory and also reca-
pitulates the historical work of Love [131]. Both mention Galileo’s motivation and
Hooke’s theoretical foundation from 1660 when considering the relationship between
strain and stress. Corresponding experimental investigations were carried out by
Hooke and Mariotte. Further important progress was made by scientists in the late
18th/beginning of the 19th century. Young added the modulus of elasticity while
Coulomb was one of the first to consider shear strain. The foundations were extended
by L. Euler and Bernoulli to differential equations of vibrating bars and investigated
experimentally by Chladni. A further systematic investigation was carried out by
Navier, based on Newton’s concepts. [45, 131]
In addition to mechanical waves, Young and Fresnel contributed to the wave theory
of light. Cauchy has to be mentioned because of his mathematical treatment of the
physical phenomenon of wave propagation. Poisson was probably one of the first to
distinguish types of longitudinal and transversal waves within the theory of elasticity.
His solutions were extended by the theories of Clebsch and Stokes. The mathemati-
cally interesting calculus of variations was applied by Green and Hamilton. Riemann
not only provided an important mathematical basis but also contributed directly to
the study of shock waves. Around the transition from the 19th to the 20th century,
Christoffel related wave propagation to a propagating discontinuity surface and Lord
Rayleigh (formerly Strutt) was probably one of the first scientists who explicitly in-
vestigated surface waves. Applications were expedited by several famous scientists
including von Neumann, Kistiakowsky, Friedrichs, and von Kármán in the 20th cen-
tury. [45, 131]
During the 20th century, mathematical treatment of wave propagation was devel-
oped into a consistent framework and physical studies became more structured. In
addition, computational calculations allowed examination of difficult solutions. Mod-
ern research with different kinds of waves (mechanical waves, electromagnetic waves,
etc.), with different propagation directions (plane waves, spherical waves, etc.), and
in different systems (longitudinal or transversal body waves, surface waves like Love-,
Stoneley-, or Rayleigh-waves, etc.).

The well-known uni-dimensional wave equation may be considered as the basic in-
tersection of all previous findings and as a first step into the theory of waves:(

∂2

∂t2
− c2 ∂

2

∂x2

)
q(x, t) = 0.

The wave is described by the spatial and temporal behavior of q, which can be a
transversal displacement of a beam or an electric field. Factor c2 represents wave
velocity squared and can be interpreted as the ratio of stiffness (connected to the
second spatial derivative ∂2/∂x2) to inertia (connected to the second time derivative
∂2/∂t2). The basic wave equation and its modifications will be considered and studied
in the following technical introduction.
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3.2 Harmonic oscillator

A classical harmonic oscillator consists of a mass m, a spring with stiffness c, and a
damper with damping coefficient d. Its uni-dimensional displacement in time is q(t)
with velocity q̇ and acceleration q̈

q̇(t) =
∂q(t)

∂t
, (3.1a)

q̈(t) =
∂2q(t)

∂t2
. (3.1b)

For example, q(t) can a displacement for a mechanical oscillator but can generally
describe arbitrary oscillations such as electric fields or population growth. In addition,
the mechanical harmonic oscillator can be stimulated by an external force F (t). The
balance of forces is written as

m q̈ + d q̇ + c q = F (t). (3.2)

Parameters c, d, and m are assumed to be constant material parameters for a linear
theory, i.e. independent of q and its derivatives. Furthermore, they can be assumed
to be positive due to physical restrictions, which is not necessary, in general. With
reference to later results, two further parameters are introduced; i.e. the angular,
undamped eigenfrequency ω0

ω0 =

√
c

m
(3.3)

and the dimensionless damping ratio D

D =
d

2mω0
. (3.4)

With ω0 and D, the balance of forces can be reformulated as

q̈ + 2Dω0q̇ + ω2
0q =

F (t)

m
. (3.5)

d

c

m

q(t)

Figure 3.1: Harmonic oscillator.

3.2.1 Free oscillations: homogeneous solution

For free oscillations, i.e. F (t) = 0, a solution approach can be achieved by, [69],

q(t) = q0 e
iνt with i :=

√
−1.
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Inserting this approach into Eq. (3.5) leads to ν1,2 = iDω0±ω with angular oscillation
frequency

ω = ω0

√
1−D2. (3.6)

Angular oscillation frequency ω of a free oscillator is sometimes also called (damped)
eigenfrequency, in contrast to the undamped eigenfrequency ω0. For physical in-
terpretations, note that the real part of this approach, its imaginary part, as well
as their superpositions, solve the differential equation. Knowing Euler’s formula,
eiω = cosω + i sinω, ∀ω ∈ R, the solution consists of sin- and cos-oscillations with
angular frequency ω. If the sin-part and the cos-part are combined separately with
different prefactors, both prefactors then account for the initial conditions q0 = q(t0)
and q̇0 = q̇(t0). Furthermore, the sin-part and the cos-part can be unified to one sin-
or cos-term with a phase lag via the addition theorem. The corresponding solution is
called the homogeneous solution and three cases can be distinguished, cf. [69]:

•D < 1 : qhom(t) = e−Dω0t (A0 sin (ωt) +B0 cos (ωt)) (3.7a)

= e−Dω0tA1 cos (ωt+B1)

•D = 1 : qhom(t) = (A2 +B2t) e
−Dω0t (3.7b)

•D > 1 : qhom(t) = A3 e
−(D+

√
D2−1)ω0t +B3 e

−(D−
√
D2−1)ω0t (3.7c)

The coefficients Ai and Bi, i ∈ {0, 1, 2, 3}, depend on the initial conditions q0 and q̇0.
The underdamped oscillator, D < 1, shows a damped oscillation in time, cf. Fig. 3.2.
The critically damped oscillator, D = 1, shows the fastest convergence to the position
of rest, compared to the exponential decay of the overdamped oscillator, D > 1.

t ω0/(2π) [1]

q(
t)
/q

0
[1
]

0 1 2 3 4
-1

-0.5

0

0.5

1

D = 0

D = 0.1
D = 1

D = 10

Figure 3.2: Oscillator displacement q(t) for different damping ratios D. Initial dis-
placement is q0 = 1 and initial velocity is q̇0 = 0.

Moreover, angular frequency ω is related to the (classical) frequency f as

ω = 2πf (3.8)

and to the period T of the oscillation as

T =
1

f
=

2π

ω
. (3.9)

The frequency f represents cycles per seconds and is sometimes related to the unit
Hz, while ω is sometimes related to the unit rad s−1. Nevertheless, the correct unit
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of (angular) frequency corresponds to inverse time [f ] = [ω] = [T−1] with SI unit
s−1. The factor 2π in ω simplifies its use in trigonometric functions. Hence, angular
frequency ω will be preferred to f .
The oscillator properties can be back-calculated from a given signal. Three points are
required to determine the central point of oscillation, ω, and D. From these, all other
parameters can be calculated. For the underdamped oscillator, the amplitudes of three
consecutive extrema q1, q2, and q3 (for example, maximum, minimum, maximum) at
times t1, t2, and t3 can be used. It follows that

ω =
2π

t3 − t1
, (3.10a)

D =

− ln

(
q3 − q0

q1 − q0

)
√

4π2 +

(
ln

(
q3 − q0

q1 − q0

))2
, (3.10b)

q0 =
q2
2 − q1q3

2q2 − q1 − q3
. (3.10c)

A further important property of a harmonic oscillator is the logarithmic damping
decrement

ϑ = Dω0T = 2π
D√

1−D2
. (3.11)

It can be used to describe the ratio of displacement or velocity before and after one
period for underdamped oscillations as

q(t)

q(t+ T )
=

q̇(t)

q̇(t+ T )
= e−ϑ. (3.12)

Defining the oscillator energy as

Φ(t) =
1

2
c q(t)2 +

1

2
m q̇(t)2, (3.13)

the relative decrease of energy Φ during one period becomes, cf. [33],

Φ(t)− Φ(t+ T )

Φ(t)
= 1− e−2ϑ. (3.14)

The quality factor Q is closely related to the logarithmic damping decrement and is
defined here as

Q =
π

ϑ
=

π

Dω0T
. (3.15)

A possible interpretation of Q is that the energy decreases after one cycle by the
factor of

Φ(t+ T )

Φ(t)
= e−2π/Q. (3.16)

Using the series expansion of the exponential function, and if the oscillator is weakly
damped, the quality factor approximates

Q
D�1
≈ 2π

1

1− e−2π/Q
= 2π

Φ(t)

Φ(t)− Φ(t+ T )

= 2π
energy at the beginning of a cycle
energy dissipated during the cycle

.

(3.17)
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This is a widely used explanation of the quality factor but coincides with the definition
above only for D � 1. It also yields Q ≈ 1/(2D). There are other interpretations of
the quality factor especially in the field of wave propagation, for example, the ratio
of maximum elastic energy stored to energy dissipated during one cycle according to
[108, 156]. This is described in more detail below in the wave theory introduction.

3.2.2 Driven oscillations: particular solution
If the oscillator is driven by an external force F (t), the solution consists of two parts:
the homogeneous solution and the particular solution

q(t) = qhom(t) + qpart(t).

Assuming a damped system, the homogeneous solution becomes negligible after a
certain time and only the particular solution remains. For a harmonic excitation with
F (t) = F̂ cos(Ωt), the particular solution becomes, cf. [33],

qpart(t) = q̂ cos (Ωt+ δ) (3.18)

with amplitude q̂ and phase lag δ

q̂ =
F̂

c

1√
(1− (Ω/ω0)2)

2
+ (2DΩ/ω0)

2
=:

F̂

c
Vamp(Ω),

δ = − arctan

(
2DΩ/ω0

1− (Ω/ω0)2

)
.

t/T [1]

q(
t)

=
e−

D
ω

0
t
si

n
(ω
t) e−Dω0t

−e−Dω0t
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a) Underdamped oscillator with ω = 2π
and D = 0.1.
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b) Amplification function of a stimulated har-
monic oscillator for different D. The dashed
line indicates the maxima locations.

Figure 3.3: Examples of free and driven oscillator motion.

One important property is the amplification function Vamp(Ω), which is the ratio of
oscillation amplitude q̂ to the amplitude of harmonic excitation F̂ /c. It reaches its
maximum, cf. [33],

Vamp,max =
1

2D
√

1−D2
(3.19)

at the angular resonance frequency

Ωres = ω0

√
1− 2D2. (3.20)
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Note the difference between the resonance frequency of a harmonically driven oscilla-
tor Ωres and the eigenfrequency of a free oscillator ω, cf. Eq. (3.20) and Eq. (3.6).

3.3 Uni-dimensional waves
As stated in the introductory quotation of this chapter, a wave can be understood
as an oscillation that propagates in space. With the propagation in space, a further
space dimension comes into play. For this reason, and as a first example, imagine an
elastic rope element. It should have thickness ∆x, cross-sectional area A, density ρ,
and elastic modulus E. Its longitudinal displacement should be q(x, t).

ρ, E, A

E
∂q

∂x
(x0) E

∂q

∂x
(x0 + ∆x)

q(x, t)

x

Figure 3.4: Oscillating, elastic rope element.

Its stress, i.e. force per area, is proportional to elasticity and strain, E ∂q/∂x. Balance
of forces divided by ∆x then reads(

E
∂q

∂x
A

)
(x0 + ∆x)−

(
E
∂q

∂x
A

)
(x0)

∆x
=
m q̈

∆x
.

Linearization around x0 and taking the limit ∆x→ 0 with m/∆x ≈ ρA yields

E
∂2q

∂x2
= ρ q̈.

This is a typical wave equation with wave velocity
√
E/ρ. Adding a viscous damping

factor drope that is proportional to velocity q̇ results in

ρ q̈ + drope q̇ − E
∂2q

∂x2
= 0. (3.21)

This equation is similar to a volumetric version of the free harmonic oscillator, Eq. (3.2),
except for an elastic response that depends on the second spatial derivative of q instead
of on q itself.

3.3.1 Solution and properties
A possible solution of a wave equation like Eq. (3.21) is the approach

q(x, t) = q0 e
i(kx−ωt) = q0 e

−k=x ei(k<x−ωt). (3.22)

The wave number k is complex

k = <(k) + =(k) i =: k< + k= i ∈ C (3.23)
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and usually depends on ω. For example, applying Eq. (3.22) to the differential equa-
tion Eq. (3.21) results in a quadratic function(

−ρω2 − i drope ω + k2E
)
q0 = 0,

q0 6=0⇒ k = ±
√
ρω2 + i drope ω .

The given solution Eq. (3.22) describes a uni-dimensional wave that starts at x0 = 0
and propagates in the positive x-direction. Changing the sign between kx and ωt or
choosing a solution for k with opposite sign results in the opposite direction of travel.
The first factor of the solution, e−k=x, accounts for the amplitude decrease, while the
second factor, ei(k<x−ωt), accounts for the pure oscillation traveling in space. As for an
oscillator, a superposition of real and imaginary parts of the solution approach solves
the differential equation with weighting factors that depend on the initial conditions
of displacement and velocity.
The period of oscillation is the same as for the oscillator, Eq. (3.9). In addition, the
wave length λ behaves towards the real part of the wave number in space in the same
way as the period behaves towards the angular frequency in time

λ =
2π

k<
. (3.24)

x/λ [1]

q(
x
,t

)

Damped sinusoidal wave signal q(x, t) = e−k=x sin(k<x− ωt)
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Figure 3.5: Propagating, damped wave signal of one period length at different time
spans for ω = 20π s−1 and k = (1 + 0.1 i) m−1. Note the similarity to the damped
oscillator in the time domain Fig. 3.3 a).

For a given angular frequency ω, the so-called phase velocity of the wave, is defined
as

cphase(ω) =
ω

k<
= λ f. (3.25)

This should not be confused with the local oscillation rate q̇ = ∂q(x, t)/∂t. In fact, q
can be a displacement perpendicular to the wave direction x or even an electric field
with units [q̇] = kgm s−4 A−1. On the contrary, phase velocity cphase(ω) is the velocity
of the traveling wave, cf. Fig. 3.5. For example, the phase velocity can be understood
as the traveling velocity of a peak in q for a monochromatic signal. Following a peak
or any other point of the wave signal means following the constant value ei(k<x−ωt) =
const. This implies that (k<x − ωt) = const. or ∂x/∂t = ω/k< = cphase(ω) for the
fixed point of the wave signal.
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If k is directly proportional to ω, the phase velocity is constant. This is the case if
no damping occurs. Otherwise, the phase velocity generally depends on frequency,
which is called dispersion.
The quality factor of a wave can be expressed analogously to the quality factor of
an oscillator. Traveling with a monochromatic wave of frequency ω, i.e. x(t) =
cphase(ω) t, the displacement becomes ∝ e−k=ω/k<t, cf. Eq. (3.22). Comparing this
amplitude decay of the wave signal with the decay of an underdamped oscillator, cf.
e−Dω0t in Eq. (3.7a), yields

k=
k<

=
D√

1−D2
.

With this relationship, the quality factor of a wave with frequency ω is, cf. Eq. (3.11)
and Eq. (3.15),

Q(ω) =
1

2

k<
k=

(ω). (3.26)

Knopoff & MacDonald [108] introduced the same definition to achieve a dimensionless
damping measurement (Eq. (2.7) ibid.). Their definition is based on the ratio of
stored energy at maximum strain to temperature times generated irreversible entropy.
Additionally, Knopoff & MacDonald also stated that there was no general agreement
about such a measurement for stress waves and called k= the attenuation coefficient.
O’Connell & Budiansky [156] described this quality factor approach as the maximum
value of stored elastic energy of one cycle divided by the energy dissipated during one
cycle.
Due to the results that will be presented later on, the inverse quality factor Q−1

will be studied rather than Q itself because the former value is limited for vanishing
attenuation. Q−1 is constantly zero and independent of ω if no damping occurs.
With damping, Q−1 can become dispersive, i.e. frequency dependent, like the phase
velocity. The special case of Q−1 = 2 corresponds to D = 1/

√
2 and ω = Dω0, which

is an oscillator with vanishing resonance frequency. This means it is just not excited
by external stimulation, cf. Eq. (3.20), as the corresponding maximal amplification
is one. Oscillator displacement equals stimulation amplitude.

3.3.2 Further approaches and properties

Waves can be characterized by further properties. Those that may be important for
comparison with further literature, will be briefly mentioned. A different approach
using a complex-valued velocity cphase,C ∈ C can be written as ∝ eiω(x/cphase,C−t). It
yields the same results but the physical interpretation is different. For example, the
physical phase velocity is then equal to <(cphase,C) + =2(cphase,C)/<(cphase,C).
The so-called group velocity becomes important for transport of energy or informa-
tion. The phase velocity, introduced above in Eq. (3.25), is the wave velocity for a
certain, fixed frequency ω. But if a signal contains more than one frequency and dis-
persion (i.e. frequency dependence) occurs, its parts travel with different velocities.
As a result, the signal shape may change during propagation. Whereas the phase
velocity was introduced as ω/k<, the group velocity of an oscillating wave can be
introduced as

cgroup =
∂ω

∂k<
.

If ω and k< are directly proportional, phase and group velocity coincide. This is
the case for a purely elastic wave without attenuation. If the relationship contains a
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constant shift, ω = a0 +a1k< with a0 6= 0, the shape/envelope of the wave package re-
mains undeformed while traveling with constant group velocity a1. Its monochromatic
parts move with their individual phase velocity within the envelope they compose.
Furthermore, special wave forms have not been investigated here. Spherical waves in
higher spatial dimensions or superposition of reflected waves can be achieved by mod-
ification of the mathematical approach. The interested reader is referred to further
literature. Textbooks about mathematical physics provide deep insights into the char-
acter of wave solutions, for instance, [45, 69], while specialized works often premise
basic knowledge and focus on certain phenomena. Introductions of wave theory in
the context of porous media - with different approaches - can be found, for example,
in [5, 15, 35, 139].
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Waves in partially saturated
porous media





Chapter 4

Introduction

4.1 Motivation and literature survey
The previous introductory part presented the fundamentals of porous media and wave
propagation separately. It focused on historical and basic findings. Now, both topics
are combined and the view turns to modern applications and current research. Wave
propagation processes in fluid-filled porous media are of major scientific interest and
cover many application areas. For example, the possibility of non-destructive testing
is an important advantage for characterization of organic materials [196]. Wave re-
flections of irregularities or inclusions support exploration techniques in engineering
and geophysics [119]. Furthermore, modern applications include ganglia mobilization
for ground water remediation [38] and noise reduction via gas bubbles at offshore
structures [231]. In the process, wave properties strongly depend on the pore fluids,
for example, the ratio of water to air in the mixture. Hence, accurate predictions rely
on understanding and knowledge of the physical interaction of all constituents.
Scientific investigation of wave propagation in multiphase media is presumably al-
most as old as the study of wave propagation itself. The works of Frenkel, Zwikker &
Kosten, Gassmann, and Biot undoubtedly rank amongst the fundamental works that
initiated the development of a general theory for wave propagation in porous media.
One of the very first investigators, Frenkel [74], derived equations for plane, mechan-
ical, longitudinal and transversal waves. He also predicted seismoelectric coupling in
a biphasic medium. In the same century, Zwikker & Kosten [235] demonstrated the
absorption of sound in fluid-filled porous media. Gassmann [76] described mechan-
ical wave propagation incorporating assumptions about the low-frequency regime,
due to viscous coupling by a so-called Gedankenexperiment. Later, Biot provided a
detailed and fundamental study on wave propagation, in 1956, focusing on the disper-
sion relations, i.e. the frequency-dependent wave behavior [24]. He implemented two
materials: an elastic solid matrix with inertia, compressibility, shear resistance, and
composed of compressible grains, as well as a compressible, viscous fluid with its own
inertia. Coupling between both phases is due to viscosity and tortuous pore geome-
try. Biot’s theory predicts two longitudinal waves, a fast one and the so-called slow
Biot-wave, as well as one shear wave. In a second investigation, [25], Biot introduced
a frequency-dependent correction function for the application of Darcy’s law to wave
propagation in porous media, as had also been predicted by Womersley for arterial
flow in [226, 227]. Furthermore, surface waves in fluid-saturated porous media have
been studied [51, 104].

27
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In the second half of the 20th century, emergent frameworks such as MT, TPM, and
AT played a major role in the extension of Biot’s theory to a porous medium that
included a mixture of pore fluids. Saturation became a basic new property expressing
the volume fraction relationship of the fluids. The next two important steps were
hydraulic conductivity models and soil-water characteristic curves, which were moti-
vated by research on static systems, for instance, by Brooks & Corey [32] and van
Genuchten [77]. Hydraulic conductivity models made it possible to determine the
apparent permeability for each fluid, depending on saturation. Soil-water character-
istic curves relate capillary pressure to saturation. With those two findings, the first
frameworks could be derived, although experiments were and still are rare. Brutsaert
& Luthin [34] demonstrated experimentally a relationship between the speed of sound
of different wave modes and soil moisture content. Another example is provided by
the experiments conducted by Murphy [151] in Massilon sandstone and porous glass.
Nevertheless, the experimental investigation of partially saturated porous media is
often challenging. An example of the difficulty may be found in the experimental
evidence of Biot’s slow wave in fully saturated porous media, cf. Plona’s work [160]
and the review of Smeulders [191].
The late 1980s and the early 1990s marked the start of a productive period with a
couple of general, theoretical approaches, for example, [75] that highlights the impor-
tance of viscous coupling, [211] as one of the first comprehensive formulations in terms
of displacements, or the textbook of Bourbié et al. [28]. Many theories are seen as ex-
tensions of Biot’s theory such as [22]. Based on [180], Santos et al. [98, 181] simulated
propagating waves in a rock with two immiscible fluids in time and space for special
conditions. Lo et al. [128–130] concentrated on the dependence on saturation in more
specialized cases (low frequency conditions or neglected capillary pressure). More
general modeling approaches were derived by others, cf. Lu et al. [132, 133], who
evaluated the influence of different model parameters in the lower frequency range,
in particular. Albers [3] studied different wave types in terms of initial saturation
and frequency. Muraleetharan & Wei constituted the basis for their wave propaga-
tion models [219–221] in [149]. These investigations are based on or comparable to
frameworks such as the theory of mixtures or the fundamental work of Hassanizadeh
& Gray [86] and belong to the list of very general approaches accounting for basic
principles such as the evaluation of entropy inequality.
Research on wave propagation in partially saturated porous media is still incomplete.
For instance, mesoscopic loss mechanisms such as squirt-flow in fully and partially
saturated systems remain to be entirely elucidated. Biot’s theory is often assumed to
predict velocities well but underestimates attenuation in natural geophysical materi-
als [56, 140]. Additionally, double permeability [20, 166], interlayer flow [54, 170, 223],
and anisotropic conditions [4, 123] are part of modern research activities. The exact
determination of static and dynamic capillary pressure in oscillating systems also rep-
resents a current challenge [93, 134]. Li et al. [121] provided a comprehensive survey
with detailed insights into the pore scale physics, while the handbook of Mavko et
al. [139] provides explanations and comparisons of different approaches against the
background of rock physics. Other newer extensions are micropolar media [62, 189]
and higher-order continua such as gradient elasticity models [142] that yield further
wave modes. They are mathematically interesting but yet difficult to observe ex-
perimentally. A few studies provide a comprehensive theory for the special case of
residual saturation [72, 92, 198], which is only one of many unanswered questions.
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Many of the existing theories can be divided into three categories. One group is
motivated by special observations and focuses only on special wave phenomena. The
second group derives the final set of equations in the form of stress-strain relationships
such as Biot [24] and Berryman et al. [22]. The third group uses a final formulation
in terms of displacements and their derivatives [132, 211, 219]. This category usually
contains the most general theories and, like others, still struggles with a lack of ma-
terial data. Thus, some authors add notes on how to derive the necessary material
parameters from experiments in the most convenient way [133, 219].
Common to almost all modern theories is their basis of an elastic solid matrix filled
with two viscous fluids. All constituents have their own inertia and compressibility
while the solid contributes to shear resistance. Wave velocities and attenuation are
the main foci of observation. Three longitudinal body waves and one shear body wave
are generally predicted.
The models differ mainly with respect to their assumptions. It is important to note
that no model should be regarded as right or wrong but rather as suitable or un-
suitable for modeling of certain physical systems. For example, Wilmański [224] and
Steeb [196] showed that the assumption of a constant porosity is usually too strong if
the solid is deformable. Porosity is not a classical material parameter but depends on
the solid’s deformation, because the pores may open or close. Often, a compromise
between general capability and applicability requires specializations and assumptions.
Limiting factors can be resolvability and missing information about material param-
eters or boundary conditions.
Building on these earlier findings, the following work aims at extending the under-
standing of and the interest in wave propagation in partially saturated porous media
- a topic that unifies fundamental physical processes and fascinating applications.

Parts of this study have been submitted previously for publication and will propably
be available shortly after completion of this treatise in [199].

4.2 Aims and structure
This first part aims at developing a mathematical model describing linear, mechanical
waves in a porous medium that is saturated with two continuous fluid phases. It is a
basis for the prediction of wave dynamics and characterization of materials via wave
signals. With it, three points will be illustrated: (i) capabilities and basic properties
of the model; (ii) physical interpretation of the mathematical structure divided into
inertia, damping, and elasticity; and (iii) relevance of individual phenomena by means
of specific examples.
In addition to this introduction, Part I is structured into four further chapters.

• First, a relatively extensive chapter summarizes the important physical relation-
ships, including balance laws and constitutive relations. Terms and definitions
are introduced as well as presentation of their physical origins. Finally, a har-
monic approach is applied to the final set of differential equations and yields
the governing equations for the determination of wave properties.

• Subsequently, specific examples provide insights into the model’s properties and
capabilities. Different types of waves are classified with respect to their physical
behavior. Individual phenomena are then investigated with respect to their
influence on wave propagation.
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• Motivated by observations of waves in natural geological materials, the concept
of mesoscopic losses is discussed in the following chapter. A condensed re-
view explains possible effects phenomenologically, to highlight their importance
within the present framework.

• Finally, a review concludes Part I including a summary and outlook.



Chapter 5

Leading equations

This chapter summarizes all relevant physical relationships starting with a survey of
the initial physical situation. It presents kinematics and segmentation into three bulk
phases (one solid and two pore fluids), interfaces, and contact curves. Subsequently,
balance laws, above all mass and momentum balance, are introduced. Conservation of
momentum determines the final shape of the equation system.
Constitutive equations are presented and explained with respect to their physical mean-
ing. The first group relates stress to deformation or velocity for all constituents. This
is followed by a relatively detailed section dealing with equilibrium and non-equilibrium
momentum exchange. Momentum exchange is of particular importance for the wave
behavior and special attention is paid to this point. A relationship for the pressure
difference between both fluids, often identified as capillary pressure, closes the set of
equations.
The discussion of the multiplicity of equations is extensive but substantial for a wave
theory that is developed from basic physical principles. It is beneficial for the physical
interpretation and a focused review relates the final results to the origins. Moreover,
the so-called hybrid model approach [196] reduces the complexity of the mathematical
structure and is valid for a wide range of applications. Finally, a harmonic approach
and decomposition into longitudinal and shear waves yield the governing equations
of the mathematical model describing wave propagation in partially saturated porous
media.

5.1 The physical system

5.1.1 Set-up and definitions
The physical system includes one solid matrix and two immiscible fluids denoted by
s, l, and g4. Properties that belong to the bulk phases are generally denoted with in-
dex α ∈ {s, l, g}; lower index for kinematic quantities, upper index otherwise5. Index

4Both fluids’ symbols are motivated by the typical combination of a liquid (l) and a gas (g), but
note that the following framework is valid for systems with two arbitrary fluids. Another typical
distinction in the literature is that of wetting and non-wetting. However, a distinction via wetting
properties is of less importance for the following general investigations.

5This notation was established in several TPM research groups and should not be confused with
the summation rule of lower and upper indices in tensor calculus.

31
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f ∈ {l, g} is used for relationships that are generally related to one of the fluids. The
bulk phases themselves are also commonly abbreviated by ϕα in TPM.
One interface with index αβ ∈ {sl, sg, lg} exists between each pair of the bulk phases.
Three different bulk phases, as well as the three different interfaces, meet in one con-
tact curve marked by index αβγ ∈ {slg}. Interfaces and contact curves also constitute
their own phases ϕαβ and ϕαβγ that are distinct from the bulk phases. On the atom-
istic scale, interfaces and contact curves usually possess a dilatation in all three spatial
dimensions. Nevertheless, they are characterized by a very small dilatation in certain
directions. Following [79, 144, 148], they are modeled as reduced geometric entities.
Consequently, an interface has a two-dimensional dilatation and a contact curve has
a one-dimensional dilatation. Accordingly, properties such as density refer to a unit
surface or unit length, respectively. These quantities can be understood as averages
over the neglected dilatation and are sometimes considered as excess properties of the
bulk phases.

ϕs ϕl

ϕg

ϕsl

ϕsg

ϕlg

ϕslg

REV

Figure 5.1: Schematic visualization of the modeling concept for a macroscopic, par-
tially saturated system.

The symbol ζ ∈ {α, αβ, αβγ} is used as a universal index for all bulk phases, in-
terfaces, and contact curves. Volumes, faces (including interfaces and boundary sur-
faces), and curves (including contact curves and boundary lines) are generally denoted
by V,A, and C, respectively. The volume of one phase α in an REV is defined by Vα
as are the areas Aαβ and lengths Cαβγ . From that, volume fractions nα, interfacial
areas aαβ , and curve fractions cαβγ are introduced as

nα : = Vα/VREV, (5.1a)

aαβ : = Aαβ/VREV, (5.1b)

cαβγ : = Cαβγ/VREV. (5.1c)

All three bulk phases constitute the volume of one REV by definition∑
α

nα = 1. (5.2)

A widely used and fundamental property of a porous solid is its porosity φ representing
the volume fraction of the pore space

φ := 1− ns = nl + ng. (5.3)

The pore space is distributed between both fluids via their saturation

sf :=
nf

φ
(5.4)



5.1. THE PHYSICAL SYSTEM 33

with ∑
f∈{l,g}

sf = 1. (5.5)

The movement of each material point of a bulk phase, interface, or curve ζ can be
described as x(Xζ , t), where Xζ is the position at reference time t0. The corresponding
displacement and velocity are uζ = x−Xζ and vζ , respectively. Furthermore, spatial
derivatives are defined by grad(•) := ∂(•)/∂x with respect to the current configuration
and by Gradζ(•) := ∂(•)/∂Xζ with respect to the reference configuration (that can be
different for different phases ζ). Partial time derivatives are defined by ∂(•)/∂t = ˙(•),
while material time derivatives are introduced as Dζ(•)/Dt := ∂(•)/∂t+ grad(•) · vζ .
Therein, the convective part is related to the velocity of phase ζ. Based on these
definitions, the deformation gradient Fα, its Jacobian determinant Jα, the linearized
strain tensor εα, and the volumetric deformation εα of a bulk phase α are introduced
as

Fα := Gradα xα, (5.6a)
Jα := det Fα, (5.6b)

εα :=
1

2
(grad uα + gradT uα), (5.6c)

εα := div uα. (5.6d)

5.1.2 Preliminary assumptions

A few assumptions are made in advance to achieve a good compromise between com-
plexity and validity in a wide range of scientific and practical applications. They hold
exactly or are in good approximation for many cases and are

• wavelength � characteristic length of micro-structure (scale separation condi-
tion)

• temperature changes are negligible

• massless interfaces and contact curves

• non-polar phases

• symmetric (partial) Cauchy stresses

• homogeneous and isotropic initial state

• no chemical potentials except for the surface tension of liquid-liquid interfaces,
which is responsible for capillary pressure

Justifications and limitations of these assumptions are discussed in detail where ap-
propriate in the following sections.
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5.2 Balance equations

5.2.1 Mass balance
Balance of mass is written for each bulk phase, interface or contact curve ζ as

Dζ

Dt
ρζ + ρζ div vζ = ρ̂ζ . (5.7)

Herein, the so-called real density is ρζR = mζ/Vζ and equals mass of ζ over volume
of ζ in an REV, as is usual in classical mechanics. Partial densities include weighting
via geometric fractions and are defined as

ρα := ρζR nα,

ραβ := ραβR aαβ ,

ραβγ := ραβγR cαβγ .

(5.8)

For a bulk phase, mass production ρ̂α can appear due to inner mass production and
exchange with the adjacent interfaces ρ̂α|αβ . Inner mass production may be due to
nuclear reactions, for example. Mass exchange formally appears between adjacent
regions such as bulk phases and adjacent interfaces. In the following, influential mass
production and mass exchange effects are neglected because they appear at much
larger time scales than wave propagation in virtually all known systems. Linearization
around equilibrium then yields

∂

∂t
ρζ + ρζ0 div vζ = 0 (5.9)

and after integration in time for bulk phases α

ρα = ρα0 (1− εα), (5.10)

where ρα0 := ρα(t0) is the initial partial density and εα = div uα is the volumetric
change. In the special case of an incompressible material, for instance, for rigid grains
that compose the solid matrix, real density is constant and cancels out. Thus, mass
balance becomes balance of volume, reading

nα = nα0 (1− εα), if ραR = const.

In particular, incompressibility of the solid material yields a relationship for porosity

φ = φ0 + (1− φ0)εs, if ρsR = const. (5.11)

Conservation of mass also holds for interfaces and contact curves, but exceeds the
scope of this work. They are assumed to be massless, which still captures the relevant
physical effects for the majority of applications including capillary pressure6.

6Cf. Section 19.7.1 for a detailed explanation.



5.2. BALANCE EQUATIONS 35

5.2.2 Momentum balance
Balance of momentum is written for each bulk phase as

ρα
Dα

Dt
vα − div(nα TαR)− ραfα = p̂α. (5.12)

It includes the real7 stress tensor TαR, near-field forces fα (also known as volumetric
or body forces), and momentum exchange p̂α. Stress tensor and momentum exchange
will be discussed in Section 5.3 in more detail. Assuming negligible near field forces,
i.e. gravity and electric fields have a minor influence, linearization around equilibrium
yields

ρα0
∂2

∂t2
xα −TαR

0 · gradnα − nα0 div(TαR) = p̂α (5.13)

for all three bulk phases. These momentum balances will constitute the frame of the
final set of equations. Moreover, balance of momentum for interfaces and contact
curves is

ραβ
Dαβ

Dt
vαβ − div(aαβ TαβR)− ραβfαβ = p̂αβ (5.14a)

ραβγ
Dαβγ

Dt
vαβγ − div(cαβγ TαβγR)− ραβγfαβγ = p̂αβγ . (5.14b)

Momentum balance of interfaces between both fluids, lg, will merge into the relation-
ship of capillary pressure, cf. Section 5.3.4. On the other hand, momentum balances
of solid-fluid interfaces, sf, and of contact curves, slg, are assumed to be negligible.
They become trivial, 0 = 0, based on the assumption of vanishing density, stresses
and interaction. This is valid for most applications because of two conditions on the
microscale: firstly, the surface energy of the solid-fluid interfaces is negligible com-
pared to the deformation energy of the solid, cf. Section 19.6.2 and Section 19.7.1 for
details; secondly, wetting phenomena, due to contact curve resistance and movement,
are not explicitly taken into account but are implicitly included later on via hysteresis
of the capillary pressure-saturation relationship. In conclusion, momentum balances
of solid-fluid interfaces do not contribute to the bulk phase momenta and transfer
momentum directly between solid and fluids. Likewise, the contact curve directly
transfers momentum between the interfaces.

5.2.3 Balance of angular momentum, balance of energy, and
entropy inequality

Balance equations are generally completed by conservation of angular momentum,
conservation of energy, and entropy inequality. A detailed discussion of their role
in the theory of multiphase continua can be found in the work of Hassanizadeh and
Gray [86–89]. Symmetry of the stress tensors follows from the balance of angular
momentum if the phases are postulated to be non-polar [87] and if (direct) angu-
lar momentum production vanishes, which is assumed. Although the investigated
systems are dissipative by nature, temperature effects, due to occurring dissipation,
are assumed to be negligible. Thus, a constant and equal initial temperature θ0 is

7With respect to the nomenclature of densities, the term effective stress suggests itself as well.
Nevertheless, it is avoided because the so-called effective stress (principle) is historically related to
another concept.
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assumed for all phases. Consequently, balance of energy is not necessary to solve
for temperature as an unknown and information about temperature dependency of
material parameters is also not required.
Entropy inequality can be evaluated to develop and specify constitutive equations for
remaining unknowns, for example, via the Coleman-Noll or Liu-Müller method. This
process is not evaluated here but results are implicitly included in the following, cf.
[79, 89, 219] for a detailed discussion.

5.3 Constitutive equations

5.3.1 Stress tensors

Momentum balances include the so-called real stress tensors TαR for each bulk phase.
Like densities, they have to be distinguished from the so-called partial stresses, Tα,
which include weighting with the volume fractions

Tα = nαTαR. (5.15)

Multiplication by volume fractions changes the reference volume of the stress average
from the phase volume in one REV (real stress) to the total volume in one REV
(partial stress).

Fluids

Stresses of the fluids are composed of an isotropic real pressure pfR as

TfR = −pfRI. (5.16)

According to a convention in theoretical mechanics, where tensile stresses are in-
dicated by positive signs, the pressure has a negative sign. In the same way that
thermodynamic pressure is related to atomistic fluctuations, the macroscale pressure
contains smaller scale fluctuations. These include classical pressure as well as mi-
croscopic velocity fluctuations. In contrast to classical fluid mechanics, viscous fluid
shear stresses are not included on the macroscale, cf. the dimensional analysis in [85].
Another interpretation for negligible, macroscopic fluid shearing is that the micro-
scopic shear stresses approximately cancel each other out after averaging. To clarify
this assumption, imagine a flow through a pore channel, for example, as in Fig. 5.2a).
Integration of the shear stresses in the fluid volume becomes very small because each
microscopical fluid particle has an opposite counterpart with respect to the channel
axis, which has a reversed velocity gradient. Thus, the averaged material fluid point
does not undergo shearing on the macroscale. This assumption is valid for fluid flow
through typical, non-oriented structures.
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The assumption of negligible macrosopic fluid shear stress fails in the very special case
of flow profiles that are systematically oriented in one shearing direction, Fig. 5.2b).
However, such a situation requires an anisotropic solid structure and special flow
boundary conditions, which occur periodically and in accordance with an oriented
pore structure. This special case is possible [168], but, due to its special character, it
is neglected in the further investigations. In contrast, shear stress at the solid walls
does not vanish after averaging over the interfaces and will play an important role in
momentum interaction later on.

a) Not oriented. b) Oriented.

Figure 5.2: Fluid shearing in different structures.

Solid

Stresses of the solid phase consist of two parts:

TsR = TsR
extra − psR I. (5.17)

On the one hand, solid pressure psR is due to the fluid pressures acting on the solid
walls. Their combined influence is weighted by the respective saturation, cf. equilib-
rium solid pressure in [89] or the fundamental Dalton’s law for mixtures of gases

psR = sl plR + sg pgR. (5.18)

On the other hand, the so-called extra stresses result from deformation of the solid
skeleton (excluding the influence of the fluid pressures). A relationship for real extra
stresses, TsR

extra, or for partial extra stresses, Ts
extra = ns TsR

extra, can be used.
Classical experiments can often be related to the partial extra stresses, which refer
to the total REV. Imagine a porous media compressed between two parallel plates.
Pressure induced on the plates, i.e. force per total plate area, is often easier to
control or measure than pressure over the contact area of the plate and the solid
frame. Therefore, preference will be given to the use of the partial extra stresses.
Similar to classical mechanics, an elastic solid matrix can be described as a Hookean
material with

Ts
extra = 2µs εs + λs εs I. (5.19)

Here, µs and λs are the Lamé parameters of the dry solid skeleton. Its bulk modulus
is

Ks = λs +
2

3
µs. (5.20)

Note that the extra stresses may also make a volumetric contribution in addition
to the fluid pressure contribution. For example, a porous foam with an open and
connected pore space in vacuum can undergo a compression with volumetric stresses
and volumetric deformation.
For the sake of completeness, the relationship for real extra stresses is

TsR
extra = 2µsR εs + λsR εs I := 2

µs

ns
εs +

λs

ns
εs I. (5.21)
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The elastic parameters for real extra stresses are divided by the volume ratios (ini-
tial volume ratios if linearized around equilibrium). This needs to be considered for
comparison with theories that use real extra stresses.

5.3.2 Constitutive relationship for pressure and density
Fluids

Neglecting the influence of temperature, real pressure and density of barotropic fluids
can be related via the fluids’ bulk modulus Kf in a linear form as

pfR = pfR0 +Kf

(
ρfR

ρfR0
− 1

)
(5.22)

or, equivalently,

ρfR = ρfR0 +
ρfR0
Kf

(
pfR − pfR0

)
. (5.23)

Solid

The real density of the solid is related to the solid pressure via the bulk modulus of
the solid material, composing the solid matrix, Kgrains. Motivated by the research
community in geophysics, which was and is traditionally connected to corresponding
questions, the solid material is often referred to via the name grains.
Remembering that the skeleton’s deformation can also contribute to volumetric stress,
the solid’s density also changes, due to the pressure induced by volumetric skeleton
deformation. In contrast to classical continuum mechanics, part of the volumetric
skeleton deformation is absorbed via alteration of the shape of the skeleton and does
not fully contribute to density changes. For example, ideally incompressible beams of
a synthetic foam may bend under compression with a change of sample volume, but
without significant change of volume or density of the individual beams themselves.
Deformation energy is stored via shape change of the microstructure but not via grain
compression, cf. the discussion in [224] about closing possibilities of pores.
In order to describe this situation, one further scalar relationship is required to close
the set of equations. For the final mathematical implementation, a preferable form
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determines the solid’s density (after possible reformulation) as a function of the vol-
umetric deformations, i.e. ρsR(εs, εl, εg). For example, it can be achieved via a ratio
of volume changes of the skeleton and grains or as an empirical relationship between
porosity and deformation. There are various approaches and for a detailed discussion
about this issue and the effective stress principle see, for instance, [26, 52, 155].
One approach, directly applicable to the wave theory, can be found in [219]. Therein,
Wei & Muraleetharan introduced a parameter that accounts for the solid’s density
changes resulting from volumetric skeleton deformation. This parameter is named
Λgrains in the present treatise. It is a coupling parameter between stiffness of the
solid grains (influenced by elasticity of the solid bulk material) and stiffness of the
solid skeleton (influenced by elasticity of the solid bulk material and skeleton geome-
try). Moreover, it should not be confused with the Lamé parameter of the solid grain
material. The density-pressure relationship of the solid becomes

ρsR = ρsR(εs, εl, εg) = ρsR0 +
ρsR0

Kgrains ( psR − psR0︸ ︷︷ ︸
fluid pressure
contribution

− Λgrains εs ). (5.24)

The term Λgrains εs can be understood as pressure inside the solid grains or mate-
rial composing the skeleton, which is due to volumetric skeleton deformation but
not absorbed via alteration of the shape of the skeleton. Furthermore, the ratio
Λgrains/Kgrains accounts for the part of volumetric skeleton deformation that is ab-
sorbed by the grains: if Λgrains/Kgrains = 0, the entire deformation is absorbed by the
skeleton. This is the case for the assumption of rigid grains, Kgrains → ∞, whereby
information about Λgrains is not required.
Wei & Muraleetharan [219] compared Λgrains with Biot’s coeffient αBiot for the fully
saturated case, which leads to, neglecting capillary effects for full saturation,

1− Ks

Kgrains =: αBiot = 1− (1− φ0) Λgrains

Kgrains .

For partially saturated systems, Λgrains is generally also influenced by the dependence
of capillary pressure on volume fraction changes [219].

5.3.3 Momentum exchange

p̂f
neq,id

p̂αeq

p̂f
neq,vd

Equilibrium momentum exchange

Momentum exchange can be initially divided into an equilibrium and a non-equilibrium
part.

p̂α = p̂αeq + p̂αneq. (5.25)
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In equilibrium, a fluid phase exchanges momentum in the form of

p̂f
eq = pfR gradnf. (5.26)

From the viewpoint of a macroscopic interpretation, total pressure in one REV is
the sum of all partial pressures. These include weighting by the respective volume
fractions. Hence, the pressure contribution of phase ϕα changes if volume content
nα changes. As a result, momentum in equilibrium is macroscopically exchanged
between the phases if their volume fractions change. Note that other theories express
equilibrium momentum interaction by a more general driving potential, for instance,
[89].

Non-Equilibrium momentum exchange: inertial drag

Non-equilibrium momentum exchange has various physical origins and is of vital im-
portance for the behavior of a dynamic, multiphase system. One reason is inertial
drag. Some part of the fluids is trapped in pore ends or other geometric inclusions
and cannot move independently. Therefore, this part is accelerated with the solid and
receives momentum from it. The corresponding parameter is denoted by αid and acts
on both fluids as

p̂f
neq,id = (αid − 1)ρf

(
∂2

∂t2
us −

∂2

∂t2
uf

)
. (5.27)

The non-equilibrium exchange p̂f
neq,id is due to form-locking between the solid ma-

trix and the portion of trapped fluid. For instance, the latter can also be considered
individually, as in [195]. Further note that a general constitutive approach, directly
including acceleration for momentum interaction, may contradict the principle of ob-
jectivity; cf. the discussion of Wilmański [224] and his remark on the special case of
a linear theory.
The coefficient αid depends on tortuosity of the pore channels. It is ≥ 1 by physical
definition but usually αid > 1 for all cases of porous media that deviate from straight,
non-intersecting tubes. Because of various tortuosity definitions, the single term tor-
tuosity is avoided and it is named the inertial drag parameter or tortuosity parameter
αid. Note the discussion about the definition of tortuosity in Section 6.9.2.
Moreover, this influence may generally depend on frequency, due to varying, frequency-
dependent flow profiles. Nevertheless, it becomes significant in the high-frequency
limit as soon as the constituents are decoupled. For convenience, αid is assumed to
be constant. An approximation by porosity is provided in [21] and [139], which refer
to Berryman’s work [19], as

αid = 1 + rBerryman

(
1

φ0
− 1

)
. (5.28)

The geometric factor rBerryman is 0.5 for a matrix consisting of spheres and used from
now on for approximation, cf. also [19, 20] for specific application to dynamic systems,
including wave propagation.

Non-Equilibrium momentum exchange: viscous drag

Another well-known origin of momentum exchange in porous media is due to the
relative velocity of fluid and solid, also called viscous drag. A first starting point is
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that of a Darcy-like flow, [43], where momentum exchange between fluid and solid is
proportional to their relative velocity, also known as seepage velocity wf = vf − vs,

p̂f
neq,vd = b0,f (vs − vf) (5.29)

with

b0,f =
(nf)

2
ηfR

kskfrel
. (5.30)

The proportionality factor b0,f contains dynamic fluid viscosity ηfR, intrinsic perme-
ability of the solid matrix ks, and the relative permeability factor kfrel. Eq. (5.29)
indicates that momentum is transferred to the fluid by the factor b0,f if the solid
moves relatively faster and vice versa. The intrinsic permeability definition ks intro-
duced here is a property of the solid phase only and is independent of the fluid.
The relative permeability factor kfrel accounts for the fact that the apparent perme-
ability for a specific fluid phase is determined by the respectively occupied pore space.
Hydraulic conductivity models such as that of Brooks and Corey [32] relate relative
permeability to capillary pressure or saturation as

klrel = slR
2+3λBC
λBC (5.31)

kgrel = (1− slR)2

(
1− slR

2+λBC
λBC

)
. (5.32)

Here, λBC is a parameter that depends on the investigated materials. Effective satu-
ration slR is a scaling between the residual satuarions slres and sgres,

slR :=
sl − slres

1− slres − s
g
res
. (5.33)

Note that the Brooks & Corey model is limited by the residual saturation endpoints,
cf. Fig. 5.3. The values of these endpoints depend strongly on the solid material
[125, 151]. For the following investigations, continuous fluid phases and a situation
far from residual saturation are assumed. Hence, the given equations for kfrel can be
used.
Joekar-Niasar et al. [102] provide a further expression for relative permeabilities that
depend on saturation and interfacial areas alg. This captures hysteresis effects. For
the current investigation of wave propagation, relative permeability is assumed to
be a constant parameter after linearization. Only its initial value has to be known.
Therefore, hysteresis effects need to be considered by knowing their influence on the
initial values of kfrel. This point will be discussed in more detail during the introduc-
tion of capillary pressure.

The Darcy-like approach in Eq. (5.29) is motivated by the fundamental, empirical
findings of Darcy [43] for laminar, steady flow through porous media. Nevertheless,
the equally fundamental work of Biot [25] showed that this approach requires an ex-
tension for application to wave propagation at higher frequencies.
The interaction of solid and fluid is due to viscosity and the microscopical velocity
gradient at the solid walls. Darcy’s law describes steady, laminar flow in the pore
channels. It thus assumes a viscosity-dominated Hagen-Poiseuille flow with fixed ve-
locity gradient. For oscillating flows, however, inertia terms become dominant for
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higher frequencies [112, 114]. Hence, Biot introduced a correction factor for momen-
tum exchange that depends on the ratio of angular frequency to Biot’s characteristic
frequency in [25], for a fluid f as

ωc,Biot = 2πfc,Biot =
ηfRφ

ks αid ρfR
. (5.34)

Note, that Biot originally investigated a system with only one fluid. Adoption to the
current system with two fluid yields the modified characteristic frequencies

ωc,l =
ηlRnl

ksklrel αid ρ
lR
, ωc,g =

ηgRng

kskgrel αid ρ
gR
. (5.35)

The ratio ω/ωc,f (and ω/ωc, Biot) accounts for the ratio of inertia forces to viscous
forces and has also been developed by Womersley [226, 227]. Therefore, it is also
known as the squared Womersley number and, furthermore, as the ratio of pore
radius to viscous skin depth.8
Biot’s correction function also depends on a structural parameter, which is a function
of the pore geometry (for example, circular or slit-like pores) and sinuosity of the
channels. A corresponding and subsequently used approximation of Biot’s correction
function is based on the work of Johnson et al. [103], denoted as JKD-correction
cJKD. It modifies the velocity-dependent fluid momentum exchange to

p̂f
neq,vd = cJKD

(
ω

ωc,f

)
b0,f (vs − vf)

:=

√
1 +

1

2
i
ω

ωc,f
b0,f (vs − vf).

(5.36)

Total momentum exchange

Finally, momentum exchange between the fluids, the so-called Yuster-effect [8, 186,
187], is assumed to be of higher than first order and vanishes after linearization. The
fluids only transfer momentum to the solid

p̂l = p̂l|s + p̂l|g ≈ p̂l|s

p̂g = p̂g|s + p̂g|l ≈ p̂g|s

Therefore, momentum exchange terms can be subsumed for the fluids as

p̂f = p̂f
eq + p̂f

neq = pfR gradnf

+ (αid − 1)ρf
(
∂2

∂t2
us −

∂2

∂t2
uf

)
+ cJKD

(
ω

ωc,f

)
b0,f(vs − vf)

(5.37)

and for the solid as

p̂s =
∑

f∈{l,g}

p̂s|f = −
∑

f∈{l,g}

p̂f|s = −
∑

f∈{l,g}

p̂f. (5.38)

8This issue of frequency-dependent flow profile correction is discussed in more detail in Chapter 11
and includes the investigation of limitations and extensions.
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Remark: Note that, for comparison with biphasic media, equilibrium momentum
exchange of the solid is not necessarily equal to grad(ns) psR = − grad(φ) psR. This
is only the case if the pressures of both liquids are equal, i.e. if capillary effects are
negligible. If both fluid pressures do not coincide and saturation changes, pressure
on the solid changes because one fluid exhibits a pressure that differs from the other.
Hence, solid momentum may change in equilibrium even if gradns = 0 because of
grad sl 6= 0.

5.3.4 Fluid pressure difference and capillary pressure

Equlibrium capillary pressure at micro- and macroscale

Microscopic, equilibrium fluid pressure difference or equilibrium capillary pressure
(sometimes also called Laplace pressure [48]) was already a focus of research two cen-
turies ago [233]. The famous Young-Laplace equation relates the equilibrium pressure
difference between two fluids to surface curvature κ and surface tension σ as9

∆p = κσ.

Because of the differences in the molecular energetic potentials of both fluids, the
interface possesses its own energy and momentum and thus influences the pressure
distribution. It can be further expressed as a divergence of a microscopical surface
tension tensor σ IA with surface unit tensor IA = I− n⊗ n and normal vector n as9

∆p = div(σ IA).

On the macroscale, this relationship merges into the equilibrium momentum balance
of the fluid-fluid interface, Eq. (5.14a). Neglecting density and gravity forces yields

−div(algTlg) = p̂lg
eq = −p̂l|lg

eq − p̂g|lg
eq + p̂lg|slg

eq .

The interface exchanges momentum with the adjacent bulk fluids and the contact
curve, whereas an explicit momentum exchange with the contact curve p̂lg|slg can be
neglected for implementation of capillary pressure9, cf. [89]. Furthermore, momentum
exchange with the bulk phases is determined via the average of the bulk stresses at the
interfaces [79]. Assuming that the interface average of the fluid stresses approximately
equals the volume averages and knowing that the normal vectors of both fluids point in
opposite direction at the interface, the right-hand side of the above equation becomes
the equilibrium pressure difference of both fluids, i.e.

−div(algTlg) = p̂lg
eq = (plR − pgR)I.

9A detailed physical discussion of the microscale phenomena will be found in Chapter 19.
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This is the macroscopic equivalent of the microscopic equation. Both emerge from
the interface momentum balance. Similar to the microscale physics, Hassanizadeh
[89] derived the macroscopical interface tension thermodynamically from a Helmholtz
energy potential of the interfaces H lg as

Tlg = −algρlg ∂H
lg

∂alg
.

Equilibrium fluid pressure difference and capillary pressure

Being aware of unequal fluid pressures makes the need for an additional equation
clear. First, however, an important issue needs to be considered: the definition of
capillary pressure pc. Capillary pressure and fluid pressure difference are used as
synonyms in equilibrium

pceq
(eq)
= pgR − plR (5.39)

at the microscale and the macroscale. In a more general sense, the total capillary
pressure can be split additively into its equilibrium and non-equilibrium part

pctotal = pceq + pcneq = pgR − plR + pcneq.

Nevertheless, a more general definition of capillary pressure, including non-equilibrium
effects, is not consistent in the multiphase physics literature, cf. [30, 89]. The terms
pcneq and pctotal may be approached and interpreted differently. For example, Has-
sanizadeh [89] introduced pctotal as an inversely temperature-weighted derivation of
the system’s energy with respect to saturation, in current notation with Helmholtz
energies Hζ , temperatures θζ , wetting phase l, and non-wetting phase g

φ pctotal
θlg

= −
∑
α

ρα

θα
∂Hα

∂sl
−
∑
αβ

ραβ

θαβ
∂Hαβ

∂sl
.

This definition was developed within the thermodynamic framework by means of a
general resistance against penetration by the wetting phase. To avoid misunderstand-
ing of the term capillary pressure, the pure pressure difference between both fluids is
used in formulations when non-equilibrium effects are considered. For convenience, it
is abbreviated by

p∆g|l := pgR − plR (5.40)

and equals the commonly used capillary pressure definitions only in equilibrium. For
equilibrium effects, the term capillary pressure will still be used additionally, because
of convention and the wide impact of this term.

The remaining goal is to achieve a closing equation for p∆g|l. This is first deter-
mined for the equilibrium state. In geomechanical and geotechnical applications, the
empirical relationships between equilibrium (or static) capillary pressure and satura-
tion by Brooks & Corey [32] and van Genuchten [77] are generally popular. These
so-called soil-water characteristic curves are fitting curves of quasi-static wetting and
de-wetting experiments. Following Brooks & Corey [32], as in the case of relative
permeabilities and introducing air-entry (also named bubbling) pressure pb, yields

pceq(sl) = p∆g|l
eq (sl) = pb(slR)

− 1
λBC . (5.41)
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As in the case of relative permeabilities, validity vanishes near the state of residual
saturation, cf. Fig. 5.3. Due to technical restrictions in experiments, the suction
pressure, used to extract a fluid from a porous medium, increases drastically when a
residual endpoint is reached. This is in agreement with the microscopic Young-Laplace
equation, because capillary pressure increases (theoretically) infinitely for small radii,
i.e. for increasing curvature. However, residual saturation is not within the scope of
this part and validity of Eq. (5.41) can be assumed.
Finally, Eq. (5.41) is a fundamental basis for determination of the fluid pressure
difference. Extensions of this first approach are presented in the following.
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Figure 5.3: Equilibrium capillary pressure and relative permeabilities as Brooks &
Corey functions [32] for λBC = 0.78, pb = 440 Pa, and slres = sgres = 0.04. Gray
regions indicate residual saturation.

Hysteresis effects of classical soil-water characteristic curves

Hysteresis effects of classical soil-water characteristic curves are known to occur in
unsaturated, porous media [102, 107, 138, 154]. This accounts for rate-independent
cycles of quasi-static wetting and dewetting. Different capillary pressures can be
found for the same saturation, depending on the (quasi-stationary) state during an
imbibition or drainage process. This can be explained microscopically by different
geometric configurations, which adjust variably if a fluid is pressed through a porous
medium (entering the largest pores first), sucked (remaining in the smallest pores), or
if a fluid enters a pre-wetted porous medium (as water seeps into pre-wetted ground
more easily).
A physically founded and consistent approach to account for such hysteresis is the
additional use of interfacial areas alg. It was theoretically explained by Niessner &
Hassanizadeh [154] and evaluated for a pore network by Joekar-Niasar et al. [102].
The interfacial areas involved act as a second geometric parameter, describing the
geometric situation of the capillars more accurately and uniquely.
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The initial approach from above becomes

pc
eq(sl)→ pc

eq(sl, alg) or p∆g|l
eq (sl)→ p∆g|l

eq (sl, alg) respectively.

The contributors mentioned, [102, 154], provide a quadratic relationship between
interfacial areas, saturation, and capillary pressure in the form of

alg(sl, pceq) = a00 + a10sl + a01p
c
eq + a20

(
sl
)2

+ a11slpceq + a02

(
pceq
)2
, (5.42)

which can be reformulated to pceq(sl, alg). Compared to the previous pceq(sl)-relation-
ship, the new relationship contains one more, unknown value. To close this equation
for the new unknown, the interface mass balance is used. In the present case of
massless interfaces it reduces to the balance of interfacial areas as

∂alg

∂t
+ div(algvlg) = Elg.

The production term Elg was approximated in [154] with the saturation rate

Elg = cpceq
∂sl

∂t
,

cpceq(sl, pceq) : =

(
∂alg

∂pceq

d pceq
d sl

∣∣∣∣
line

+
∂alg

∂sl

)
. (5.43)

Here, d pceq
d sl

∣∣∣
line

is the total derivative at the current alg-sl-pceq path and usually un-
known. Niessner and Hassanizadeh [154] use the two known main drainage curves and
calculate the path for cpceq = 0 to interpolate cpceq(sl, pceq) between these three known

cases, where cpceq represents the total derivative d alg
d sl within the alg-sl-pceq field.

The last two equations become, linearizing around equilibrium and neglecting volume
forces as well as the flux term of interfacial areas with interfacial velocity [154],

∂alg

∂t
= cpceq,0

∂sl

∂t

and, after integration in time,

alg(sl) = alg0 + cpceq,0(sl − sl0). (5.44)

The proportionality constant cpceq,0 represents the actual position on the alg-sl-pceq
path and therefore explicitly accounts for the hysteresis effects. It can be interpreted
as a parameter of the specific, physical situation relating the rates of alg and sl.
Finally, combination of Eq. (5.42) - Eq. (5.44) yields a relationship between equilib-
rium capillary pressure and saturation as classical soil-water characteristic curves in
the form of

pc
eq
(
sl, alg(sl)

)
or p∆g|l

eq
(
sl, alg(sl)

)
respectively. (5.45)

Hysteresis and interfacial areas of the current physical system are expressed by the
parameter cpceq,0.
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Dynamic capillary pressure or dynamic fluid pressure difference

Dynamic capillary pressure or dynamic fluid pressure difference is a focus of modern
studies [93, 134] and extends the equilibrium part by dependence on the saturation
rate,

p∆g|l = p∆g|l
eq + p∆g|l

neq = p∆g|l
eq (sl)︸ ︷︷ ︸
=pceq(sl)

+τ
∂

∂t
sl. (5.46)

If saturation changes in time for dynamic processes, velocity profiles appear and
can change the fluid-fluid interfaces. As a result, capillary forces alter depending on
interface curvature. Hence, dynamic effects cannot be neglected for capillary pressure.
With respect to wave propagation, changes in saturation are periodic with angular
frequency ω, i.e. ∂sl/∂t = ∂(sl−sl0)/∂t = −iω(sl−sl0). In this case, the fluid pressure
difference can be written again as a function of saturation as

p∆g|l = p∆g|l
eq (sl) + τ(−iω)(sl − sl0). (5.47)

Values for the proportionality coefficient τ are still difficult to achieve and experimen-
tal data is rare. For example, Manthey et al. [134] provide values for sand in the range
of −1× 105 Pa s to −1× 107 Pa s. Moreover, they provide a dimensional analysis and
refer to an empirical relationship of Stauffer [194] as (in the current notation)

τS = −0.1 ηwR φ

ksλBC

(
pb
ρwRg

)2

. (5.48)

Viscosity ηwR and density ρwR belong to the wetting phase, which is usually the liquid
l if combined with a gas. The gravity constant is denoted by g. However, this formula
does not coincide with experimental data in every case and may diverge by one or
two magnitudes [134]. It should be regarded as an empirical formula that cannot
be used for arbitrary combinations without adaptation. However, its form helps to
understand possible influences on the dynamic capillary pressure.
In particular, it motivates one further correction of dynamic capillary pressure for ap-
plication to wave propagation. Typical experiments investigating dynamic capillary
pressure induce a flow process to create a rate of saturation. Typically, such experi-
ments do not involve oscillating flows. A modified τ -coefficient for wave propagation
consequently follows by referring back to the correction of Darcy-like viscous drag,
Eq. (5.36), and comparing it with Eq. (5.48) as

τ = −cJKD

(
ω

ωc,l

)
0.1 ηwR φ

ksλBC

(
pb
ρwRg

)2

. (5.49)

This correction is equivalent to the use of a frequency-dependent permeability. The
linearized, dynamic p∆g|l(sl) equation is finally written as

p
∆g|l
lin (sl) = p

∆g|l
eq,0 +

(
∂p

∆g|l
eq

∂sl

∣∣∣∣∣
0

− iωτ

)(
sl − sl0

)
, (5.50)

for example, with equilibrium terms as proposed by Brooks & Corey [32] and given
by Eq. (5.41) (or further including interfacial areas such as Eq. (5.45)) and the non-
equilibrium determined by Eq. (5.49).
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5.4 Final equations

5.4.1 Linearization
Balance and constitutive equations in the presented form are a set of equations that
needs to be rearranged for practical use. Because of the focus on linear wave propa-
gation, the equations can be linearized to achieve a more convenient handling. Note
especially that linearization can be executed before the equations are combined and
that linearization simplifies products significantly if the initial value(s) of one or both
factors vanish (see Appendix B.1 and Section B.2). In particular, intricate constitu-
tive equations can be reduced and the set of material parameters becomes smaller.
Utilizing this, the equations can be combined in the following manner.

general
ns + φ = 1, sl + sg = 1
nf = sf/φ
α ∈{s, l, g}, f ∈{l, g}

mass balance fluids
ρlR(sl, φ, εl)

ρgR(sl, φ, εg)

barotropic fluids
plR(ρlR), pgR(ρgR)


plR(sl, φ, εl)
pgR(sl, φ, εg)

capillary pressure
(pgR − plR)(sl)


sl(φ, εl, εg)

as above
plR(sl, φ, εl)
pgR(sl, φ, εg)

solid pressure
psR(sl, plR, pgR)

solid compressibility
ρsR(psR, εs)

ρsR(sl, plR, pgR, εs)


ρsR(sl, φ, εα)



ρsR(φ, εα)

mass balance solid
ρsR(φ, εs)



φ(εα)

Note that, in the case of the rigid-grain assumption, mass balance of the solid directly
produces a φ(εs) relationship. As a result, density ρsR becomes constant and is not a
variable. The entire lower part of the calculations vanishes. This case is known as the
hybrid model, introduced by Steeb [196], for which the solid grains are incompressible
but not the fluids or the solid skeleton.
Inserting back the results consecutively yields three balances of momentum for the
bulk phases. They depend only on the three remaining, unknown bulk deformations.
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The structure of the linearized momentum balances of the solid and the fluids be-
comes10

(ρs0 + (αid − 1)(ρl0 + ρg0))
∂2

∂t2
us −

∑
f

(αid − 1)ρf0
∂2

∂t2
uf

+
∑
f

cJKD

(
ω

ωc,f

)
nf0

2
ηfR

kskfrel

(
∂

∂t
us −

∂

∂t
uf

)
−ns0 div(2µsεs + λsεsI)

+ grad psR(εs, εl, εg)−
∑
f

nf0 grad pfR(εs, εl, εg) = 0,

(5.51a)

αid ρ
f
0

∂2

∂t2
uf − (αid − 1)ρf0

∂2

∂t2
us

+cJKD

(
ω

ωc,f

)
nf0

2
ηfR

kskfrel

(
∂

∂t
uf −

∂

∂t
us

)
+nf0 grad pfR(εs, εl, εg) = 0.

(5.51b)

The momentum balances, Eq. (5.51a) (one equation for s) and Eq. (5.51b) (two equa-
tions for f ∈ {l, g}), now only depend on the displacements and their derivatives in
time and space. Although the foregoing algebra is extensive, it reduces the complex-
ity of final calculations and results in three crucial benefits, compared to less detailed
approaches. These benefits are: explicit consideration of all physical processes in-
dividually, flexibility of their implementation, and accurate connections between the
physical origins and the final model.

5.4.2 Harmonic approach and decomposition
In order to obtain a wave solution for the linearized momentum balances, a harmonic
approach is used to describe the displacements; thus, cf. Chapter 3,

uα = ûα e
i(k·x−ωt). (5.52)

Accordingly, each bulk phase α oscillates with amplitude ûα, due to a wave of angular
frequency ω and of wave vector k. The wave vector can be further split into its
normalized direction vector nk and the corresponding length k as

k =: k nk (5.53)

with ‖nk‖ = 1 and k ∈ C. Further investigation focuses on a plane wave of constant
direction, i.e. nk = const.. This choice supports a precise physical interpretation that
focuses on the fundamental wave propagation phenomena. Other wave forms can also
be applied without imposing a restriction on the previously developed framework.

10It has been used for the solid’s balance of momentum that, with ns = 1− φ,

div(nspsRI) +
∑
f

pfR grad(nf) = grad psR −
∑
f

nf grad(pfR).
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The displacements can be decomposed into a part parallel to the wave vector and a
part perpendicular to it11

uα = u‖α + u⊥α ,

u‖α : = uα · nk with u‖α × nk = 0,

u⊥α : = uα − u‖α with u⊥α · nk = 0.

This decomposition acts directly on the amplitudes. Assuming an equation of the
form

a0 ∂ttuα + a1 ∂tuα + a2 grad div uα + a3 div grad uα + a4 rot rot uα = 0 (5.54)

yields, using some algebra as explained in Section B.3,(
a0 ω

2 + i a1 ω + (a2 + a3) k2
)
û‖α = 0,(

a0 ω
2 + i a1 ω + (a3 − a4) k2

)
û⊥α = 0.

Note that these two solutions are independent, because û
‖
α · û⊥α = 0. Because of

isotropy in the present case, they can be further transformed to a scalar problem by
dividing û

‖
α and û⊥α by their normalized, constant direction. The remaining scalars

represent the amplitude of the displacements for each individual phase.(
a0 ω

2 + i a1 ω + (a2 + a3) k2
)
û‖α = 0, (5.55a)(

a0 ω
2 + i a1 ω + (a3 − a4) k2

)
û⊥α = 0. (5.55b)

The two waves are parallel and perpendicular to the wave vector and conventionally
named the longitudinal or P-wave and the transversal or S-wave. These terms will
also be used from now on to distinguish between these two kinds of waves, i.e. ‖ → P
and ⊥→ S.

5.4.3 Dispersion relations
A propagating wave in multiphase media is finally described by applying the har-
monic approach and decomposition, Eq. (5.54), Eq. (5.55a), and Eq. (5.55b), to the
linearized momentum balances, Eq. (5.51a) and Eq. (5.51b). It results in the eigen-
value formulation

(
ω2A + iωB +

(
kψ
)2

Cψ
)ûψsûψl

ûψg

 = 0, ψ ∈ {P, S}. (5.56)

Matrix A contains the following inertia terms

A =

ρ̃11 ρ̃12 ρ̃13

ρ̃21 ρ̃22 ρ̃23

ρ̃31 ρ̃32 ρ̃33

 :=

ρs0 + (αid − 1)(ρl0 + ρg0) −(αid − 1)ρl0 −(αid − 1)ρg0
−(αid − 1)ρl0 αidρ

l
0 0

−(αid − 1)ρg0 0 αidρ
g
0

 ,

(5.57)
11Another common variant of this approach with similar outcome is the use of a (Helmholtz)

decomposition with potentials that lead to a curl-free and a divergence-free component.
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and Matrix B accounts for the viscous momentum interaction, including the frequency
correction function

B =


∑
f

cJKD

(
ω
ωc,f

)
nf

0

2
ηfR

kskfrel,0
−cJKD

(
ω
ωc,l

)
nl

0
2
ηlR

ksklrel,0
−cJKD

(
ω
ωc,g

)
ng

0
2ηgR

kskgrel,0

−cJKD

(
ω
ωc,l

)
nl

0
2
ηlR

ksklrel,0
cJKD

(
ω
ωc,l

)
nl

0
2
ηlR

ksklrel,0
0

−cJKD

(
ω
ωc,g

)
ng

0
2ηgR

kskgrel,0
0 cJKD

(
ω
ωc,g

)
ng

0
2ηgR

kskgrel,0

 .

(5.58)
Matrices Cψ represent stiffness of the system and are connected to the second spatial
derivatives of displacements. The components can be found in Section B.4, where CP

depends on the set {λs, µs,Kgrains,Λgrains,Kl,Kg, φ0, s
l
0, p

∆g|l
0 , ∂p∆g|l/∂sl

∣∣
0
} while

CS depends on {µs}.

For given materials and angular wave frequency ω, the eigenvalue formulation Eq. (5.56)
can be solved for eigenvalues (i.e. squared wave vectors kψ2) and eigenvectors (i.e.
amplitudes (ûψs , û

ψ
l , û

ψ
g )T). Three solutions appear for the P-wave, denoted by the

indices P1, P2, and P3. One solution appears for the S-wave, denoted by the index
S. Only the solid resists shearing; therefore, CS contains only one entry.
Given the solution of the eigenvalues, the frequency-dependent phase velocity cχ, and
inverse quality factor Q−1

χ are

cχ(ω) =
ω

<kχ
, (5.59)

Q−1
χ (ω) = 2

=kχ

<kχ
(5.60)

for each wave mode
χ ∈ {P1,P2,P3, S}.

Finally, these two quantities, together with the displacement amplitudes, will form
the basis of investigating and understanding the physical phenomena.

Closing remark The previously introduced characteristic frequencies, Eq. (5.35),
emerge by dividing the (not frequency-corrected) second and third diagonal elements
of B by those of A, and represent the ratio of viscous drag to inertial forces. Moreover,
consistency of the initial values has to be assured. For example, capillary effects
result in different initial fluid pressures while changes in bulk moduli or densities
from ambient conditions are often negligible, cf. Section 19.7.1.





Chapter 6

Model properties and selected
examples

The following examples start with an exemplary, initial system of Nivelsteiner sand-
stone that is saturated with 40 % water and 60 % air. More elaborate physics is added
stepwise. This procedure allows a precise investigation of separate physical processes.
It reveals the potential of the developed theory in particular and wave propagation ef-
fects in general.
Specific extensions include reservoir conditions, grain compressibility, interfacial fluid-
fluid areas, dynamic fluid pressure difference, and viscoelastic solids. The chapter
finishes with scattering effects and remarks on potentially ambiguous definitions in
literature.

6.1 Preliminary comments and the common initial
system

The subject of the first basic investigations is Nivelsteiner sandstone filled with 40 %
water and 60 % air at ambient conditions. Rigid grains are assumed, Kgrains → ∞,
and the dynamic fluid pressure difference is neglected, τ → 0, i.e. the hybrid-model
approach according to Steeb [196] is used. If not stated otherwise, all further examples
refer to the same system and extensions are mentioned explicitly.
Material properties can be found in Appendix A.

6.2 General example and basic model properties

6.2.1 Low-frequency range

This section studies the initial system as introduced above. Solutions of the disper-
sion relations can be subdivided into the four wave modes: three longitudinal waves
(P1, P2, and P3) and one shear wave (S). At low frequencies, ω → 0, only the P1-
and the S-wave appear. In this low-frequency range, the fluids are coupled to the
solid because of viscosity. All three constituents move in phase without a lag angle.
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Moreover, all amplitudes are equal for the P1-wave, whereas the second and third lon-
gitudinal waves vanish, Fig. 6.1. Relative movements of the slower longitudinal wave
modes cannot develop. The inverse quality factor of the P2- and P3-wave equals two.
These two waves are just not stimulated because their total energy is transferred to
the P1-wave motion, cf. Eq. (3.26) and corresponding explanation.
The low-frequency limit of wave propagation in a binary mixture was described
decades ago by Gassmann [76]. The corresponding velocity is also known as the
Gassmann-Wood limit (GW-limit). Averaging both fluids to one single fluid-mixture
with the inversely averaged bulk modulus Klg yields the low-frequency limits for the
rigid-grain assumption as

lim
ω→0

cP1(ω) =: cGW,P1 =

√
Ks + 4

3µ
s +Klg/φ0

ρs0 + ρl0 + ρg0
, (6.1)

lim
ω→0

cS(ω) =: cGW,S =

√
µs

ρs0 + ρl0 + ρg0
, (6.2)

Klg =
1

sl0
Kl +

sg0
Kg

. (6.3)

The introduced average of the fluid bulk moduli is also known as the Reuss average
and its connection to the volume fraction-weighted density average is called Wood’s
formula, cf. [139].

6.2.2 Transition range

With increasing frequency, inertia effects become more dominant. They overcome vis-
cous coupling and the fluids start to decouple, cf. the decreasing P1-wave amplitudes
of the fluids in Fig. 6.2. In the present case, air decouples first and water decouples
then at higher frequencies. Due to this decoupling process, one longitudinal wave
propagates separately in each fluid, composing the P2- and the P3-wave. Because
macroscopic Newtonian fluids are assumed to have no resistance against shearing,
further shear wave modes do not develop12. Furthermore, the decoupling process is
indicated by the critical frequencies, cf. Fig. 6.1 and Eq. (5.35). They represent the
ratio of viscous forces to inertia forces of the fluids and are generalized in Chapter 11.
The decoupling process also induces a (viscous) relative movement of solid and fluids,
which results in a loss of momentum for the P1-wave. It is observable by the peaks
of Q−1

P1 and Q−1
S . This damping mechanism, which is caused by viscous drag, is often

called Biot-like damping, because it is the only damping mechanism of the famous
Biot model for wave propagation [24, 25]. Only one visible peak occurs because of
the relatively low density and energy contribution of air.

6.2.3 High-frequency range

At very high frequencies, ω � ωc,f, inertia dominates over viscous forces. The only
coupling between the fluids and the solid is due to the form-locking/tortuosity pa-
rameter αid. If this coupling process also vanishes, αid → 1, the fluids decouple
completely. The fluids do not contribute to the P1- and S-wave and show lag angle of

12Note that special situations may appear, in which a slow fluid shear wave may be observed, cf.
[168] and Fig. 5.2b).
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90◦. In this special case, the denominator in Eq. (6.2) can be replaced by the densities
of the coupled phases to obtain the mid- and high-frequency limits of the S-wave.
Note that for ω → ∞, the wavelength approaches the characteristic length of the
micro-structure. As a result, the long wavelength approximation becomes invalid and
scattering appears, cf. Section 6.8.

6.2.4 Stimulation of wave modes
On the one hand, the appearance of specific wave modes depends on the boundary
conditions. An oscillating solid boundary will predominantly stimulate those wave
modes that are connected to the solid movement. Mathematically, the given bound-
ary condition splits into a linear combination of the displacements us, ul, and ug.
Moreover, a transformation of wave modes occurs due to interactions such as viscous
coupling. Practical observation of single wave modes can become even more difficult,
due to the required differentiation into time or frequency domain, low sensitivity, or
high attenuation, cf. the work of Kelder & Smeulders [106].
For example, the slow, longitudinal (P2-)wave was predicted by Biot for a bipha-
sic mixture [24]. Nevertheless, experimental observations required a long time, cf.
[106, 160]. Two longitudinal wave modes can also be observed in bones [36, 123].
Bones, however, have an oriented structure, due to adaptation to mechanical loading,
and are therefore highly anisotropic. For this reason, the slow wave only occurs in
directions where fluid flow is possible along the bone channels [123].

In the event, the presented example already predicts the existence of four different
wave modes and distinguishes between three different frequency ranges: the low-
frequency range, where all constituents are coupled; the transition zone, where de-
coupling processes begin and further wave modes develop; and the high frequency
range, where the decoupling process is completed.
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Figure 6.1: Dispersion relations for Nivelsteiner sandstone with 40 % water and 60 %
air: phase velocity and inverse quality factor. The Gassmann-Wood limit for low
frequencies is drawn as a horizontal line for the P1- and the S-wave. Characteristic
frequencies after Biot for liquid and gas are plotted as vertical lines (g left and l right).
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Figure 6.2: Dispersion relations for Nivelsteiner sandstone with 40 % water and 60 %
air: normalized displacements and relative phase shifts between the single phases.
Characteristic frequencies after Biot for liquid and gas are plotted as vertical lines (g
left and l right).
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6.3 Saturation range
In addition to frequency dependence, a further interesting aspect for research and ap-
plications is the view on saturation. Varying saturation conditions appear at different
depths in the ground or in different regions on earth. For example, tunnel drilling
machines are used in areas with varying moisture content. In such cases, exploration
via mechanical waves depends on the saturation conditions.

6.3.1 Ambient and reservoir conditions
P1 phase velocity was determined for air at ambient conditions and at reservoir depth.
For varying frequency, a distinct transition fault can be observed in both cases. It
results from the decoupling process of the water phase. Decoupling of air is visible as
a second transition step only for the case of reservoir conditions for low water satura-
tion sl, cf. the arrow in Fig. 6.3. For the case of ambient pressure, density, viscosity,
and stiffness of air are small, so that the decoupling process is not even visible in the
left graph. Due to their relatively low impact, gases at ambient conditions are often
neglected when present in experimental tests of solid porous media. In particular, the
current model serves as a tool for prediction of uncertainties caused by such assump-
tions.
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Figure 6.3: P1 phase velocities for Nivelsteiner sandstone with 40 % water and 60 % air
at ambient conditions and at reservoir depth for different frequencies and saturations.
The plotted saturation range for sl is between 7.5 % and 92.5 %. The arrow indicates
the decoupling process of air.

Considering saturation dependence at a fixed frequency, typical cP1-sl curves bow
between both saturation limits. This can be seen clearly in Fig. 6.3, right13. The
mixed elasticity is lower than for a pure fluid phase. This behavior is supported by
experimental observations as shown in the next subsection.

13Note, however, that for ambient conditions the increasing branch of P1-velocity in the high
saturation regime is outside the plotting range. This is due to the high compressibility of the air
phase, which weakens the system’s stiffness, even for very high water saturations.
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6.3.2 Application and comparison with experimental data
Comparison with experimental data of Murphy [151] is given for Massilon sandstone
at different saturations of water and air. The agreement is excellent, including the
steep increase at high water saturations, even though the hybrid model, i.e. the
assumption of incompressible grains, is used throughout. The material data used is
based on the respective fitting in [120, 219]. For sl → 1, a small deviation becomes
apparent. Nevertheless, a model for residual saturation is more appropriate in this
special case, as will be shown in Part III.
It should be noted that capillary effects or decoupling processes exert a minor influence
at these comparably low frequencies. Only one type of longitudinal wave appears
(P1). Transformation from longitudinal and shear wave velocities to extensional waves
(index E) was executed analogously to transformation of the corresponding moduli
as

cE =

√
c2S(3 c2P1 − 4 c2S)

c2P1 − c2S
.

The E-wave is related to the Young’s modulus at uniaxial stress (for example, through
thin wires with free boundaries) in the same way as the P-wave is related to the P-
wave modulus at uniaxial strain, cf. Appendix B.4, (for example, for an infinitely
broad, plane propagation front).
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Figure 6.4: Comparison of dispersion relations with experimental data of Murphy
[151]. Dispersion relations were calculated for ω = 2π × 600 s−1.

Additionally, saturation dependence of velocity at ambient conditions is illustrated in
Fig. 6.5 by spatial propagation of a seismic subsurface P1-wave. A distortion of the
traveling wave front develops with increasing time. This emphasizes the importance
of knowledge about the wave velocity in field tests and exploration.
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Figure 6.5: Seismic P1-wave (low-frequency range) in loose subsurface soil with differ-
ent degrees of water saturation, for instance, moisturized by rain from top to bottom.
Residual saturation ranges are left out. Material data is given in Appendix A.

6.4 Grain compressibility

A porous medium is composed of the matrix of a bulk solid. It can be a connected
wire frame, as in the case of synthetic sponges, or a packing of grains, as for sands.
Therefore, two compressibilities exist, one for the bulk material and one for the ma-
trix. The latter is affected by its geometric structure. The Newtonian fluid phases
possess only one compressibility, which is that of the bulk material. They do not
exhibit elastic resistance against shape change.
Although the presented theory includes grain compressibility, its complexity reduces
in the case of the rigid-grain assumption. Porosity can be directly determined from the
solid mass balance with ρsR = const. Furthermore, two material parameters, Kgrains

and Λgrains, need not to be determined. This hybrid model approach was introduced
by Steeb [196] for biphasic media.
Grain compressibility is negligible if it is low, compared to the compressibility of the
fluids [196, 199]. Deviation of the low-frequency P1 phase velocities between compress-
ible grains and the rigid-grain assumption practically vanishes if Klg/Kgrains � 1.
For a binary mixture, Klg has to be replaced by the bulk modulus of the single pore
fluid.

The present calculations support these findings and extend them to the full frequency
range for all four wave modes. Variations of the grain bulk modulus, Kgrains, by
factors of 0.5, 2, and 10 practically do not change the behavior of P1-wave for air
at ambient conditions, cf. Fig. 6.6. Changes of the other wave modes are less pro-
nounced. This is because alteration of the grain bulk modulus, Kgrains, influences
mostly the P1-wave, for the investigated material combination. The S-wave does not
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depend on the grain bulk modulus, cf. definition of the stiffness matrix in Section B.4.
The P2- and P3-waves are largely connected to the fluid movements, cf. amplitudes
in Fig. 6.1.
Deviations, due to the rigid-grain assumption, are noticeable but remain below 1 %
for the investigated case of air at reservoir depth conditions. It can be concluded that
grain compressibility generally affects the longitudinal, i.e. compressional, wave of
the solid. Nevertheless, the rigid-grain assumption emerged as a good approximation
for the investigated samples. The corresponding hybrid model is generally applicable
if Klg/Kgrains � 1 and covers many materials, in particular, when gases are present.
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Figure 6.6: P1 phase velocities for a Massilon sandstone with 40 % water and 60 %
air at ambient conditions/reservoir depth for variations of the grain bulk modulus.

6.5 Interfacial fluid-fluid areas

Interfacial fluid-fluid areas, alg, have been used by Niessner & Hassanizadeh [154] and
Joekar-Niasar et al. [102] to explain hysteresis effects of the pc

eq-sl-relationship. Dif-
ferent values of interfacial areas represent a different pc

eq-sl path. To investigate the
influence of interfacial areas on wave propagation, different pc

eq-sl paths are studied
for the same saturation. This is achieved by performing three variations of the initial
Brooks&Corey parameters: [λBC×1, pb×2], [λBC×2, pb×1], and [λBC×2, pb×2].
Measurements of alg are still rare and not available for the present material com-
bination. Nevertheless, applying the values of saturation and equilibrium capillary
pressure to the pore network models in [102] can serve as a first indicator. The men-
tioned changes of the pc

eq-sl paths correspond to a variation of fluid-fluid interfacial
areas of −16.62 %, +8.75 %, and −1.76 % respectively.
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Figure 6.7: P1- and P3-wave phase velocities for different pc
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As a first result, relative permeabilities and capillary pressure change with varying
λBC. This causes a shift of the decoupling processes, cf. the cP1-shifts in Fig. 6.7.
Additionally, the P3-wave is significantly influenced, whereas the P2 velocities remain
virtually unaffected. Physically, capillary effects influence the interaction of both flu-
ids, which became observable via the weak air-phase. The cP3 high-frequency limits
grow stiffened by increasing initial capillary pressure for the investigated cases.
In conclusion, interfacial fluid-fluid areas became noticeable as changing relative per-
meabilities for all wave modes and especially through the changes in P3-wave behavior.
This wave, however, is highly dissipative. Hence, it is usually difficult to observe and
characterize experimentally, cf. difficulties observing the second wave in [160, 191].
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6.6 Dynamic fluid pressure difference and dynamic
capillary pressure

The effect of a dynamic fluid pressure difference (or dynamic capillary pressure) has
not been completely explored, to date. Hence, it is of fundamental scientific interest
to investigate its influence on wave propagation and vice versa. Dynamic fluid pres-
sure difference is simulated by use of Eq. (5.49) and Eq. (5.50). Because the empirical
origin of τ serves only as a rough approximation and may vary by one order of mag-
nitude or more [134] it has been varied by the factors 1× 103 and 1× 10−3.
The results are noteworthy compared to the equilibrium relationship, i.e. τ = 0 Pa s.
The τ -parameter causes an additional damping mechanism, superimposing and dom-
inating the classical Biot-like damping of the P1-wave, Fig. 6.8. Varying τ results in
a shift of the damping process as it does for varying viscosity in the case of viscous
damping. Moreover, the P1-wave velocities increase noticeably in the high-frequency
case and the P3-wave becomes a fluid-wave of much higher velocities than before. The
dynamic parameter τ generally stiffens the system, particularly, at high frequencies
like a classical damper. The P3-wave velocities become even higher than those of the
P2-wave, whereas the latter and the S-wave remain unaffected.
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Figure 6.8: Dispersion relations accounting for a dynamic fluid pressure difference.
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In the event, the theoretical implementation of dynamic fluid pressure difference shows
a remarkable effect on wave propagation in the present example. Furthermore, it
coincides qualitatively with the approach of Wei & Muraleetharan [220] that is based
on the rate of volume fraction (ṅl) instead of saturation. However, the role of dynamic
fluid pressure difference is not fully understood yet. Changes of traveling fluid-fluid
interfaces may be stronger for long-range flow in sinusoidal pore channels than for the
case of wave oscillations with small amplitudes. Thus, the impact of τS, assumed on
the basis of steady flow, may deviate for propagating waves. The presented results
show possible influences and, therefore, will help to sharpen the focus of experimental
studies that are required for final conclusions.
Another microscopic view on this topic will be given in Part IV for the case of residual
saturation. A limited frequency dependence will be demonstrated for the shape of
flow profiles and the capillary pressure.

6.7 Viscoelastic solid matrix
A porous matrix can consist of various bulk materials. In particular, artificially
created foams can be produced from synthetic material. Usually, materials such as

dSLS

cSLS,2
cSLS,1

Figure 6.9: SLS-model.

plastics are not only elastic but show a viscoelastic
behavior. As a first approach, the implementation
of a standard linear solid (SLS) model is investi-
gated, which consists if two springs of stiffness cSLS,1

and cSLS,2 and one damper of damping coefficient
dSLS attached to the second spring, cf. Fig. 6.9.
The dynamic modulus describing the stress to strain ratio for vibrational excitation
with ω becomes

cSLS,1 +
cSLS,2 d

2
SLS ω

2 + i ω c2SLS,2 dSLS

d2
SLSω

2 + c2SLS,2

. (6.4)

The viscosity of the solid adds another damping mechanism as it can be seen by
the inverse quality factors in Fig. 6.10. In the current example, damping of the
viscous solid is much larger than due to viscous flow. Different relaxations times,
determined by dSLS, result in a shift of the Q−1 peaks. Additionally, stiffness is weak
at low frequencies, at which the damper shows no resistance, and grows at higher
frequencies, at which the damping element stiffens. The low- and high-frequency
limits can therefore be used to determine the values of the two springs in the SLS-
model. More interestingly, stiffening of the damper is analogous to the explanation of
the high-frequency phase velocities of the P1- and P3-wave for dynamic fluid pressure
difference, Fig. 6.8.
In addition to the used SLS-model, more sophisticated rheological models can be
implemented, for instance, as used in [232] for asphalt. For realistic application, their
respective properties can be fitted to experimental data.
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of dSLS. Note that the second rising of the left phase velocity curve and the higher
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6.8 Scattering

The presented macroscopic model for wave propagation is based on the assumption
of scale separation, i.e., the wave length is much larger than the characteristic length
of the microstructure. In this case, the gradient of the wave displacement is small
at the microscale and single adjacent grains and pores move almost uniformly. The
wave does not interact with the microstructure. In the opposite case, the wave am-
plitude changes at a scale that is similar to or smaller than the pore size. The wave
displacement changes substantially between two pores. As a result, reflections occur
at microscopic discontinuities such as the solid-fluid interfaces and the wave signal
scatters.
For many experiments and theoretical investigations, it is convenient to replace the
wave length condition for scale separation by a frequency condition via λχ = 2π cχ/ω.
A general estimation for the valid frequency range cannot be given, because it de-
pends on the specific materials. For rocks, a first approximation for the wavelength of
the P1- and the S-wave is λP1/S(ω) ≈ 2 km s−1/ω. Assuming at least λP1/S ≥ 1 mm,
the frequency must be f ≤ 2× 106 s−1 or ω ≤ 1/3× 105 s−1.
Wave lengths of the specific example of Nivelsteiner sandstone with water and air
from Section 6.2 are plotted in Fig. 6.11. Similar to the P1- and S-waves, the P2- and
P3-waves fulfill the requirements of a long wave length at low frequencies although
they are highly dispersive. Due to their lower velocities, their wavelengths are smaller
than for the P1- and S-wave. Additionally, the slope of the double-logarithmic λχ(ω)
relationship becomes similar for all waves in the high frequency range after the de-
coupling process.
Although the presented theory does not account for scattering effects, an investigation
of the full frequency range remains useful, because the predicted physical phenomena
are understood entirely and can be important for other material combinations.
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Figure 6.11: Wavelengths of different wave modes for Nivelsteiner sandstone with
40 % water and 60 % air as defined in Section 6.2.

Moreover, scattering effects can provide further information about the physical sys-
tem. For example, Güven [82] sent a polychromatic wave through a cylindrical, air-
filled sample of sintered glass beads and recorded the arriving signal. An extract of
the experimental results is shown in Fig. 6.12.
For glass beads of 0.5 mm diameter, one part of the transmitted signal contains wave-
lengths larger than 0.5 mm and it fulfills the condition of scale separation. This part
travels as a macroscopic, elastic wave and can be recorded distinctively, cf. Fig. 6.12
(left). The other part of smaller wavelengths is filtered, because of scattering effects.
For glass beads of 8 mm diameter, no transmitted wavelength is large enough and the
entire signal is scattered, cf. Fig. 6.12 (right).
In addition to theories of elastic wave propagation, scattering signals can also be used
to characterize the physical system, for example, via a diffusion model [101].
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Figure 6.12: Recorded signal in air-filled glass beads with different diameters from
experiments of Güven [82] and private communication with I. Güven.
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6.9 Remarks on definitions and possible misunder-
standings

6.9.1 Permeability
The used definition of permeability is that of an intrinsic (hydraulic) permeability ks.
It relates the pressure gradient to a laminar, steady-state fluid flow and is solely a
property of the solid matrix. Note that there are other definitions of permeability.
They can include further properties such as the fluid viscosity and can be motivated
by specialized experiments, for example, water flow due to gravity g. Amongst others,
one famous example is the so-called Darcy-permeability or hydraulic conductivity

kfDarcy = ks
ρfRg

ηfR
,

with units m s−1 and named after Darcy [43]. The unit Darcy (denoted as D and often
used as mD = 10−3 D) is closely related to this origin with 1D = 9.869× 10−13 m2.
In addition to the alternative definition above, some theories of wave propagation
combine intrinsic permeability and its modifications such as frequency dependence
to one complex-valued permeability, cf. [105]. Such alternatives can be useful for
experiments when the proportionality factor between fluid flow and pressure gradient
is considered directly. The present work, in contrast, separates the individual physical
influences and, therefore, distinguishes between the intrinsic permeability and effects
that exceed its original use for pressure-driven, steady-state flow.
Due to the frequency correction in Eq. (5.36), an additional imaginary part of the
viscous drag forces appears. By this, it directly contributes to the inertia terms (as its
origins are microscopic inertial forces). As a result, the imaginary part may be isolated
from the real part and recognized as a permeability impact on inertia. Nevertheless,
all such interpretations are just different reflections of the same physical phenomenon.

6.9.2 Tortuosity
Definitions of tortuosity are various and this circumstance cannot be clarified in full
detail in the present work. What is more, use and interpretation of the same tortuosity
approach diverge, even if they are inherently consistent [42]. The problem is perhaps
best described by loosely following L. Wittgenstein: the meaning of a word is defined
by its use in language14. A first attempt for a clear view on this subject also follows
L. Wittgenstein: the meaning of a name is sometimes best explained by pointing on
the object to which it refers14.
One well-known microscopic definition of a hydraulic (or sometimes called geometric)
tortuosity should be mentioned. It describes the ratio of a flow path length with
respect to the shortest connection between two points

αhyd =
flowpath(A,B)

AB
.

This property has, at least, two physical impacts. On the one hand, fluid flow is
deflected, which yields a resistance against flow through the solid. Effectively, this
becomes noticeable in the macroscopic permeability. For example, sinuous pore chan-
nels are tortuous and increase the resistance for fluid flow. Thus, terms of tortuosity

14Translated from [159], also cf. [225].
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and permeability (or viscous drag) are related in some theories depending on their
definitions.
On the other hand, hydraulic tortuosity affects form locking or trapping of fluid in
the solid pores. Hence, inertial drag is also influenced by it. This was expressed by
the macroscopic parameter αid in the current framework and is not necessarily equal
to αhyd. For example, the latter does not account for dead ends of pores or inclusions,
which are separated from the main flow.

a) Low Reynolds number. b) High Reynolds number.

Figure 6.13: Deterministic lengths of the hydraulic tortuosity for low and high
Reynolds numbers. The solid line indicates the stream line of a particle and the
dotted line indicates the shortest connection in space. The value determined for low
Reynolds numbers is often called geometric tortuosity.

Additionally, note that the above definition of the hydraulic tortuosity can depend
on the flow properties. For steady flow with low Reynolds numbers, the streamline
of a particle can be different from the case of high Reynolds numbers, Fig. 6.1315.
Accordingly, a dependence on the oscillation frequency may occur as well. Moreover,
it should be emphasized that the macroscopic tortuosity is an averaged parameter of
the microscopic definition as given above.
The present work cannot solve the problematic circumstance of different tortuosi-
ty definitions. Instead, it distinguishes between the physical (macroscopic) effects
of inertial drag and viscous drag. These effective physical phenomena are of major
importance in the present investigation. The knowledge about their physical role and
implementation in the current framework allows a comparison with literature and the
respective definitions with appropriate care. Even more, the corresponding material
parameters, αid and κs (or b0,f), can be interpreted as coefficients of the respective
processes of non-equilibrium momentum exchange.

6.9.3 Solid and fluid waves
The former investigations demonstrated the appearance of different wave modes,
which were called P1-, P2-, P3-, and S-wave. The classification of the longitudinal

15Motivated by private communication with R. Sivanesapillai.
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(P-)waves was done with respect to the wave velocities and their dispersive behavior.
In literature, they are sometimes connected to the single phases or boundary con-
ditions, for instance, the so-called airborne wave [5]. Note that such definitions are
common in specific research areas but are not appropriate for a general theoretical
description. As could be seen, the wave modes are often connected to more than one
phase, cf. Fig. 6.1. Moreover, the constituent that is connected to the slow P2-wave
is not always the fluid, but can change to the solid as it will be shown later, cf. Sec-
tion 11.4.2. Hence, a denotation connecting the wave modes to specific materials is
only suitable in the case of unambiguousness.

6.9.4 Further terms and definitions
Various terms and definitions were established to describe dynamic processes in porous
media during the last decades. They depend on the research area, research group,
place, and time. Many terms have been mentioned in the previous discussion, whereas
others cannot be considered due to the large spectrum of existing research. Therefore,
it should be noted for comparison with literature that some terms may appear with
other naming or alternative (re)formulations. This circumstance is often caused by
differences in theoretical approaches or accessibility of experimental data.
One example is the representation of the response to cycling loading via dynamic
moduli. They are often used for interpretation of experiments and further divided
into storage modulus and loss modulus. The storage capacity of aquifers is often
used/measured during field pumping tests. In the current framework, this is implic-
itly included in the stiffness matrices of the compressional P-waves as they include
resistance of pressure with respect to volumetric deformation. Considering basic def-
initions, volume fractions and saturation are sometimes replaced by a so-called pore
number or moisture content. With respect to alternative definitions and names, the
interested reader is referred to textbooks such as [5, 13, 139], which also contain a
deeper theoretical introduction.





Chapter 7

Mesoscopic extensions

A classical distinction between two scales was used in the previous chapters. Nev-
ertheless, natural materials, including rocks, wood, or arterial networks, can show a
bandwidth of active length scales. This results in so-called mesoscopic effects, which
are motivated and presented in this chapter. The implementation of two types of
mesoscopic processes, namely squirt-flow and double pores space effects, is executed
phenomenologically and illustrates its significant impact on attenuation.

7.1 Introduction
The presented theory accounts for a material with an inherent microstructure and
describes it as a continuum on a macroscale. This approach works well for a multi-
plicity of materials, especially for artificially created porous materials used in the field
of mechanical engineering. In contrast, natural structures - organic and nonorganic -
do not possess just one single microstructure. Additionally, a heterogeneity may also
appear on another length scale, the mesoscale (from the Greek word µέσoς indicating
middle).
For example, rocks often have a grain structure on the µm-scale. A rock mass on the
km-scale, however, does not consist of the grain structure throughout. It can also
contain gaps, folds, and other irregularities on a dm- or m-scale. These irregularities
are not only exceptional disturbances but are also distributed over the entire rock
mass. Furthermore, saturation of two fluids or properties such as porosity can change
on a scale that is larger than the typical pore diameter. In all mentioned cases, a
further length scale becomes important for the physical behavior of the material: a
mesoscale. Although a comprehensive study of mesoscopic losses exceeds the scope of
this work, basic approaches are presented to improve understanding of the mesoscale
impact on wave propagation and to create a link to further research.
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Figure 7.1: Mesoscopic structures in the form of layers in sandstone (Valley of Fire,
Nevada, USA) and in the form of a second characteristic pore space, created by
additional cracks in the soil (Death Valley National Park, California, USA).

7.2 Types of mesoscopic losses: squirt-flow, leak-off,
and interlayer flow

In natural media, theoretically predicted attenuation and quality factors often di-
verge from experimental data [56]. For example, the measured inverse quality factor
(or attenuation respectively) of sandstone is significantly higher and appears at lower
frequencies than predicted by Biot’s theory [25]. Various approaches to modeling ex-
ist. Typical concepts for its explanation are presented in Fig. 7.2, based on several
literature resources.
One well-known explanation is squirt-flow, which typically appears if pores and/or
cracks of extreme aspect ratios are connected. One attempt to combine Biot’s predic-
tions and squirt-flow is the so-called Biot-squirt-flow-model (BISQ) that was intro-
duced by Dvorkin & Nur [56] and revised in [58]. The key concept is the introduction
of a radial squirt-flow, which occurs perpendicular to the propagating wave over a
certain squirt-flow length. Macroscale equations are used for the mathematical de-
scription and yield a correction function for the relationship between pressure and
derivatives of the displacements. Biot’s theory [25] is thereby extended by a correc-
tion factor that depends on the new characteristic squirt-flow length.
Damping mechanisms in intersected and separated crack networks were investigated
numerically in [78]. The cracks were much larger than the microscale pores and showed
a high energy intake at low frequencies. A similar approach but with intersection of
different geometries is based on contributions such as [2, 140, 157]. Furthermore,
leak-off into the micropores can add to the list of mesoscopic loss mechanisms.
Layers with different properties can also cause mesoscopic loss. Considering a further
fluid phase, White et al. [223], Dutta & Odé [54, 55], and Quintal et al. [171] in-
vestigated heterogeneities that can occur in the form of alternating layers of different
saturations. The mesoscopic length scale is determined by the layer thickness. Even
with neglected inertia, i.e. with a focus on the low-frequency regime, the layered
structure can increase attenuation significantly [171, 223]. Furthermore, Cit et al.
[39] describe a loss mechanism in alternating fluid-solid layers.
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a) b) c) d)

Figure 7.2: Basic concepts of mesoscopic losses. a) squirt-flow [56] b) squirt-flow in
cracks/areas of high aspect ratios [2, 157] c) pressure diffusion in cracks and leak-off
[78] d) layered media [39, 223]. Gray color represents the micro structure.

7.3 Local flow and its characteristic frequency

Until today, there is no universally accepted theory and various mechanisms may
contribute to mesoscopic loss with different weighting for specific situations. Common
to all previously mentioned concepts is a new characteristic length. Its origin can be
an extra crack or layer but is not restricted to it. The following investigation will focus
on mechanisms that are traditionally subsumed with the terms squirt-flow, pressure
diffusion, and/or wave-induced fluid flow.
Indeed, porous media such as sandstones can contain such a mesoscopic length that
is not included in classical Biot-like theories. Biot assumed a flow through a porous
medium that is influenced by permeability of the solid matrix. Nevertheless, dead end
pores can exist at various length scales, in which flow is not restricted by permeability
but by the closed wall. For steady (Darcy-like) flow, the closed pore space acts
similarly to dead water zones. At most, they include secondary flows but the key
issue is: the pores do not deform during the flow process of steady flow, Fig. 7.3.
As a result, influence of the dead end pores’ elasticity on solid-fluid interaction is
not accounted for neither in Darcy’s nor in Biot’s theory. However, these pores can
deform for oscillatory flow as it appears for wave propagation.

Figure 7.3: Difference between global (Darcy-like) flow (left) and local flow (right).

Thus, two different flow processes can occur in the pore space. On the one hand, there
is classical Biot-flow that is constrained by the inverse permeability. In application,
for example, this is known from consolidation, which is related to a boundary with
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open pores. The characteristic length is based on the pore diameter. On the other
hand, fluid inclusions exist, which are constrained by the closed, solid walls. Their
dynamic response depends on viscous fluid flow between the elastic walls.
A differentiation between these two phenomena can also be represented by respec-
tive pore spaces. For example, compliant pores (adapting to deformation by outflow
through the pore channels) and stiff pores (stiffer due to the solid boundary, which
captures the deformation) are distinguished in [39, 57, 137, 188], cf. Fig. 7.4. Con-
sidering cracks of high aspect ratios and different orientations, some behave stiff with
respect to load in lateral direction but others are loaded transversally and behave
more compliant. Another differentiation is that between global and local or wave-
induced fluid flow. This is because Biot’s description is connected to the macroscopic
(global) flow. On the contrary, the mesoscopic flow process is limited locally by the
solid boundary.
In conclusion, two characteristics lengths can be distinguished: common to cracks or
spaces bounded by connected grains is a large length lstiff accounting for their elas-
ticity and storage (local flow), whereas viscous flow through them is governed by the
smaller characteristic pore distance lcompl (global flow).

lstiff lcompl only lcompl

Figure 7.4: Idealized comparison between characteristic stiff and compliant pore
lengths. No mesoscopic length scale appears in completely regular structures.

In the same way classical Biot-like damping is related to a characteristic frequency,
mesoscopic attenuation is related to another characteristic frequency. Ciz et al. [39]
expect the characteristic frequency of so-called local flow to be determined by the
solid stiffness, fluid viscosity, and a characteristic length ratio of compliant pores to
stiff pores lcompl/lstiff as

ωc,VE,f =
K̃s

ηfR

(
lcompl

lstiff

)msf

. (7.1)

K̃s represents the solid elasticity and is typically related to Young’s or the shear
modulus. The exponent msf can be approximated by values between 2 and 3 for the
characteristic frequency but also other values are used [37, 39, 140, 165].
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7.4 Implementation in the current model

7.4.1 Equations
Based on the previous thoughts and Eq. (7.1), the new local-flow mechanism is as-
signed to viscous damping of the solid matrix. From the macroscopic point of view,
it is an intrinsic mechanism because the corresponding local, mesoscopic flow is undi-
rected. Hence, it does not appear as a macroscopic movement as against the fluid flow
of Biot-type. The damping of fluid inclusions depends on fluid viscosity ηfR. With
it, the new viscous damping of the solid matrix is approached as, cf. Eq. (5.19),

Ts
extra = (2µsεs + λsεsI) (1− nsf)

+ nsfsl
(
2µsεs + λsεsI + asf csf,l(ω) ηlRε̇sI

)
+ nsfsg

(
2µsεs + λsεsI + asf csf,g(ω) ηgRε̇sI

)
= 2µsεs + λsεsI︸ ︷︷ ︸

Biot-like approach

+nsf
∑

f∈{l,f}

sfasf csf,f(ω) ηfRε̇sI.

(7.2)

Physically, the viscous fluid inclusions (ηfR) resist the rate of volumetric change of
the pores (ε̇s) and induce viscous stress. The part of the solid that is assumed to
be viscous is weighted by nsf and further distributed to both fluid phases via their
saturation in this first approach. The geometry of the fluid inclusions is represented
by parameter asf . Following Eq. (7.1) motivates the approach

asf ≈
(
lcompl

lstiff

)−msf

. (7.3)

The characteristic, mesoscopic length lstiff is usually much larger than lcompl [39],
which is the characteristic pore diameter in the present case, lcompl ≈ dpore.
Moreover, a frequency dependence is introduced by csf(ω) for two reasons. First,
the distribution of stiff pores is usually irregular. For example, cracks of different
orientations can occur with different characteristic damping frequencies. Thus, their
dynamic response can depend on the angle of incidence and frequency.
Second and of fundamental influence, the wave length becomes smaller than lstiff
for ω � ωc,VE,f. In this case, the flow is not restricted by the dead-end pore walls
any more. Due to the small wave length, the fluid can oscillate freely within the
wall distance lstiff . As a central result, resistance is more and more determined by
permeability. The former stiff pores behave like compliant pores and the total pore
space can be described by Biot-like flow for ω � ωc,VE. This has to be accounted for
by csf(ω) with

csf(ω) ≈ 0, for ω � ωc,VE,f, (7.4)

which distinguishes the physical process and the presented approach from a classical
viscous damping mechanism.
Using the foregoing findings and applying linearization and the harmonic approach
for plane waves replaces the elastic stiffness of the solid in Section B.4 by

λs + 2µs → (λs + 2µs)

[
1− i nsf

(
sl0

ω

ωc,VE,l
csf,l(ω) + sg0

ω

ωc,VE,g
csf,g(ω)

)]
, (7.5)

ωc,VE,l =
λs + 2µs

ηlR
1

asf
, ωc,VE,g =

λs + 2µs

ηgR
1

asf
(7.6)
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for P-wave stiffness (in the first diagonal element of CP) and

µs → µs

[
1− i nsf

(
sl0

ω

ωc,VE,l
csf,l(ω) + sg0

ω

ωc,VE,g
csf,g(ω)

)]
, (7.7)

ωc,VE,l =
µs

ηlR
1

asf
, ωc,VE,g =

µs

ηgR
1

asf
(7.8)

for S-wave stiffness (in the first diagonal element of CS). This result is in accordance
with Eq. (7.1) from [39].

The important, new physical parameter is the characteristic frequency ωc,VE,f. It
develops directly from the ratio of solid elasticity to fluid viscosity. Therein, the geo-
metric parameter asf contains both characteristic lengths, cf. Eq. (7.3). The first one,
lstiff

msf , represents the geometric influence on the stiff pore elasticity (the larger lstiff
the weaker the pore). The second one, lcompl

msf , represents classical permeability and
is comparable to the squared radius for a straight tube. In conclusion, the dimen-
sionless expression ω/ωc,VE,f represents the ratio of viscous drag forces of compliant
pores with respect to elastic forces of the stiff pores.
Another interpretation can be done with respect to characteristic time scales. If
ω/ωc,VE,f � 1, stiffness of the mesoscopic pore, K̃s/lstiff

msf , is high enough to follow
the deformation immediately. As soon as ω → ωc,VE,f, the relaxation time of the
mesoscopic pore increases, due to the delaying effect of viscous damping inside of
them. This results in a viscoelastic behavior of the system.
Also note the fundamental difference to Biot’s damping mechanism, where fluid vis-
cosity is of reciprocal influence on the characteristic frequency, cf. Eq. (5.34) vs.
Eq. (7.1).

7.4.2 Example
A simple example of residually saturated sandstone was calculated with mesoscopic
inclusions. The following approximations have been implemented for both fluids f ∈
{l, g}:

nsf = 0.7, (7.9)

asf = 10−10, (7.10)

csf,f(ω) =
1

1 +

(
5

ω

ωc,VE,f

)3/2
. (7.11)

A sigmoid function has been used for csf,f(ω), because it induces a shift between two
states with low complexity and can be adapted with little effort. In applications, the
specific form of csf,f(ω) depends on the respective material and geometrical conditions
as well as the origin of attenuation (squirt-flow, interlayer flow, leak-off, etc.).
The additional damping mechanism can be clearly seen in the plot of the inverse qual-
ity factor, cf. Fig. 7.5. It occurs at ωc,VE,f for both fluid separately and shifts with it.
Furthermore, local flow attenuation is many times higher than Biot-type damping, cf.
Fig. 6.1 and Fig. 7.5.
Additionally, the phase velocity slightly increases due to the stiffening effect of the
viscous inclusions. This deviation of Biot’s prediction is not a conspicuous observa-
tion of experiments and may be less considerable in application, for example, because
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the wave front is only partially influenced or because of the rough approximation
of csf(ω).It should be further noted that the S-wave behaves similar to the P1-wave,
whereas the slow P2- and P3-waves were practically not influenced in the investigated
sample.
Finally, this simple example shows the basic influence and physical origin of meso-
scopic loss. An accurate description requires more precise definitions of nsf , asf , and
csf,f(ω). Their forms depend on the respective physical system and origin of meso-
scopic losses (squirt-flow, leak-off, patchy saturation, layered media, . . . ). In particu-
lar, the relationship between Q−1 and ω shows special characteristics for mesoscopic
damping. Quintal et al. [171] obtained an increase of Q−1 ∝ ω and a decrease of
Q−1 ∝ 1/

√
ω by numerical simulations of mesoscopic, patchy saturation, cf. the good

agreement of the example provided in Fig. 7.5.
Exact modeling and prediction of mesoscopic processes remain an important topic
of modern research. Comparison of experimental, numerical, and theoretical results
will improve its prediction. A deeper understanding may even lead to a straight link
between mesoscopic physics and macroscopic modeling of the fluid phase as it is the
case for Biot-like interaction [25].
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Figure 7.5: Dispersion relations of the P1-wave for mesoscopic loss in a partially
saturated Nivelsteiner sandstone with local flow as described by Eq. (7.9) - Eq. (7.11).
The upper right graph is a semi-logarithmic plot of the inverse quality factor, whereas
the lower one is a double-logarithmic plot to illustrate the proportionality factor of
Q−1

P1 (ω). Further note that the peak due to viscous, Biot-like damping is raised
because of its superposition with the mesoscopic-loss contribution.
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7.5 Double pore space

7.5.1 Introduction

The previously presented mechanisms were related to intrinsic or local flow. Their
importance is based on a new mesoscopic process. Nevertheless, global (Biot-like)
flow can also occur on more than one scale. A model with two pore spaces is used,
for example, in [9, 20, 166, 167]. Each accounts for a separate length scale: the
basic microscopic pore space and an additional mesoscopic pore space, cf. Fig. 7.1
(right). Following this idea, a porous medium can contain more than one characteristic
(compliant) pore diameter. These diameters are not distinguished by their behavior
(stiff/compliant) but only by their characteristic sizes.

7.5.2 Implementation

For a physical description, a double pore space material can, consequently, be modeled
by two additional fluid phases. In this case, one distinguishes between a liquid and
a gas phase in the microscopic pores and also in the mesoscopic pores. In addition
to the increasing algebraic effort, difficulties arise in the description of the exchange
of mass and momentum and determining/measuring the corresponding material pa-
rameters.
Nevertheless, the previous studies provide a detailed description of the behavior of
the fluid phases for a single characteristic pore space as shown in Fig. 6.1 and Fig. 6.2:
at low frequencies, the fluids are coupled to the solid by viscosity and a decoupling
process starts at a characteristic frequency. If αid ≈ 1, the fluids decouple completely
with a phase lag of 90◦ and vanishing amplitude for the P1-wave contribution. More-
over, the gas phase’s contribution to dispersion effects is often negligible because of
its low density, viscosity, and elasticity.
Using these findings, one can easily approximate the decoupling process of a second
mesoscopic pore space. Assuming that the previously developed model is valid in the
entire domain, except for some additional mesoscopic pores, the hitherto used equa-
tions remain valid and do not need to be modified. Furthermore, it is assumed that
only the liquid phase has a recognizable effect on the dispersion relations. Technically,
the second pore space is included as an additional (viscoelastic) mass that contributes
to the equations by interaction with the solid. Note that the previous equations do
not change, except for the additional interaction terms via the solid phase.
The second pore space has a volume fraction of nDP with partial density

ρDP = nDPρlR (7.12)

and permeability ks,DP. The ratio nDP/nl can be interpreted as the volume ratio
of liquid in the mesoscopic pore space with respect to liquid in the microscopic pore
space. Because the mesoscale pore space is larger than the microscale pore space,
form locking effects on this scale are neglected. The characteristic frequency of the
mesoscale pore space is consistently defined with respect to Eq. (5.35) as

ωc,DP =
nDP

0 ηlR

ks,DPρlR0
. (7.13)
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The decoupling process between the second pore space liquid and the solid can now
be approximated by a logistic sigmoid function ϕDP(ω) as

uDP =
(
1− ϕDP(ω)

)
us exp

(
iϕDP(ω)

)
,

ϕDP(ω) =
1

1 + exp
[
−cω log10

(
ω

ωc,DP

)] . (7.14)

The logistic function ϕDP(ω) increases from 0 to 1 with a transition at ωc,DP and
scaling cω in the logarithmic frequency range. Technically, the first diagonal elements
of the matrices A and B, cf. Eq. (5.56), change as

ADP
11 = A11 + ρDP

0

(
1− ϕDP(ω)

)
exp

(
iϕDP(ω)

)
and

BDP
11 = B11 + cJKD

(
ω

ωc,DP

)
nDP2

ηlR

ks,DP

[
1−

(
1− ϕDP(ω)

)
exp

(
iϕDP(ω)

)]
based on the relative velocity of the second pore space liquid and the solid phase.16
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Figure 7.6: Dispersion relations of the P1-wave for different variations of volume
content nDP and permeability ks,DP of a double porosity medium with cω = 5.

This approximation of a double porosity medium adds an additional transition zone
in the frequency range with a Biot-like attenuation, Fig. 7.6. Its effects coincide with
the behavior of the single porosity model. The higher permeability of larger pores

16The denominators of the low-frequency limits Eq. (6.1) and Eq. (6.2) increase by the term ρDP.
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at the mesoscale cause a decoupling process at lower frequencies. Furthermore, the
peak of the Q−1-factor increases with growing mass of the decoupling liquid, i.e. with
increasing ρDP

0 or nDP
0 respectively. Because of the larger mesoscopic pore space, more

liquid contributes to the mesoscopic losses and dominates over microscopic dispersion
in the investigated sample.
The presented implementation is a first approach that illustrates the meaning of
two characteristic pore spaces. With this approach, further complexity such as pore
size distributions can be established by superposition of Eq. (7.13) and Eq. (7.14).
Additionally, the so-called open porosity, i.e. the connected pore space, can be dis-
tinguished from the so-called closed (or ineffective) porosity, i.e. separate pores that
are not connected to the main pore space and do not contribute to global flow.

7.6 Further mesoscopic losses
It should be first noted that the described physical processes are not only important
for a macroscopic wave theory. They are also of great interest on their own length
scale as distinct phenomena. For example, pumping tests [214] or shock-induced bore-
hole waves [64] are closely related to attenuation mechanisms, which are commonly
described by local/wave-induced fluid flow.
Finally, the pictured mesoscopic losses are a selected overview of possible mechanisms,
which can occur in addition to the microscale processes. Generally, these mechanisms
are not a specific research goal of partially saturated systems but common to wave
propagation in all systems of fluid-filled porous media. This overview does not and
cannot claim to be comprehensive, but provides first insights into the behavior of the
presented model in combination with added mesoscopic phenomena. Based on the
flexibility of the model, the examples demonstrated how mesoscopic effects can be
linked to it, physically and mathematically. With the help of this model and consid-
ering the need for differentiation between specific mesoscopic losses, future research
on mesoscopic studies can be applied to partially saturated media.



Chapter 8

Review

8.1 Summary and main findings
Amathematical model was derived to describe wave propagation in partially saturated
porous media. First, physical relationships were presented and explained. In a second
step, these were combined to achieve a set of equations related to displacements and
their time and spatial derivatives. Application of a harmonic approach yielded an
eigenvalue formulation, Eq. (5.56), which is the central result of the mathematical
model. It determines the frequency-dependent wave number. Dispersion relations,
especially phase velocities and quality factors, were then derived.
Selected examples illustrated basic and more sophisticated results. The main findings
for the investigated samples are:

• Four waves can be distinguished: three longitudinal (P-)waves and one shear
(S-)wave. The second and third longitudinal wave are related to relative motion
and are highly dispersive at low frequencies.

• Three frequency regimes can be distinguished: a viscosity-dominated low-fre-
quency range, a transition range, and an inertia-dominated high-frequency range.

• The hybrid model, i.e. use of the rigid-grain assumption, reduces the complex-
ity of the mathematical structure and the need for material parameters. This
assumption is justified if at least one fluid is a gas at ambient conditions.

• Oscillatory motion requires two modifications, compared to steady flow:

– frequency-dependent momentum exchange (caused by changes of the flow
profile)

– additional mesoscopic interaction for many natural materials (caused by
oscillatory, elastic expansion of the mesoscopic pore space)

• Interfacial fluid-fluid areas influence the transition frequency of the P1-wave by
their effects on the relative permeability and the P3-wave through their influence
on capillary effects.

Scattering limits the validity of the model. Moreover, mesoscopic losses may appear
for natural materials. Squirt-flow was added to the basic Biot-like approach on the ba-
sis of mesoscopic, stiff pore space. Furthermore, a double pore space was implemented
phenomenologically with an additional Biot-like behavior.
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8.2 Conclusions and outlook
The proposed concept allows a comprehensive study of wave propagation in partially
saturated porous media. It shares a common basis with other Biot-like models such
as [132, 219]. Compared to existing theories, the use of the hybrid model reduces the
complexity and eliminates the need for an additional material parameter. This eases
application to many systems that include air or another gas with low compressibility.
Additionally, emphasis is placed on the straightforward implementation of available
constitutive relationships. On the one hand, general theoretical frameworks have been
available for decades and often prescribe forms of constitutive/closing equations on
physical grounds [86]. Consequently, they form the theoretical basis of the current
framework. On the other hand, experimental data or numerical results are often
developed in alternative forms or described by a deviating set of parameters. An-
other advantage of this approach is its compatibility with such alternative forms. For
example, constitutive equations can be implemented in arbitrary terms (saturation
rate, gradient of velocity, . . . ) without modification. This enables direct testing of
possible effects such as dynamic capillary pressure, interfacial areas, or viscoelastic
solids. This flexibility is achieved by (and obtained at the cost of) the comprehen-
sive linearization process, which eases substitution and backtracking of the physical
origins. For example, the influence of capillary pressure or solid stiffness is clearly
recognizable in the stiffness matrices. For this reason, special attention is paid to an
intelligible derivation of the final equation.

The required compromise between generality and applicability resulted in certain
assumptions. Thus, the model is limited to a homogeneous initial state, isotropic
conditions, massless interfaces and contact curves, and to negligible temperature ef-
fects. Furthermore, macroscopic fluid shearing was neglected. By default, it also loses
validity if wavelengths are close to the characteristic length of the microstructure.
Another challenge that is common to all theories for wave propagation in porous me-
dia is a lack of experimental data. Some effects appear at higher frequencies and
could not yet be verified finally or estimated quantitatively. Hence, their observable
impact on wave propagation remains to be quantified or in other words following G.
Berkeley’s work from 1710: “their esse is percipi” [70, 159].
As one result, the presented approach focuses on individual phenomena separately.
The possibility of isolated implementation will allow a precise comparison with future
data. Moreover, its predictions can sharpen the focus of corresponding studies.

Although various aspects of wave propagation in porous media could be investigated,
various interesting extensions remain. In the short-term perspective, extensions of
significant scientific value include:

• quantitative implementation of frequency-dependent inertial drag (or tortuosity
parameter)

• material parameters for different confining pressure, cf. [44]

• anisotropy due to gravity and anisotropic materials [4, 36, 123]

• stiffening of granular media due to capillary effects

• other wave forms as well as transmission and reflection coefficients at partially
saturated boundaries
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Other interesting aspects, which require more significant extensions are, in a long-term
perspective:

• electromagnetic coupling [74, 163, 184]

• thermal influences

• non-linear effects [151]

• micropolar waves [62, 189]

• losses due to solid-solid interaction in loose, granular media such as grain-grain
friction

In conclusion, fundamental properties could be explained physically and interesting
extensions were presented. The developed model will hopefully complement existing
research and motivate further efforts. The findings are promising and show how indi-
vidual physical phenomena can be characterized by properties of mechanical waves.
They emphasize the meaning of waves for non-destructive analysis and support their
application to partially saturated porous media. Further interesting applications and
information follow in the next parts.





Part II

Microscopic pore channel
oscillations





Chapter 9

Introduction

9.1 Motivation
Macroscopic wave propagation was comprehensively studied in the preceding sections.
The view will now turn to microscopic processes inside the pore channels.
Often, microscale processes are investigated first and understood in more detail. On
these grounds, macroscale theories are developed and supported by smaller scale ex-
planations (and vice versa). A historical example of such a two-scale research is the
kinetic gas theory. It relates definitions of pressure or temperature to smaller scale
particle motion and energy. This point of view supported the interpretation and sus-
tainable understanding of the physical processes in a gas.
In a comparable way, two-scale approaches can be applied to porous media as ex-
plained for TPM and AT in Section 2.1. In computational modeling, for example,
fluid-filled, porous media were successfully approximated by pore network models
[102]. Because a pore channel represents the basic element of a porous medium, fluid
flow in microscopic pore channels will be studied in the following chapters.

9.2 Aims and structure
The aim is to point out the significant effects of microscopic pore channel flow for wave
propagation phenomena in porous media. This is done in terms of well-established
methods and recent research findings. For convenience, the system of investigation is
a biphasic medium composed of a porous solid material, cf. Fig. 9.1 and Fig. 9.2, and
a single pore fluid. The findings remain valid for mixtures of two continuous fluids in
a porous solid17.
The structure is threefold. Thus, each chapter is self-contained and deals with a
separate aspect of oscillatory pore flow and its influence on the macroscale.

17The special case of pore channels with strong fluid-fluid interface effects is studied in Part IV.
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• The following chapter introduces the frequency-dependent flow profile in a rigid
tube on the basis of a dimensional analysis. Additionally, it reviews the results
of of Biot [25] and Womersley [226, 227].

• The chapter thereafter discusses the appropriate use of a characteristic frequency
for macroscopic wave propagation, as introduced by Biot [25]. Its microscopic
origin is explained and its macroscopic definition is enhanced by considering
solid elasticity, solid inertia, and full-range upscaling.

• The last chapter of Part II deals with the elasticity of microscopic walls. The
model of Bernabé [18] is presented and compared with experimental results
[202].

Parts of the following chapters were previously presented in [114] (especially Chap-
ter 11) and in [112] (especially Chapter 10 and Chapter 12).

a) Aluminum foam b) Sintered glass beads c) Fontainebleau sandstone

Figure 9.1: Microstructure of natural and artificial materials. The edge lengths are
18 mm (aluminum foam, glass beads) and 2.25 mm (Fontainebleau sandstone) respec-
tively. A detailed investigation of waves in aluminum-foam can be found in [212].

aluminium foam
φ0 = 0.94

synthetic foam
φ0 = 0.93

sintered glass beads
φ0 = 0.21

sandstone
φ0 = 0.19

Figure 9.2: Pores of different porous materials compared to a cm-scale with indication
of porosity.



Chapter 10

Oscillatory flow in a rigid tube

A rigid tube is one of the simplest representations of a pore channel in solid matrices.
Furthermore, it provides insights into many important physical phenomena on the
microscale. Therefore, the microscale study begins with the basis element of oscillatory
flow in a rigid tube.
Based on a dimensional analysis, the results of Biot and Womersley are retraced
[25, 226]. The fundamental impact on macroscopic momentum exchange, as founded
by the seminal work of Biot [25], is recapitulated and leads to the following chapters.

10.1 Dimensional analysis
Based on the Navier-Stokes equations, momentum conservation of a Newtonian fluid
f reads, in terms of microscopic variables,

ρfR
∂vf,i
∂t

+ ρfRvf,j
∂vf,i
∂xj

+
∂pfR

∂xi
− ηfR ∂

∂xj

(
∂vf,i
∂xj

+
∂vf,j
∂xi

− 2

3

∂vf,k
∂xk

δij

)
− ρfRfi = 0.

(10.1)
For convenience and because this part is separated from the macroscopic theory,
no special identification marks are used to distinguish these microscopic properties
from the macroscopic counterparts. Furthermore, the index notation is preferred to
symbolic notation in this section, because it allows a focused comparison between
the physical and geometrical properties of individual terms and a clear dimensional
analysis. The lower indices i, j, and k ∈ {1, 2, 3} describe components with respect
to a three-dimensional, orthonormal spatial basis and the (Einstein’s) summation
convention for index variables appearing twice is implied in this chapter.

R
ex2

ex1
ex3

ey

Figure 10.1: Parabolic velocity profile of Hagen-Poiseuille flow in a rigid tube. The
xi-coordinates belong to the initial orthonormal system, whereas the y-coordinate
represents a general radial direction for later use of radial symmetry.
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To achieve a dimensionless form of momentum conservation, the following character-
istic properties are introduced:

characteristic time t̃
characteristic velocity ṽ

characteristic length l̃

characteristic fluid density ρ̃fR = ρfR0
characteristic viscosity η̃fR = ηfR0
characteristic volume force f̃ = g
characteristic pressure difference ∆p̃
reference pressure p0

Table 10.1: Characteristic properties of oscillatory tube flow.

Characteristic material properties are set to the initial values. Only one characteristic
velocity and one characteristic length appear, because the flow is uni-axial and the
geometry is fully determined by the constant tube radius R.
Dimensionless variables are defined as •̄ := •/•̃, while pressure is made dimensionless
with respect to the reference pressure as ∆p̄ = (p − p0)/∆p̃. Dynamic viscosity ηl
is often assumed to be constant if temperature and pressure changes are limited, so
that η̄fR ≈ 1. A possible dimensionless variant of momentum conservation becomes

0 = Sr ρ̄fR
∂v̄f,i
∂t̄

+ ρ̄fRv̄f,j
∂v̄f,i
∂x̄j

+ Eu
∂∆p̄

∂x̄i

− 1

Re
η̄fR

∂

∂x̄j

(
∂v̄f,i
∂x̄j

+
∂v̄f,j
∂x̄i

− 2

3

∂v̄f,k
∂x̄k

δij

)
− 1

Fr2
ρ̄fRf̄i.

(10.2)

The dimensionless numbers are

Strouhal number Sr =
l̃

ṽ t̃
, (10.3a)

Euler number Eu =
∆p̃

ρ0 l̃2
, (10.3b)

Reynolds number Re =
ρ0 ṽ l̃

η0
, (10.3c)

and Froude number Fr =
ṽ√
g l̃
. (10.3d)

For an uni-axial flow through a rigid tube, the flow direction (xi = x1 in Fig. 10.1)
and the velocity gradient are perpendicular. Hence, the convective term of Eq. (10.2)
vanishes as well as the second part of the viscous stresses18. For convenience, the
last term of the viscous stresses is negligible if incompressibility is assumed or if the

18Note that this assumption of parallel streamlines fails when turbulence occurs. In this case,
velocity perturbations occur on smaller scales, which are perpendicular to the main flow axis. This
is usually the case for large Reynolds numbers (Re≥ 2300 is often used as an approximation for fully
turbulent flows in tubes) and has to be accounted for by an additional term modeling turbulence. In
the present study of linear oscillations, the appearing velocities are assumed to be arbitrarily small.
However, turbulence effects may need to be considered in practical experiments.
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axial dimension can be neglected (for example, if the flow does not change in axial
direction, which is the case for axial tubes waves with sufficiently long wave lengths).
The simplified, dimensionless momentum conservation becomes

1

Re

[
SrRe ρ̄fR

∂v̄f,i
∂t̄
− η̄fR ∂2

∂x̄2
j

v̄f,i

]
=

1

Fr2
ρ̄fRḡi − Eu

∂∆p̄

∂x̄i
. (10.4)

The right side of Eq. (10.4) includes the pressure gradient and volume forces. They
act as an external stimulation inducing a fluid flow. The development of the velocity
profile is determined by the left side of Eq. (10.4), namely the local inertia term and
viscous stress. Weighting of the latter is represented by the dimensionless number

SrRe =
l̃2ρfR0

t̃ ηfR0
. (10.5)

In case of steady flow (characteristic time of change t̃ → ∞), the flow profile is
only determined by viscous stresses. This is the so-called Hagen-Poiseuille flow, cf.
Fig. 10.1. On the other hand, if the flow pattern does change in time, the inertia term
becomes influential. For oscillating flows with angular frequency ω, the characteristic
time can be chosen to be proportional to the period of oscillation as t̃ = 1/ω and the
characteristic length is the radius l̃ = R. For oscillatory flows in a rigid tube, the
previously introduced dimensionless number Eq. (10.5) becomes

SrRe =
R2ωρfR0

ηfR0
=

ω

ω′c,Biot
=

f

f ′c,Biot
= Wo2 = 2

(
R

δvs

)2

, (10.6)

with the microscopic characteristic frequency (sometimes also called critical frequency)

ω′c,Biot = 2π f ′c,Biot =
ηfR0

ρfR0 R2
. (10.7)

The number in Eq. (10.6) was already used decades ago within the solutions of oscil-
latory flow in tubes. Womersley introduced it in his work on viscous flow in arteries
[226, 227]. Since then, the number is often named the Womersley number, Wo.
Another fundamental treatment dealing with oscillatory flows is the work of Biot
[24, 25]. In [25], Biot introduced a characteristic frequency, f ′c,Biot = ω′c,Biot/(2π),
cf. Eq. (10.7). Like the Womersley number, the ratio ω/ω′c,Biot represents the ratio
of viscous effects to inertia effects. Note that Biot states another characteristic, mi-
croscopic frequency in his first work [24], which is based on a halfspace solution and
differs from the given one above by a constant prefactor. Moreover, he developed a
macroscopic, critical frequency in [25] via upscaling, which is discussed in the follow-
ing chapter.
Another interpretation of the dimensionless number in Eq. (10.6) is the ratio of radius
R to viscous skin depth δvs, i.e. the depth of the viscosity-dominated part of the flow.
Furthermore, the dimensionless number appears explicitly or implicitly in many other
works dealing with oscillatory flows, for example, in [10, 18].

The central result of this section is the dependence of the Navier-Stokes solution and
the velocity profile on the dimensionless number in Eq. (10.6) (and its variations). It
is now followed by a specific solution.
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10.2 Biot’s solution of a microscopic, oscillatory flow
in a rigid tube

Biot [25] derived a solution for oscillating flow between two parallel plates and in a
rigid tube. The solution for the rigid tube case is (Eq. (3.8) ibid.)

vax =

1−
J0

(
i

√
iωρfR0 /ηfR y

)
J0

(
i
√
iω/ω′c,Biot

)
 Xex

iω
.

The relative axial velocity between fluid and solid is vax, y ∈ [0m, R] is the radial co-
ordinate, Xex summarizes external excitations due to a pressure gradient or a volume
force, and J0 is the Bessel function of first kind.
Investigation of the solution clearly demonstrates the dependence of the velocity pro-
file on the Womersley number, cf. Fig. 10.2. For small Wo, i.e. ω � ω′c,Biot, viscous
forces dominate and the velocity profile is that of a Hagen-Poiseuille flow. For in-
creasing Wo and ω � ω′c,Biot, inertia terms become more influential and a central flat
profile emerges. This flat part also lags behind the viscous layer near the wall. The
meaning of the viscous skin depth δvs figuratively describes the spatial extent of the
boundary layer that remains dominated by viscous forces rather than inertia forces.
In conclusion, the Womersley numer Wo, or the ratio of ω to ω′c,Biot respectively,
determine the pattern of the velocity profile in a tube.
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Figure 10.2: Oscillating velocity profile in a rigid tube according to Biot [25], Eq. (3.8)
ibid., for times t = 2π/ω × {0, 0.05, 0.10, 0.15, 0.20, 0.25} (from top to bottom). Xex

is an external excitation due to a pressure gradient or volume force and vax is the
axial relative velocity between fluid and solid according to [25]. The radial coordinate
y is normalized with radius R. Also note the change in scale of the vertical axes.
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10.3 Frequency dependence: from microscopic flow
profiles to macroscopic momentum interaction

Influence on the macroscale
Because the flow profile depends on the ratio of frequency to characteristic frequency,
this dependence appears likewise for the velocity gradient at the walls. The velocity
gradient, in turn, determines the shear stress and momentum interaction between
solid and fluid. In conclusion, momentum interaction is frequency dependent as well.
This microscopic condition directly influences the macroscopic physics of momentum
exchange. Namely, the classical Darcy-like approach of macroscopic momentum ex-
change between a porous solid and a fluid (cf. Eq. (5.29)) is based on a steady flow
[43]. However, it does not account for frequency-dependent velocity profiles. Hence,
a frequency correction of the Darcy-like approach is required to account for the case
of oscillating flow.

. . . and Biot’s solution
This circumstance has been investigated by Biot [25] in detail. As shown above, Biot
determined the frequency-dependent velocity profile of a microscopic, oscillating flow.
On this basis, he calculated the averaged momentum interaction induced by viscous
wall stress over a unit wall surface. On the macroscale, he obtained a relationship
between the averaged momentum interaction and the averaged, relative velocity. This
was a first step to the required, new macroscopic equation. Nevertheless, it was still
depending on the microscopic frequency ratio ω/ω′c,Biot = f/f ′c,Biot [25].
Furthermore, Biot introduced a macroscopic characteristic frequency via a dimen-
sional analysis in his foregoing work [24], as defined in Eq. (5.34). This macroscopic
characteristic frequency includes a porosity factor and replaces R2 by the permability,
which are only macroscopic terms as desired. “The problem is, therefore, to compare
f ′c,Biot with fc” [25]. Biot wanted to replace the microscopic characteristic frequency
by the macroscopic one to formulate the momentum exchange entirely via macro-
scopic properties.
His idea was now to compare the known low-frequency case of microscopic and macro-
scopic momentum interaction. The former was known from Hagen-Poiseuille flow and
the latter from Darcy’s law. It resulted in a relationship between the microscopic and
macroscopic characteristic frequency (ω′c,Biot and ωc,Biot). Finally, he inserted that re-
lationship to express the frequency-dependent momentum interaction in macroscopic
terms only. Within Biot’s work [25], the ratio ω/ωc,Biot became the key value for de-
termination of the frequency-dependent momentum exchange between solid and fluid.
For ω � ωc,Biot, momentum exchange converges to the theory of Darcy.

Moreover, the correction of the classical Darcy law includes two geometry factors:
sinuosity and pore shapes (slit-like, ducts, ...). They need to be considered for full
precision in respective applications. A detailed discussion of the derivation process
exceeds the scope of this work and the interested reader is referred to [25] and the
next chapter. For the wave propagation model developed in Part I, an approximation
based on [103] is used (cf. Eq. (5.36)). Its imaginary part represents the phase lag of
the inertia-dominated center with respect to the viscous boundary layer.
The results of Biot’s pioneering work were and still are of vital importance for wave
propagation in porous media. Nevertheless, they come with assumptions and limita-
tions, which are generalized in the following chapter.





Chapter 11

About the use of a
characteristic frequency

One result of Biot’s 1956 contributions is a characteristic frequency that is often used
to distinguish the low-frequency from the high-frequency range [24, 25]. It represents
the ratio of viscous forces to inertia forces of the fluid and is also directly applicable to
multiple pore fluids. However, limiting assumptions were used during the derivation
process. They rely on a focus on geomaterials and involve the transfer of microscale
considerations to a macroscopic description.
Biot’s microscopic derivation process is recapitulated and the assumptions made are
indicated. With respect to the aim of a general approach in Part I, Biot’s character-
istic frequency is extended to general material combinations. The new characteris-
tic frequency is consistently derived from a macroscopical approach and enhanced by
three properties: solid inertia, solid elasticity, and frequency-dependent momentum
exchange. These extensions become important for liquid-filled, highly porous media,
as is highlighted by specific examples of aluminum foam and osteoporotic bone.

11.1 Characteristic and transition frequency
The previous section disclosed and explained the change of the fluid velocity profile
in a pore channel for various frequencies. The characteristic microscopic frequency
ω′c,Biot indicates the regime between these two limits, i.e. the viscosity-dominated
low-frequency limit (ω � ω′c,Biot) and the inertia-dominated high-frequency limit
(ω � ω′c,Biot). Moreover, Biot introduced a macroscopic characteristic frequency

ωc,Biot =
ηfRφ2

αidρfks
=

ηfRφ

αidρfRks
. (11.1)

It was also introduced in the macroscopic theory of Part I (Eq. (5.34)). The solutions
of Part I further illustrate the transition between a low-frequency regime and a high-
frequency regime, cf. Fig. 6.1. An angular frequency indicating this transition in the
macroscopic wave model is henceforth defined as the transition frequency ωtrans.
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It seems appropriate to use Biot’s characteristic frequency as the transition frequency
ωtrans ≈ ωc,Biot. This approximation is often used in geophysical investigations. In
general, however, we will see that it is not advisable to equate or even mistake Biot’s
characteristic frequency ωc,Biot (indicating the change of flow profile) and a transition
frequency ωtrans (indicating the changing physical behavior of a macroscopic wave in
a mixture). This is the key issue in this chapter.

11.2 Phenomenological motivation
Macroscopic transition with constant velocity profile

An initial fact that demonstrates that ωc,Biot and ωtrans can be independent is the
investigation of a wave propagation model in which the frequency dependence of the
velocity profile is neglected. Let us assume a constant microscopic flow profile, for ex-
ample, Hagen-Poiseuille flow, as in [24]. This corresponds to a frequency-independent
momentum interaction term such as Eq. (5.29) for the model presented in Part I.
In this case, i.e. even without use of ωc,Biot in the macroscopic model, a transition
occurs for the macroscopic model, including a low-frequency domain and a high-
frequency domain comparable to Fig. 6.1. The low- and high-frequency limits are
independent of ωc,Biot [139]. Hence, the macroscopic transition ωtrans occurs indepen-
dently of ωc,Biot.

Gedankenexperiment

Let us further expand the argumentation by a so-called Gedankenexperiment. First,
assume a porous matrix that consists of parallel, fluid-filled, and almost rigid tubes.
A wave travels in the axial direction, cf. Fig. 11.1a). At low frequencies, viscosity
couples fluid and solid and both phases oscillate together. At high frequencies, the
wave propagates much faster in the almost rigid, solid phase. Due to its inertia,
the fluid phase decouples and oscillations within it propagate with the slower sound
velocity of the fluid. This scenario is close to Biot’s [25] microscopic investigations
of oscillating flow and therefore ωc,Biot is a good approximation for the transition
frequency ωtrans.

a) b)

high frequencylow frequency high frequencylow frequency

solid

fluid

Figure 11.1: Velocity profiles for an idealized Gedankenexperiment: a) almost rigid
solid matrix and b) weak solid matrix. Arrows indicate the displacement field.
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Second, assume a porous matrix that consists of heavy, solid particles with high inertia
and which are connected by thin, weak beams, cf. Fig. 11.1b). For oscillations at low
frequencies, the pore fluid and the solid are coupled by viscosity, as in the example
above. Now, however, the (macroscopic) solid’s sound velocity is very low, due to
the low elastic stiffness of the beam framework and the high inertia of the connected
nodes. Thus, when both phases decouple at high frequencies, the fast wave travels
through the fluid phase and a slower wave propagates in the solid matrix, cf. Fig. 11.1.
Because the solid phase decouples from the fluid, the decoupling process is determined
by the ratio of viscous forces to the solid’s inertia forces. This is different from the
above scenario, where the decoupling process is indicated by ωc,Biot, which relates
viscous forces to fluid inertia, cf. numerator and denominator in Eq. (5.34). Thus, in
this scenario, ωc,Biot is not an appropriate indicator for the transition regime.

Limiting assumptions of Biot’s characteristic frequency

Previous considerations have revealed two facts: First, the characteristic frequency
of flow profile change, ωc,Biot, and the transition frequency of the macroscopic wave
behavior, ωtrans, do not necessarily coincide. Second, ωc,Biot is a good approximation
for ωtrans if the implicit assumptions of Biot’s investigations of microscopic oscillatory
flow in [25] are valid; which are:

• rigid solid walls,

• an inert solid phase (or, equivalently, a focus on the relative fluid velocity),

• upscaling (comparison of microscopic and macroscopic characteristic frequency)
for the low-frequency case.

Note that Biot’s macroscopic theory includes inertia and elasticity of the solid phase.
Only the microscopic investigation underlies the above assumptions, which hold well
in many cases, including Biot’s intentions for geophysical applications.
Two questions arise for the other situation, i.e. a solid matrix with significant com-
pressibility and inertia such as synthetic foams or biological cells: (i) what is a good
approximation for ωtrans? (ii) how is the microscopic flow profile influenced, i.e. does
ωc,Biot remain a good indicator for the flow profile change for the case of elastic walls?
The first question will be investigated in this chapter and the second question in the
following one.

11.3 A general approach for the characteristic fre-
quency

11.3.1 Recapitulation of Biot’s framework

The following investigations are based on Biot’s model for a biphasic mixture with
solid s and fluid f. This allows an instructive comparison between the classical def-
inition of Biot’s characteristic frequency and the following extensions. Moreover, it
is a special case of the model for three continuous phases in Part I. The results are
therefore compatible and transferable to multiple pore fluids. In the current nota-
tion, Biot’s model with the JKD-approximation, Eq. (5.36), reads in the form of an
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eigenvalue formulation as [114, 196]:(
ω2ABiot + iωBBiot + kψ

2
Cψ

Biot

)(ûψs
ûψf

)
= 0, ψ ∈ {P, S} (11.2)

with

ABiot =

(
ρs0 + (αid − 1)ρf0 −(αid − 1)ρf0
−(αid − 1)ρf0 αidρ

f
0

)
, (11.3a)

BBiot = cJKD

(
ω

ωc,Biot

)
φ2

0η
fR

ks

(
1 −1
−1 1

)
, (11.3b)

CP
Biot =

(
PBW SBW

SBW RBW

)
, CS

Biot =

(
µs 0
0 0

)
. (11.3c)

The mathematical structure of Eq. (11.2) is similar to the three-phase model, cf.
Eq. (5.56). Because only one fluid fills the pores, two P-waves, P1 and P2, occur.
This is in contrast to partial saturation, where a third P-wave is predicted due to
compression of the second pore fluid. However, the P2- and the P3-wave are of
similar characteristic behavior.
The elastic coefficients PBW, SBW, and RBW are the so-called Biot-Willis parameters
[114, 196]

PBW = Ks +
4

3
µs +

Kf

φR0

(
1− φ0 +

Ks

Kgrains

)2

,

SBW =
Kf

φR0

(
1− φ0 +

Ks

Kgrains

)
, (11.4)

RBW =
Kf

φR0
φ2

0,

with effective porosity that equals porosity for rigid grains,

φR0 = φ0 +
Ks

Kgrains

(
1− φ0 −

Kf

Ks

)
. (11.5)

11.3.2 Generalized, characteristic frequencies for the transi-
tion regime

The task, now, is to find an appropriate frequency that indicates the macroscopic
transition zone between the viscous-dominated low-frequency regime and the inertia-
dominated high-frequency regime. As yet, there is no unique definition of such a
frequency. The smoothness of the transition makes a sharp definition even more diffi-
cult. As a result from the detailed investigation in Part I, it is known that the inverse
quality factor Q−1 changes according to the physical phenomena of the low- and high-
frequency regime, cf. Fig. 6.1. Moreover, the inverse quality factor is a measurable
quantity, which is comparable with experiments and other theories. Hence, it will be
used here to define a generalized, characteristic frequency indicating the transition
regime.
In the case of the P1- and S-wave, the transition frequency is defined as the frequency
where the inverse quality factor reaches its unique peak. Before this peak, all con-
stituents move in phase so that viscous damping does not occur and Q−1

P1,S vanishes,
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cf. Fig. 6.1. Behind the peak, inertia energy dominates over viscous damping so
that the inverse quality factors of the P1- and S-wave vanish again. The P2-wave
is a diffusive, damped mode at low frequencies and develops at higher ones. With
increasing frequency, the corresponding inverse quality factor drops from its highest
value to zero. Thus, the characteristic transition frequency of the P2-wave is defined
as the unique frequency at which Q−1

P2 reaches its half value.

ωtrans,P1 = {ω ∈ R+ : Q−1
P1 (ω) > Q−1

P1 (ω̂) ∀ ω̂ ∈ R+}, (11.6a)

ωtrans,S = {ω ∈ R+ : Q−1
S (ω) > Q−1

S (ω̂) ∀ ω̂ ∈ R+}, (11.6b)

ωtrans,P2 = {ω ∈ R+ : Q−1
P2 (ω) = 0.5Q−1

P2 (0) }. (11.6c)

These three frequencies shall now be described by macroscopic properties of the sys-
tem. For this purpose, the inverse quality factor and its derivatives were analytically
determined. For details please refer to Appendix C. However, the complexity of the
mathematical structure increases due to the correction function of the velocity profile
cJKD(ω/ωc,Biot). Therefore, three approximations of the frequency correction function
are used and denoted by indices I, II, and III:

I low frequency limit: cJKD(ω/ωc,Biot) ≈ 1,

II cJKD(ω/ωc,Biot) approximated by its linearization around ωc,Biot:

cJKD(ω/ωc,Biot) ≈
[
1.029 + 0.0543

ω

ωc,Biot

]
+

[
0.243 + 0.230

ω

ωc,Biot

]
i ,

III high frequency limit: cJKD(ω/ωc,Biot) ≈ 1+i
2

√
ω/ωc,Biot.

For the same reason of high mathematical complexity, two typical material combina-
tions A and B are distinguished in the analysis of P-waves:

A stiff solid skeleton, PBW dominates stiffness matrix,

B weak solid skeleton, RBW dominates stiffness matrix.

The elastic coefficient SBW represents the coupling between both phases and is as-
sumed to be small compared to PBW and RBW.

The following transition frequencies, now, are exact solutions or approximations of
the analytically defined transition frequencies Eq. (11.6a) - Eq. (11.6c) for different
cases I - III in combination with A and B.

S-wave

First, we focus on the exact, analytical solution of the S-wave neglecting the correction
of the velocity profile. The corresponding transition frequency is

ωS,I = ωc,Biot

√√√√√ 1 +
ρf0
ρs0

1 +
ρf0
ρs0

(1− 1
αid

)
. (11.7)

This solution underlines that there is a macroscopic transition also without a change
of the pore channel flow profile. Furthermore, it clearly demonstrates that inertia of
the solid influences the macroscopic transition. Only for a solid at rest, i.e. infinite
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solid inertia ρs0 →∞, one exactly obtains Biot’s characteristic frequency ωc,Biot.
Adding the physics of a frequency-dependent, microscopic velocity profile and know-
ing that the transition frequency is near ωc,Biot, yields a further, yet approximated,
characteristic frequency

ωS,II = ωS,I

√√√√ 1.118

1 + 0.230
2αid(ρs0+ρf0)−ρf0

ρs0+ρf0

(
ωS,I
ωc,Biot

)2 . (11.8)

Compared to Biot’s initial approach [25], this further correction term becomes nec-
essary considering the frequency-dependent momentum interaction. Biot’s upscaling
process was formulated for low frequencies and neglected frequency dependence.

P1-wave

For characteristic frequencies of the longitudinal waves, the mathematical complexity
increases even more because, unlike for the case of S-waves, the fluid compressibility
cannot be neglected. In the case of a solid skeleton that is much stiffer than the
fluid phase, the P1-wave behaves similar to the S-wave. Hence, a corresponding
characteristic frequency for the P1-wave is

ωP1,A,II ≈ ωS,II. (11.9)

This fact can be seen mathematically as the first diagonal entry of the P1-stiffness
matrix, namely PBW, dominates the total matrix giving it the same form as the S-
stiffness matrix.
In the case of a solid skeleton that is weaker than the fluid phase, solid and fluid phase
can change their roles. The sound velocity of the fluid is higher than that of the solid,
which is then connected to the slow wave. Therefore, it is obvious to introduce a
characteristic frequency which relates viscous forces to solid’s inertia as

ω∗ =
ηlRφ2

0

(ρs0 + (αid − 1)ρf0)ks
. (11.10)

Eq. (11.10) is the counterpart to Biot’s characteristic frequency for a material com-
bination with a weak solid matrix and can be derived consistently by a dimensional
analysis from the diagonal entries of the damping and inertia matrices. Exchang-
ing the influence of solid and fluid analogously to the solution of case A (stiff solid
skeleton), yields two characteristic frequencies with and without frequency-dependent
momentum interaction

ωP1,B,I = ω∗

√√√√√(ρs0
ρf0

+ 1

) ρs0
ρf0

+ αid − 1

αid
ρs0
ρf0

+ αid − 1
, (11.11)

ωP1,B,III = ωP1,B,I
1√
2

ωP1,B,I
ωc,Biot

cimp

(
1 +

RBW

PBW

ωc,Biot
ω∗

)
. (11.12)

The correction factor cimp accounts for the impedance contrast of both constituents.
For example, a solid skeleton can be highly compressible and still have a high sound
velocity, due to a low partial density. For the sake of simplicity, the correction factor
cimp is assumed to be 1 in the example calculations. A precise analytical solution
exceeds the scope of this work but its appearance demonstrates the complexity of
the system and the need for adapted characteristic frequencies for various material
combinations.
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P2-wave

The P2-wave (and P3-wave) is connected to the relative movement of solid and fluid,
cf. Fig. 6.1. The approximated analytical solutions

ωP2,A,II = 0.441ωc,Biot, ωP2,B,II =
0.529

1 + 0.190 ω∗

ωc,Biot

ω∗ (11.13)

do not differ significantly from Biot’s characteristic frequency and the latter usually
remains a good approximation for the transition zone of the P2-wave. The reason for
this close match is that the P2-wave is a relative movement as it was assumed for
Biot’s microscale study [25]. Moreover, it differs from the formulas for the P1- and
S-waves and demonstrates that transition frequencies do not only differ for varying
material combinations but may also be different for each wave mode.

In conclusion, it has been shown that Biot’s characteristic frequency ωc,Biot needs
to be extended for a weakly compressible solid matrix. All three assumptions in [25],
a rigid solid, an inert solid, and the low-frequency momentum interaction showed up
in the difference between the analytical solutions and ωc,Biot. A second, easy to use
characteristic frequency ω∗, Eq. (11.10), can be used as a basic approximation for the
case of a weak solid and as a counterpart to Biot’s characteristic frequency. For a
more precise, practical estimation of the low- or high-frequency range, the analytical
approximations provided or a (computationally very cheap) numerical determination
of the dispersion relations are suggested. These results are validated in the examples
below.

11.4 Examples

11.4.1 Biot’s characteristic and transition frequency for differ-
ent material combinations

The ratio of Biot’s characteristic frequency ωc,Biot to the transition frequencies, as
defined in Eq. (11.6a) - Eq. (11.6c), was determined for a variety of different materials.
The behavior of the S-wave demonstrates a significant influence of the solid’s inertia
on the transition frequency for highly porous materials with liquids, cf. Fig. 11.2.
Materials such as aluminum foam and osteoporotic bone are predominantly affected.
The difference between the P2 transition frequency and Biot’s characteristic frequency
is also more pronounced for the case of liquid-filled, highly porous media. Deviations
for both wave modes, S- and P2-waves, reached 60 % within the examples investigated.
The impact of the correction function for frequency-dependent flow profile occurs
systematically in all cases but is usually less influential compared to solid elasticity
for the considered material combinations. Moreover, different wave modes of the same
physical system demonstrably belong to different transition frequencies.
The most important effect occurs for the P1-wave, which depends strictly on the
stiffness of the solid and the fluid, cf. the ∆-term in Appendix C. For the combinations
of high porosity and a relatively weak solid skeleton, i.e. aluminum foam and water
or osteoporotic bone and bovine marrow, ωc,Biot and the transition frequency differ
by more than one order of magnitude. Thus, ωc,Biot is not an appropriate indicator
for distinguishing between the low- and the high-frequency regime in these cases. The
following investigation of aluminum foam and water shows that the newly introduced
characteristic frequency ω∗ is more suitable.
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Figure 11.2: Biot’s characteristic frequency over the transition frequencies as defined
in Eq. (11.6a) - Eq. (11.6c) and according to [114]. The markers indicate porosity,
solid-fluid density ratio, and solid-fluid stiffness ratio.

11.4.2 Aluminum foam and water

In contrast to rocks or sand in geophysical and geomechanical studies, highly porous
materials, such as metal foams and bones, are more common in mechanical engineering
or biomechanics. The combination of aluminum foam and water is an important
example for a weak solid skeleton compared to the stiffness of the pore fluid.
Interestingly, aluminum foam and water have individual sound velocities of the same
order. This similarity is reflected in the similar displacements of oscillations for the
P1-wave, Fig. 11.3. No phase dominates over the other one considerably. Furthermore,
the P2-wave shows that its relative movement is linked to the solid phase (of slightly
lower sound velocity), which has the role of the slower, decoupling phase. These facts
emphasise the special role of the chosen combination in contrast to classical rock-
liquid or rock-gas combinations, where the sound velocity of the fluid is well under
that of the solid matrix.
Biot’s characteristic frequency ωc,Biot = 3.35 rad s−1 is far too low to indicate the
transition regime sufficiently. The transition frequency, defined by the Q−1

P1 -peak, is
ωtrans,P1 = 34.51 rad s−1 and much higher. The change of the P1-velocity just started
to become visible at ωc,Biot and solid and fluid did not decouple yet, cf. Fig. 11.3.
The alternatively given indicators for the transition frequency in Section 11.3.2, ω∗ =
16.10 rad s−1 and ωP1, B,III = 62.82 rad s−1, confine the transition regime much better.
They do not provide an exact match because the impedance contrast is not very high
as assumed for the case of an extremely weak solid, cf. cimp in Eq. (11.12). The
small impedance contrast can be related to the small difference of the individual
sound velocities as discussed above. Nevertheless, the approximation of the order of
magnitude, as it is often used to distinguish between the low- and high-frequency
regimes, is superior to ωc,Biot in the present case. From the qualitative physical
viewpoint, ω∗ and ωP1, B,III indicate the transition regime well as can be seen in the
logarithmic P1-wave plots, Fig. 11.3.
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Figure 11.3: Dispersion relations for aluminum foam and water for the P1- and the
P2-wave. The two characteristic frequencies ωc,Biot and ω∗ are indicated as well as an
analytical approximation of the transition frequency as defined above. Material data
is given in Appendix A.

11.5 Conclusion
The analytical investigation of Biot’s model demonstrated that the transition fre-
quency depends not only on Biot’s characteristic frequency but also on the solid’s in-
ertia, compressibility, and frequency-dependent momentum exchange. As supported
by numerical investigations, these influences can be neglected for typical systems with
low porosity or with gases as pore fluids. However, they should be considered for sys-
tems of highly porous media with liquids. Even more, the characteristic transition
frequency can differ between individual wave modes.
With respect to the variety of porous systems and because the transition zone cannot
be reduced to one unique frequency, the aim of this work can only remain of quali-
tative nature. The analytical solutions can be used as indicators, whereas accurate
solutions can be calculated numerically with little effort, for example, by the model of
Part I. Currently, Biot’s model is enhanced by more sophisticated attenuation mech-
anisms and other extension. Even so, the significant conclusions remain valid. These
include the characteristic frequencies introduced in this work as well as the need for
a consistent theory on all considered scales.





Chapter 12

Oscillatory flow in elastic tubes

The previous chapter illustrated the importance of solid elasticity for hydro-mechanical
interaction in macroscopic wave propagation. Thus, the question about the impact of
a solid’s elasticity on microscopic pore channel oscillations arises. For this reason,
this chapter studies Bernabé’s theory [18]. It generalizes Biot’s solution of oscillat-
ing, microscopic pore-channel flow by one additional degree of freedom of the elastic
solid. Moreover, it is compared to experiments of Strutz and Renner [202] and reveals
measurable effects for waves in (microscopic) elastic tubes. Finally, the impact on
macroscopic wave propagation is discussed.

12.1 Introduction

The importance of microscopic pore channel flow for macroscopic wave propagation
was shown in Chapter 10. Biot [25] derived two important results by upscaling from
micro- to macroscale. The first result was a characteristic frequency and it was stud-
ied in the previous chapter. Its definition was generalized by the solid’s inertia and
compressibility because of the assumption of rigid walls at the microscopic origin. The
second result of Biot’s microscopic investigations was frequency-dependent momen-
tum interaction, due to a microscopic change of the velocity profile. Here, Biot also
assumed a rigid solid wall. Congruently, the questions of how elasticity and inertia of
the solid influence the microscopic oscillations arises and, with it, frequency-dependent
momentum interaction between fluid and solid.
Investigations of oscillatory flow in elastic tubes and other geometric structures are
plentiful. Elastic pore channels are not only relevant as a part of comprehensive
macroscopic systems, but also have their own importance. Applied research ranges
from pulses in boreholes [64] over tremors [66] to waves in the arterial system [136,
228]. The following list can only provide a brief survey of all the contributions made
and is not exhaustive.
In the previous study, the work of Womersley was mentioned. He focused on oscil-
lations of arterial flow. A rigid-tube solution appears in one of his most-cited works
in this area [226], cf. Eq. (9) ibid. with Eq. (3.8) in Biot’s contribution [25]. Wom-
ersley refers to the real part of this solution as derived by Lambossy [118]. In [227],
he provides a set of equations to determine the frequency-dependent wave velocity
in elastic arteries. However, this work is limited to long wave lengths and lower fre-
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quencies and one has to be aware of ambiguous denotations. Unfortunately, a second
part was announced in [227] but, to the author’s knowledge, it was never published
by Womersley. This may be due to his wide-spread scientific interest and the low
frequencies in arterial flows. Womersley continued to publish works on arterial flows
- including added mass due to adjacent tissue [228], waves at junctions and inserts
[229], and frequency-dependent viscosity [230] - but no longer with a focus on a gen-
eral, frequency-dependent wave velocity profile.
Another early work dealing with waves in elastic tubes is that of Zwikker & Kosten
[235], which refers back to Kirchhoff’s theory in Rayleigh’s work [172]. Lin & Morgan
[124] provide several solutions of special cases based on mathematical approxima-
tions. Several oscillation modes are presented within a mathematically motivated
framework. Tijdeman [207] presents a broad literature review and describes a general
theoretical approach. Physical interpretation is supported by axial and radial veloc-
ity profiles, which are similar to that of Biot (and Womersley). Its key aspect is the
so-called low-reduced-frequency solution, which is limited to low Womersley numbers
and also by the fluid sound velocity. Interestingly, the Womersley number is named
shear wave number or Stokes number in [207]. Bansevičius & Kargaudas [10, 11] also
provide a very general mathematical framework including thermal effects. Neverthe-
less, the general approach makes a numerical solution of the frequency-dependent
velocity difficult and the discussed solutions were simplified for special cases.

There are infinitely many solutions for the vibrational modes of an elastic beam
or an elastic disc; similarly, there are infinitely many mathematical solutions for a
propagating wave in a fluid-filled, elastic tube. The contributions mentioned above
concentrate on selected solutions by incorporating physical assumptions that simplify
the equations or the applied solution approach. Knowledge about these limitations is
essential for the physical interpretation and difficult to extract in some works; espe-
cially if the assumptions are justified more mathematically, rather than on physical
grounds. A very common assumption is the long wave length approximation, which
means (in this particular case) that the wave length is large compared to the tube
radius. This assumption avoids interaction on the tube radius scale. Furthermore,
linearization leads to disregarding the convective term. Moreover, inertia terms are
neglected for some low-frequency solutions [24, 227].
In addition to bulk waves in fluid-filled, elastic tubes, surface waves can propagate
at the solid-fluid interfaces, for instance, Krauklis waves as described by Korneev
[109, 110]. This highlights the situation of a variety of research groups from various
areas with different aims but without a final integration, to date.

12.2 Bernabé’s model

12.2.1 Bernabé’s theoy

The model of Bernabé [18] is chosen as an example for oscillatory flow in elastic tubes.
In the limiting case of a rigid tube, its solution is easily comparable to that of Biot
and Womersley for rigid tubes, compare Eq. (23) and (25) in [18] with Eq. (3.8) in
[25]. Amongst other assumptions, Bernabé assumes wavelengths much larger than
the tube radius, radial symmetry, a constant pressure profile in the radial direction,
axial displacements dominating over radial displacements, and an infinitely thick tube
(outer radius →∞).
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Bernabé’s dispersion relations, i.e. the frequency-dependent wave velocities cBernabé(ω),
are given by Eq. (46) in [18]

0 = c4Bernabé + pBernabé c
2
Bernabé + qBernabé (12.1)

pBernabé = −

(
2 J1(κBernabéR)

κBernabéRJ0(κBernabéR)

ρfR0
ρsR0

c20,f + c20,f + 2V 2
S

)
,

qBernabé = 2V 2
S c

2
0,f

(
1− 2 J1(κBernabéR)

κBernabéRJ0(κBernabéR)

)
,

κBernabé =

√
iωρfR0
ηfR

.

J0 and J1 are Bessel functions of first kind, VS is the shear wave velocity of the bulk
solid material, and c0,f is the sound velocity of the bulk fluid. Note that the term
κBernabéR contains the Womersley number and that the solid’s influence is due to its
bulk shear velocity. Two non-negative solutions are achieved describing a fast and a
slow wave

cBernabé,fast/slow := −pBernabé
2

±
√(pBernabé

2

)2

− qBernabé. (12.2)

The velocities are complex-valued in Bernabé’s approach and can be related to the
physical wave velocity as cBernabé,physical = <(cBernabé) + =2(cBernabé)/<(cBernabé).
The low- and high-frequency limits are

cBernabé,fast =



√(
ρfR0
ρsR0

+ 1
)
c20,f + V 2

S , for ω → 0
c0,f , if c0,f >

√
2VS√

1
2c

2
0,f + V 2

S = cslow , if c0,f =
√

2VS√
2VS , if c0,f <

√
2VS

, for ω →∞
(12.3)

cBernabé,slow =


0 , for ω → 0
√

2VS , if c0,f >
√

2VS√
1
2c

2
0,f + V 2

S = cfast , if c0,f =
√

2VS

c0,f , if c0,f <
√

2VS ,

, for ω →∞
(12.4)

using

lim
ω→0

2 J1(κBernabéR)

κBernabéRJ0(κBernabéR)
=

1

2
, lim

ω→∞

2 J1(κBernabéR)

κBernabéRJ0(κBernabéR)
= 0.

In contrast to Biot’s microscopic investigations, Bernabé’s model predicts two waves.
If the tube material is rigid or has a high shear velocity compared to the fluid’s sound
velocity, the slow wave is dispersive and strongly connected to the fluid phase as in
the case of Biot’s theory. This becomes obvious from the high-frequency solution of
the slow wave, Eq. (12.4), and the example calculations for a steel tube, Fig. 12.1a).
The fast wave is based on the shear velocity of the solid and includes the density
ratios for low frequencies, Eq. (12.3).
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The slow wave, by contrast, does not depend on the densities representing inertia
terms. This is in good agreement with the macroscopic theory, where the slow wave
is a relative mode between the constituents. Pure relative motion already premises
decoupling of the constituent with higher inertia and neglects further influence by
inertia of the second phase. Biot’s microscopic focus on a relative velocity is therefore
well grounded for the slow wave.
In the opposite case, the solid’s shear elasticity is weak compared to the fluid’s stiffness
and yields VS � c0.f. The slow wave of Bernabé’s solution is then determined by the
solid’s bulk shear velocity and the fast wave is linked to the fluid’s sound velocity,
Eq. (12.3), Eq. (12.4), and Fig. 12.1b). This change of roles was observed as well on the
macroscale for the compressional waves through a water-filled, weak aluminum foam,
cf. Section 11.4.2. Thus, Bernabé [18] does not only predict a further wave mode but
supports the presented macroscopic theory about the characteristic frequency (change
of roles of solid and fluid) by his microscopic investigations.
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Figure 12.1: Dispersion relations according to Bernabé [18] for a steel and a silicone
tube of 1 mm radius with water and air. The slow waves of the silicone tube are very
close and overlap.

Considering the velocity profile, Bernabé’s solution is a half-space solution. The
displacement vanishes for increasing distance from the symmetry axis. In case of a
rigid or very stiff tube, the slow wave is physically comparable to Biot’s solution as it
is consistent with Biot’s assumptions. For the other case, namely silicone and water,
Fig. 12.2 shows the velocity profile that belongs to the slow wave according to [18]. The
slow wave is delayed by the slowly oscillating shear mode of the solid. Additionally,
a considerably amount of fluid is coupled to the movement. Nevertheless, comparing
the profile Fig. 12.2 with Biot’s solution Fig. 10.2, both seem qualitatively similar for
the relative (decoupled) mode.

12.2.2 Comparison with experimental data and limitations

Renner & Strutz performed experiments based on the so-called oscillation flow method,
cf. [202]. For these experiments, a tube was connected to an up-stream and a down-
stream reservoir. An oscillating pressure was applied to the upstream reservoir and
the pressures of both reservoirs were measured in time. The experimental results in-



12.2. BERNABÉ’S MODEL 109

y/R [1]

no
rm

.
ab

so
lu
te

ve
lo
ci
ty

[1
]

0 5 10
0

0.2

0.4

0.6

0.8

1
fluid
solid

y/R [1]
no

rm
.
ab

so
lu
te

ve
lo
ci
ty

[1
]

0 0.5 1
0

0.2

0.4

0.6

0.8

1

y/R [1]

no
rm

.
ab

so
lu
te

ve
lo
ci
ty

[1
]

0 5 10
0.6

0.8

1

1.2

1.4
×10−4

Figure 12.2: Axial, absolute velocity profile of the slow wave in a water-filled silicone
tube of 1 mm radius at ω = 2π × 1000 s−1 according to Bernabé [18]. The velocity
profile is normalized with respect to the highest appearing value.

clude the pressure ratio and phase lag for different frequencies, which can be related
to the propagating wave in the elastic tube. A small excerpt of the data from [202] is
now compared with Bernabé’s theory.
In case of a steel tube, the results between the rigid-tube and the elastic-tube ap-
proach differ marginally and both match the experimental results well, Fig. 12.3.
Still, the elastic approach performs better and an extended theory, including finite
wall thickness, could even improve the match, due to the higher elasticity of a fi-
nite wall thickness. Thus, the theoretical influence of tube elasticity was confirmed
experimentally.
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Figure 12.3: Comparison of Bernabé’s theory and experimental results of oscillating
flow in an air-filled silicone tube from [202]. The inner diameter was 0.5 mm, the
outer diameter was 1.4 mm, and the length was 0.51 m.
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Additionally, frequency-dependent wave velocities could be determined from com-
parison of experimental phase lag for different lengths of the same tube ([202] and
private communication with J. Renner). Interestingly, the fluid-bound wave, recorded
for silicone-air combinations, showed a highly dispersive behavior with vanishing ve-
locity for low frequencies, Fig. 12.4. This result is in contrast to Bernabé’s theory,
which predicts a fast wave through air with non-vanishing low-frequency velocity, cf.
Fig. 12.1b) (solid grey line).
Physically, it can be explained by a further wave mode that was neglected in Bernabé’s
theory. Taking into account an additional longitudinal wave in silicone, three wave
modes occur in total: the very fast longitudinal silicone-bound wave (≈ 1013 m s−1),
followed by the air-bound wave (≈ 343 m s−1), and, at last, the silicone-bound shear
mode in the low two-digit m s−1-regime. Because the fastest wave is the longitudinal
wave in silicone, the former fast wave of Bernabé becomes one of the slower wave
modes now.
As could be seen in the theories above, Part I and Chapter 11, slower wave modes
are related to relative movements and highly dispersive19. They do not appear at low
frequencies, because they are coupled to the fast wave mode by viscosity. This effect
explains the experimental observation. The measured air-wave in the silicone-tube
appears, but it is not the fastest mode and, therefore, dissipative at low frequencies.
Furthermore, it shows that Bernabé’s theory extends Biot’s considerations but is also
limited to a certain kind of wave modes: a fluid wave and a shear mode of the solid.
The solid’s microscopic, longitudinal wave is not considered.
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Figure 12.4: Measured phase velocities of an air-filled silicone tube (from [202] and
private communication with J. Renner). The inner & outer diameters of the used
tubes included combinations of 5mm & 14mm, 10mm & 19mm, and 10mm & 30mm.
The lengths were between 0.2 m and 2 m.

19This is an illustrative example how results of macroscopic theories can help to understand smaller-
scale physics.
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12.3 Conclusion and open questions: about the im-
pact of tube elasticity on wave modes, flow pro-
files, and momentum interaction

As mentioned in the introduction of this chapter, there is an infinite number of oscilla-
tion modes for flow in an elastic tube. Consequently, comparison of Bernabé’s theory
[18] with that of Biot [25] showed that elasticity of a tube can lead to further wave
modes on the microscale. In general, such wave modes can be based on compression
or shearing of the solid, but also on bending of thin-walled tubes or interface waves.
The theoretical prediction of such wave modes depends on limiting assumptions for
the leading equations, or the solution approach. Practically, the applied boundary
conditions cause stimulation of certain wave modes, whereas damping and impedance
contrasts further determine experimental observability.
Various works dealing with this topic show that a simple, general description cannot
be given and that it depends on the respective application. Moreover, thermal or
electrical boundary layer effects can cause/influence further waves. In addition, a
change of cross section may influence the relative fluid motion at acoustic velocities,
as it is known from a Laval nozzle.
With respect to macroscopic wave propagation, typical existing theories include only
few wave modes, such as P-waves, S-waves, and rotational waves for micropolar me-
dia. Physically, a macroscopic wave belongs to a certain boundary condition on the
microscale. In turn, very few microscopic waves represent an (experimentally) ob-
servable macroscopic wave. For example, oscillatory flow in a rigid tube represents
Biot’s slow wave for a very stiff solid skeleton. Many other microscopic waves, such
as interface waves, may be highly damped on a macroscopic scale, due to microscopic
attenuation or annihilation. Others are only stimulated in special cases. For example,
Frehner [71] showed that Krauklis-waves are predominantly induced at crack-tips.
Nevertheless, understanding and investigating microscopic physics remains of vital
importance, for instance, for comparison of tube network models or for the origins
of attenuation. Moreover, many physical relationships are based on upscaled micro-
scopic relationships such as the frequency-dependent momentum interaction proposed
by Biot [25]. Whether or how the latter is influenced by the elasticity of the tube
cannot be answered here conclusively. There are good reasons to expect that the
microscopic-flow assumptions of Biot are valid for the relative wave modes of many
situations including: velocity profiles calculated above (Fig. 12.2), velocity profiles
illustrated in [207], as well as assumptions of negligible radial wall-displacement in
microscopic theories [18, 110]. Neglect of a significant pore wall movement is usually
based on the high aspect ratio of a solid’s to a fluid’s bulk modulus and/or a balanced
load on both sides of a pore wall.
Note that, even for weak solid skeletons, the pores can often be assumed to be of
constant microscopic diameter. Due to its porosity, the macroscopic solid represents
a skeleton with much lower stiffness compared to the microscopic pore walls, i.e.
Kgrains � Ks. For example, even if a metal foam is more compressible than its pore
fluid, the flow profile through the pore channels may be well described with the as-
sumption of an incompressible pore because of the low compressibility of bulk metal.
This implies that Biot’s frequency correction for the flow profile can often be used
for weak porous media - even though the macroscopic finding of a characteristic fre-
quency has to be corrected. It may fail for very thin walls or an unbalanced load but
remains as an interesting case for future research.





Chapter 13

Review

13.1 Summary and main findings

A dimensional analysis illustrated the origin of frequency-dependent flow profiles for
microscopic, oscillatory flow in rigid pipes as proposed by Biot [25] and Womersley
[226]. As a result, the macroscopic momentum exchange between fluid and solid is
also frequency dependent. Subsequently, Biot’s macroscopic characteristic frequency
was generalized for systems with a weak solid frame. The extensions include

• the solid’s elasticity

• the solid’s inertia

• upscaling considering frequency-dependent momentum exchange

and are important for combinations of weak solid frames, such as aluminum foam or
osteoporotic bone, with pore liquids.
Finally, Bernabé’s theory [18] was presented to show the impact of elastic tubes
on microscopic pore channel oscillations. A corresponding effect has been proven
experimentally [202]. An influence on macroscopic momentum exchange could not be
clarified conclusively but is expected to be less significant, because the grain elasticity
is usually larger than the skeleton elasticity, Kgrains � Ks.

13.2 Conclusions and outlook

The results showed that a consistent, physical treatment is important on all scales.
Characteristic frequencies were derived for a variety of situations but they can only
remain approximations for specific applications. Moreover, the frequency-dependent
momentum exchange was only considered exemplarily, because it depends on the
specific morphology. In conclusion, the analytical solutions should be used as a first
estimation. For the case of new materials or other uncertainties, especially for high
porosities, a numerical evaluation of the dispersion relations can be performed with
little effort and is highly recommended.
The aspect of microscopic tube elasticity could only be investigated in a first, principle
view. Further experimental evaluation will be undertaken in the near future and
will include various combinations of weak/stiff fluids and solids. In any case, tube
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elasticity turned out to be influential. Admittedly, results obtained to date indicate
that microscopic waves, which do not belong to a macroscopic deformation, are not
likely to be stimulated by waves of long wavelengths in porous media. By contrast, the
influence of microscopic tube elasticity can appear via intrinsic damping and needs
to be taken into account in widely used pore network models.
The main conclusions are:

• Microsopic flow profiles are frequency dependent.
→ A description via macroscopic phases with one degree of freedom, therefore,

requires frequency-dependent coefficients within the differential equations.

• A macroscopic characteristic frequency needs to consider all properties of the
macroscopic system (fluid’s and solid’s).

• Different wave modes can belong to different characteristic/transition frequen-
cies.

• For weak solid matrices, the alternative characteristic frequency ω∗ should be
(at least) considered additionally.

• Solid elasticity influences microscopic waves and causes further modes.



Part III

Waves in residually saturated
porous media





Chapter 14

Introduction

14.1 Motivation and literature

Figure 14.1: Partial vs.
residual saturation.

A model for wave propagation in porous media with two con-
tinuous fluid phases was presented in Part I. It was assumed
that the amount of both fluids is large enough to exceed
residual saturation. In residually saturated porous media,
by contrast, one fluid fills the pore space only fractionally.
It does not form one continuous fluid phase but exists as
disconnected clusters such as bridges and patches.
Each of these clusters can differ with respect to geometry
and mass. As a result, each cluster’s response to excita-
tion by a mechanical wave is different. Thus, modeling by
one single phase is not suitable to account for the differ-
ences in properties. This gap will be closed by the following
model. It is based on the concepts of the group of Frehner,
Steeb, Schmalholz, Podladchikov, and Kurzeja presented in
[72, 73, 197, 198].
Motivating applications for wave propagation in residually
saturated porous media include groundwater remediation [38, 173, 174] or enhanced oil
recovery [17]. Initial investigations and experiments have been performed to promote
the development of this young field of research. Ganglia mobilization was studied in a
sand core [175] and in glass beads [38]. Stimulation by acoustic waves increased gan-
glia outflow significantly at certain frequencies during experiments of Chrysikopoulos
& Vogler [38]. Mobilization of single clusters was studied in more detail in [16, 94–96],
from seismic to ultrasound frequencies. Pride et al. [164] argued that seismic frequen-
cies are usually too low for exact resonance stimulation in enhanced oil recovery but
still registered a supportive effect by wave stimulation in simulations. Furthermore,
sound absorption near habitats of sound-sensitive animals relies on the disconnected
state of one fluid phase, cf. [72, 231].
Research on wave propagation in residually saturated porous media is relatively new
and includes many unexplored areas. In all cases, a foresighted treatment of the
stimulated region has to be assured with respect to possible damages of the solid
framework. The following model may help to characterize and predict the behavior
of mechanical waves at the state of residual saturation.
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Parts of the following investigation were presented previously in [198] (especially the
concept and idea) and [115]. Further parts have been submitted previously and will
probably be available shortly after completion of this treatise in [113].

14.2 Aims and structure
To complete the description of wave propagation in partially saturated porous media,
the case of low, namely residual, saturation is described in this third part. The first
goal is to predict wave properties such as velocity or attenuation, analogously to the
model presented in Part I. An additional focus is on the characteristic properties of
the disconnected fluid, because it is important for applications like sound absorption
or ganglia stimulation.
Three further chapters constitute the following study.

• The modeling concept is presented in the first chapter and covers physical ori-
gins to governing equations. Therein, the disconnected phase is described as
individual oscillators.

• Specific examples illustrate the influence of fluid cluster oscillations. An addi-
tional damping mechanism, due to resonance effects, occurs. Various kinds of
cluster distributions are studied.

• The conclusion recapitulates the impact of fluid cluster properties on wave prop-
agation and presents an outlook for future research and applications.



Chapter 15

Model

The development of a mathematical model for wave propagation in residually saturated
porous media is presented. The physical system is illustrated and motivates modeling
of the discontinuous fluid clusters in the form of harmonic oscillators, as proposed in
[72, 73, 197]. The mathematical modeling approach is twofold and divided into contin-
uous and discontinuous phases. On the one hand, the continuous solid and continuous
liquid phase are described by a poroelastic model, for instance, as introduced by Biot
[25] and described in Part I for two pore fluids.
On the other hand, the discontinuous fluid phase (of residual saturation) evolves from
an averaging process over the residually distributed, microscopic fluid clusters. In
contrast to classical continuum models, upscaling of the residual phase is not executed
for the total fluid phase. Averaging is applied individually and distinctions are made
between the clusters’ dynamic properties: mass, stiffness, and damping.
Coupling between continuous and discontinuous phases is realized via momentum ex-
change. Finally, the mathematical description extends well-established poroelastic
models by an additional, single term. This term includes the statistical distribution
of the clusters’ mass, stiffness, and damping. The two-scale approach presented here
transfers relevant microstructure information to the macroscopic description of strong
coupling between microstructure and macroscale dynamics.

15.1 The physical system

A residually saturated porous medium consists of a solid matrix that is saturated by
two immiscible fluids. One fluid occupies most of the pore space and is continuously
distributed throughout. The other fluid occurs at residual saturation. Thus, it is
distributed in the form of single clusters (bridges, patches, and other kinds of fluid
conglomerations), which are not connected.
The solid phase is referred to by index s as before. The continuous fluid is denoted
by c, and the discontinuous fluid is denoted by d20. For convenience and near-surface
applications, for example, in the vadose zone, it will be assumed that the discontinuous

20Another distinction, common in the literature, is that between a wetting and a non-wetting fluid.
The wetting fluid is often assumed to be the discontinuous fluid after a drainage process. This is,
however, too restrictive for a general investigation, because it assumes a special relationship between
both fluids.
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fluid is a liquid and the continuous fluid is a gas. This assumption holds for many
applications in the vadose zone, where air dominates the pore space and water clusters
occupy the little remaining space in the pores. A generalization to arbitrary fluids is
included in the capability of the basic approach and will be discussed later on.

15.2 Idea

ϕs

ϕl

ϕg . . .

Figure 15.1: Schematic visualization of the modeling concept for a macroscopic, par-
tially saturated system.

The following concept was presented in and is also based on the work of Steeb et
al. [198]. The solid and the continuous fluid, s and c, coincide with the situation of
the model described in Part I. Hence, a continuous approach can be used to describe
these constituents. In the following, Biot’s theory (as recapitulated in Section 11.3.1)
is used for the two continuous phases. Other approaches are also applicable, for ex-
ample, a hybrid (rigid-grain) model can be used, as described by Steeb [196] and
reformulated here via Eq. (B.1).
The discontinuous fluid occurs in the form of various fluid clusters. Each cluster can
have its own geometric and material properties. Thus, the clusters cannot be gener-
alized as one continuous fluid phase with one single capillary pressure or one common
mass/inertia. Based on the ideas in [72, 73, 197], each cluster of the discontinuous
fluid is modeled as an individual harmonic oscillator. From a conceptual point of
view, B. de Spinoza’s words illustrate this idea best: “The order and connection of
ideas is the same as the order and connection of things.” [159, 193]
With respect to the focus on linear wave propagation, only the important dynamic
properties are included in the macroscopic description. These are mass, damping, and
stiffness. The three additional parameters constitute a link between the microscopic
behavior of the clusters and a macroscopic description. This link results in a two-scale
model, which accounts for the relevant cluster properties for wave propagation.

15.3 Leading equations

15.3.1 Continuous phases
Inertia, damping, and stiffness matrices of the continuous phases for residual satura-
tion are defined as Ars, Brs, and Crs. They can be derived straightforwardly from
the continuous models in Part I and Section 11.3.1. The saturation of the continuous
fluid is assumed to be near full saturation so that the momentum exchange between
continuous fluid c and solid s does not differ significantly from the full saturation case.



15.3. LEADING EQUATIONS 121

The corresponding matrices write

Ars =

(
ρs0 + (αfl − 1)ρc0 −(αfl − 1)ρc0
−(αfl − 1)ρc0 αflρ

c
0

)
, (15.1a)

Brs = cJKD

(
ω

ωc,c

)
(nc0)

2
ηcR

ks

(
1 −1
−1 1

)
, (15.1b)

CP
rs =

(
PBW SBW

SBW RBW

)
, CS

rs =

(
µs 0
0 0

)
. (15.1c)

The continuous fluid is characterized by its saturation sc, volume fraction nc = φsc,
partial density ρc = ρcRnc, and dynamic viscosity ηcR. The stiffness matrices are
similar to those of Biot’s model, cf. Eq. (11.3c) and Eq. (11.4).
In addition, the discontinuous clusters contribute to momentum exchange. Assuming
the continuous fluid phase to be a gas with low density, viscosity, and stiffness, in-
teraction between the continuous gas phase and the liquid clusters is neglected. The
clusters exchange momentum with the solid predominantly, almost unhindered by
the surrounding gas. This assumption is supported by microscopic investigations, cf.
Section 19.6.2. Thus, momentum exchange p̂d adds to the momentum balance and
occurs only between solid phase and discontinuous fluid phase:

(
ω2Ars + iωBrs + kψ

2
Cψ

rs

)(ûψs
ûψf

)
+

(
−p̂d

0

)
= 0, ψ ∈ {P,S}. (15.2)

15.3.2 Discontinuous phase
The discontinuous phase consists of fluid clusters that can be different in their dynamic
properties. First, a single microscopic cluster with index j is assumed to follow the
classical momentum balance of a harmonic oscillator [72, 73, 197, 198]. The cluster’s
displacement umic,j depends on its mass mmic,j , stiffness cmic,j , and damping dmic,j .
Stiffness and damping can be replaced by eigenfrequency ω0,k and damping ratio Dk.
Note the introductory Section 3.2 that recapitulates the basic properties of a harmonic
oscillator. The displacement of the adjacent solid walls is uasw,k and the momentum
balance of the microscopic harmonic oscillator becomes

−mmic,jümic,j = mmic,j ω
2
0,mic,j (umic,j − uasw,j)

+ 2mmic,j ω0,mic,j Dmic,j (u̇mic,j − u̇asw,j)

= −p̂jmic.

(15.3)

The inertia force is balanced by the contribution of stiffness and damper and trans-
ferred to the solid wall. This microscopic momentum balance is upscaled to combine
it with the macroscopic theory of the continuous phases. The upscaling is executed as
an averaging process, cf. Appendix D for details. With respect to the primary idea,
the average is not applied to the total amount of discontinuous fluid clusters but with
distinction of their eigenfrequency and damping ratio.
LetMω0

andMD contain all countable indices of different occurring eigenfrequencies
and damping ratios respectively. All macroscopic oscillators with eigenfrequency ω0,k

and damping ratio Dl are unified and indexed with k ∈Mω0 and l ∈MD.
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The averaging process combines all microscopic oscillators with the same eigenfre-
quency and damping ratio to one macroscopic oscillator. The volume fraction of the
macroscopic oscillators with eigenfrequency ω0,k and damping ratio Dl is

nkl =
Vkl
VREV

=
1

VREV

⋃
micr. cluster ∈ REV
ω0,cluster=ω0,k

Dcluster=Dl

Vcluster. (15.4)

It is related to the volume fraction of the total discontinuous phase

nd =
Vd
VREV

=
1

VREV

⋃
[k,l]∈Mω0

×MD

Vkl = (1− sc)φ (15.5)

by

αkl =
Vkl
Vd

=
nkl

nd
. (15.6)

The latter, αkl, is the volume ratio of clusters with eigenfrequency ω0,k and damp-
ing ratio Dl with respect to all clusters. For convenience, the initial density ρδ0 is
assumed to be constant, so that it does not need to be distinguished for each cluster
type. Moreover, initial capillary pressure effects are neglected with respect to den-
sity changes (cf. Section 19.7.1 for a detailed justification). Using the introduced
parameters, momentum interaction between a cluster and the solid phase becomes,
cf. Appendix D,

p̂kl(ω) = −αkl0 ρ
d
0

(
ω2

0,k − 2ω0,k ωDl i
)( ω2

0,k − 2ω0,k ωDl i

(ω2
0,k − ω2)− 2ω0,k ωDl i

− 1

)
us. (15.7)

The influence of a macroscopic oscillator is fully determined by the set {αkl, ω0,k, Dl}.
Alternatively, the macroscopic harmonic oscillator can be described by stiffness ckl =
αklndρdR ω2

0,k, damping coefficient dkl = 2Dl ω0,k, and ρkl = αklndρdR, cf. Sec-
tion 3.2.

15.3.3 Combination of continuous and discontinuous phases
The total amount of momentum that is exchanged between the clusters and the solid
is

p̂d =
∑

[k,l]∈Mω0×MD

p̂kl = −ρd0 ccl(ω) us (15.8)

with

ccl(ω) =
∑

[k,l]∈Mω0
×MD

αkl0

(
ω2

0,k − 2ω0,k ωDl i
)( ω2

0,k − 2ω0,k ωDl i

(ω2
0,k − ω2)− 2ω0,k ωDl i

− 1

)
.

(15.9)
A realistic, porous medium contains a finite set of clusters. For practical description,
however, it may be convenient to approximate their eigenfrequencies and damping
ratio distribution by a probability density function. Instead of a discrete distribution
of volume ratios αkl(ω0,k, Dl), a probability measure

αpdf : R2
σ → [0, 1] (15.10)
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can be used with units [αpdf] = s and R2
σ being the Borel σ-Algebra of R2. Due to

physical restrictions αpdf(ω̂0, D̂) = 0 s, if ω̂0 ≤ 0 s−1 or D̂ ≤ 0. In this case, Eq. (15.9)
changes from a sum to an integral

ccl(ω) =

∫
R2
≥0

αpdf(ω̂0, D̂)
(
ω̂2

0 − 2 ω̂0 ω D̂ i
)( ω̂2

0 − 2 ω̂0 ω D̂ i

(ω̂2
0 − ω2)− 2 ω̂0 ω D̂ i

− 1

)
dω̂0 dD̂.

(15.11)
The final set of equations is then determined by the continuous phases, Eq. (15.1a) -
Eq. (15.1c), and discontinuous phase Eq. (15.9) or Eq. (15.11) respectively. For plane
waves, the resulting eigenvalue formulation becomes, for ψ ∈ {P, S},

(
Acl + ω2Ars + iωBrs + kψ

2
Cψ

rs

)(
ûψs û

ψ
f

)
= 0, Acl =

(
ρd0 ccl(ω) 0

0 0

)
. (15.12)

The addition Acl can be interpreted as a frequency-dependent added-mass effect of
the solid phase. This reflects figuratively the concept of harmonic oscillators, which
are attached to the solid phase. The volume ratio αkl or αpdf respectively represents
weighting of the added mass effect of each individual cluster type.

15.3.4 Variants
Arbitrary fluid combinations

For the general case of arbitrary fluids, momentum exchange between the clusters
and the continuous fluid phase has to be considered. Such an extension exceeds
the current aim but can be implemented straightforwardly. Mathematically, it is
represented by the second diagonal term of matrix Acl. For instance, the cluster
interaction can be distributed between the solid and the continuous fluid according to
their respective stiffness. Such implementation can be executed without the need for
additional material parameters. The present case is achieved if the compressibility
of the continuous fluid is relatively low, which is in accordance with the physical
situation of a gas.

Simplified approach: distinction via eigenfrequencies only

The presented approach distinguishes between eigenfrequencies and damping ratios.
The model complexity reduces if the clusters are distinguished solely by their eigen-
frequencies. In this case, a separate classification by Dl vanishes, together with the
respective indices and integration. The damping ratio becomes an averaged damping
ratio Dk for all clusters with the same eigenfrequency ω0,k, cf. Eq. (D.15). The cor-
responding model was described in [198].
Such an assumption holds well if all clusters differ in eigenfrequency and damping
ratio, so that clusters of the same eigenfrequency also show approximately the same
damping ratio. This can be the case, for example, if a few typical groups of clusters,
which differ in stiffness and damping, are considered. The advantage of such an ap-
proach is that the cluster classification can be achieved with a single parameter. An
appropriate use is discussed in the following chapter.





Chapter 16

Examples

The following examples illustrate the capabilities and characteristics of the previously
presented model for wave propagation in residually saturated porous media. Empha-
sis is placed on eigenfrequency ω0, which centrally determines resonance effects, and
damping ratio D, which determines whether resonance effects are covered by viscous
damping. The corresponding mass distribution is a weighting factor for different kinds
of clusters.
A basic example explains the relationships between the mathematical structure and
its physical significance. It is followed by a specific example of three different cluster
types. In the end, implementation of continuous, statistical distributions is presented
with respect to its influence on wave propagation in residually saturated porous media.

16.1 Preliminary comments and the common initial
system

The basis of the material parameters is Berea sandstone filled with 90 % air and 10 %
water at ambient conditions, cf. Appendix A for material properties. The water phase
is distributed in the form of single oscillators as described by specific distribution
functions in the individual examples.
Dispersion relations are shown for the P1-wave and are comparable for the S-wave.
The P2-wave is virtually unaffected due to negligible interaction between both fluids.

16.2 Basic example
The presented model can be generally characterized best by the introduction of a sin-
gle oscillator. This single oscillator has an eigenfrequency ω0,1 and a damping ratio
D1.
For an oscillator with low damping (D1 � 1), a sharp peak of the inverse quality
factor occurs at a frequency of ω0,1, cf. Fig. 16.1. This damping effect is a new phys-
ical phenomenon, compared to classical wave propagation models. It accounts for
energy that is stored by oscillations of the fluid cluster. If a traveling wave passes the
cluster and stimulates it with the appropriate frequency, the cluster responds with its
own oscillations. While the wave propagates further through the system, the cluster

125



126 CHAPTER 16. EXAMPLES

continuous to oscillate. This oscillation energy is lost from the point of the traveling
wave. The wave is damped effectively on the macroscale, which can be predicted and
observed as a peak of the inverse quality factor. As for the continuous model, cf.
Section 6.3, damping due to the air phase is small and not recognizable in the plot.
The fluid cluster also significantly influences the phase velocity. The results follow
the physical implementation of an added mass with its own stiffness and damping.
In contrast to the smooth transition of a continuous model, a cluster with low damp-
ing causes a velocity fluctuation, Fig. 16.1. The right-hand limit near the resonance
effect shows an increase of phase velocity. The left-hand limit shows a decreasing
phase velocity. This interesting behavior, which converges to a singularity for van-
ishing damping, is also known as a negative mass or negative elasticity effect, cf.
[53, 65, 97, 145] and their very similar mathematical structure. An analogous ex-
ample is a pendulum in an oscillating building, which can counteract the building’s
movement by opposite oscillation.
Singularities of the dispersion relations are weakened by increasing damping, ↗ D,
cf. Fig. 16.1. The dispersion relations approach those of continuous phases. This
behavior is in accordance with physical expectations. For D1 � 1, influence of the
restoring capillary forces is dominated by viscous damping. The clusters are over-
damped and do not exhibit resonance effects. This is the case, for example, if several
clusters combine to form larger or longer ones, namely come close to a continuous
phase.
In conclusion, this simple model demonstrates two interesting results. First, a new
damping mechanism, the clusters’ resonance oscillations, can be described physically.
Second, the difference between discontinuous and continuous effects can be repre-
sented by the parameter D. This accounts for the ratio of viscous forces to capillary
forces.
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Figure 16.1: Basic example of one fluid oscillator with ω0,1 = 30× 103 s−1 and differ-
ent damping ratios D1 = 0.01/0.1/1/10/100.

Remark on the transition frequency of the discontinuous fluid
A transition frequency, indicating the peak of the inverse quality factor and the tran-
sition from the low- to the high-frequency regime, can be determined as before for
continuous phases (cf. Chapter 11). For a single oscillator and a continuous gas phase
of high compressibility, the transition frequency of the P1-wave is

ωtrans, osc =
bosc

ρd

√
1 +

ρd

ρs
→

{
ω0,1, for D1 � 1

2D1 ω0,1

√
1 + ρd

ρs , for D1 � 1.
(16.1)
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Parameter bosc is the solution of a quartic equation

bosc =

√
−χosc

2
+

√(χosc

2

)2

− ψosc, with

χosc = (ω0,1ρ
d)2

(
1 +

1

1 + ρd

ρs

)
−
(
2 ρdD1 ω0,1

)2
, ψosc = −3(ω0,1ρ

d)4 ρ
d

ρs
.

(16.2)

Its physical meaning is comparable to that of the viscous drag coefficient for contin-
uous phases, cf. Eq. (5.29).
The undamped limit of Eq. (16.1), D1 � 1, represents damping of the wave by the
cluster’s oscillations with ω0,1. Note that for higher damping, a simple harmonic os-
cillator shows a reduced oscillation frequency, Eq. (3.6). In contrast, the transition
frequency of the current model does not reduce because it considers and superposes
both energy losses: energy loss due to pure cluster oscillations and due to viscous
drag. For increasing D, the solution converges to the behavior of a continuously
distributed fluid, Eq. (16.1) (D1 � 1). As for the case of continuous fluids, higher
damping increases the transition frequency, cf. Fig. 16.1, and the role of viscosity in
Eq. (11.1) and Eq. (11.10).
Hence, the transition frequency also illustrates the capability of the presented model
to account for the physics of both: the classical continuous approach and the extension
by a discontinuous fluid simultaneously.

16.3 Residually saturated Berea sandstone with wa-
ter clusters of different size

An applied example is provided by the investigation of Berea sandstone that is resid-
ually saturated by three kinds of water clusters, cf. Tab. 16.3. The first two clusters
represent small bridges, which can occur between two single grains with different con-
tact angles. The third cluster represents a water patch in a long pore channel.

ΘYoungl

R l

R

cluster no. 1 2 3
l [m] 1× 10−5 1× 10−5 2× 10−2

R [m] 0.5× 10−5 0.5× 10−5 1× 10−4

αk [1] 1/3 1/3 1/3
ω0,k [s−1] 30× 103 25× 103 2× 103

Dk [1] 0.037 0.028 0.18
ΘYoung [◦] 65 115 90

Table 16.1: Oscillator types used for the example calculation. Dynamic properties are
estimated with respect to the results in Chapter 20 and based on oscillations parallel
to the pore walls.
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Their corresponding dispersion relations clearly reflect the different resonance effects.
The inverse quality factor and phase velocity are distinctively influenced by each clus-
ter individually, cf. Fig. 16.2. This offers the possibility of characterizing different
kinds of fluid clusters in a porous medium on the basis of their frequency-dependent
response.
Caution is advised for the characterization of oscillating fluid clusters by frequency-
dependent phase velocity. In realistic experiments, rapid changes of the frequency-
dependent phase velocity are expected to occur less intensively. Applications usually
include a broader distribution of various cluster types and a broader frequency range
of the signal. Additionally, further dissipative effects, between an experimental trans-
mitter and receiver, can smear out the wave signal and they must be considered.
Furthermore, a traveling wave will probably not be disturbed over the entire wave
front by single clusters even if they are assumed to be distributed homogeneously.
Nevertheless, the inverse quality factor may be a more satisfactory experimental tool
to investigate and characterize residually saturated porous media. It relates energies
of the wave, which can be averaged more easily over a restricted space and time do-
main. An energy loss is also observable if the wave passes a region with enclosed
fluid clusters and then smears out. Thus, fluid clusters can be distinguished by their
differing dynamic properties.
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Figure 16.2: Dispersion relations of residually saturated Berea sandstone filled with
three types of water clusters.

16.4 Continuous distributions

The previous example included single clusters. A continuous distribution of eigenfre-
quencies or damping ratios, αpdf(ω̂0, D̂), can account for more sophisticated systems
in real application with sophisticated cluster distribution. Moreover, use of a prob-
ability density function allows an investigation of the difference between narrow and
broad distributions. For this purpose, the distribution of clusters, αpdf , will be varied
separately for eigenfrequencies ω̂0 and damping ratio D̂. One parameter of ω̂0 and D̂
will be fixed while the other one is studied for a narrow and a broad spreading around
a mean value.
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For this reason, two distributions are used. A single, fixed value is represented by
the delta-distribution δx. It describes a discrete distribution at value x. The other
distribution is a general beta distribution B(a, b, p, q) with probability density

fB(a,b,p,q)(x) =
Γ(p+ q)

Γ(p)Γ(q)(b− a)p+q−1
(x− a)p−1(b− x)q−1. (16.3)

Γ is the gamma function and p = q = 2 is used for the present investigation, cf.
Fig. 16.3. It has a mean value of µdistr and spreads between (1 − λdistr)µdistr and
(1 + λdistr)µdistr. Higher values of λdistr cause a broader spreading.

x

α
(x

)

0 (1− λdistr)µdistr µdistr (1 + λdistr)µdistr
0

Figure 16.3: Probability density function as a beta distribution α ∼ B((1 +
λdistr)µdistr, (1− λdistr)µdistr, 2, 2).

The clusters’ final volume ratio distribution is multiplicatively split into its depen-
dence on eigenfrequencies and on damping ratios as αpdf(ω̂0, D̂) = αω(ω̂0)αD(D̂). It
further remains limited to non-negative values of ω̂0 and D̂, due to physical reasons.

16.4.1 Study of eigenfrequency distributions

To investigate the influence of different eigenfrequency distributions, a fixed damping
ratio αD ∼ δD1

is assumed first. The eigenfrequency distribution varies around a value
of ω1 = 1000 s−1 with λdistr ∈ {0.01, 1} and αω ∼ B(ω1(1−λdistr), ω1(1+λdistr), 2, 2).
For weakly damped clusters (D1 = 0.1), a broader distribution of clusters (λdistr = 1)
differs significantly from a distribution around one cluster type (λdistr → 0), cf.
Fig. 16.4 (left side). A broader distribution results in a smoother and broader tran-
sition regime, which is additionally shifted to higher frequencies. Furthermore, the
dispersion relations show a bias towards higher frequencies although the used proba-
bility density function αpdf(ω̂0, D̂) is symmetric, cf. Eq. (16.3) and Fig. 16.3.
The tendency to higher frequency can be explained by the fact that the added-mass
component of the leading equations is not linear in ω̂0 and D̂, cf. Eq. (15.11). Fur-
thermore, the damping coefficient of a harmonic oscillator scales with the damping
ratio and eigenfrequency dkl = 2Dl ω0,k. Due to these two mathematical properties, a
broader, symmetric distribution of eigenfrequencies causes a higher weight of strongly
damped clusters. As a result, the transition zone is not only smoothed out but also
shifted to higher frequencies.
For a high damping ratio D1, the distribution of the eigenfrequencies is less influen-
tial, cf. Fig. 16.4 (right side). In this case, capillary effects are dominated by viscous
effects. Because eigenfrequencies represent the stiffness of capillary effects, the impact
of their distribution vanishes and is not observable for large values of D1.
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Figure 16.4: Dispersion relations for different continuous distributions of eigenfre-
quencies at constant single damping ratio D1 represented by αD ∼ δD1 . The eigenfre-
quency distribution is αω ∼ B(ω1(1− λdistr), ω1(1 + λdistr), 2, 2) with ω1 = 1000 s−1.
The two curves overlap in both right figures.
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Figure 16.5: Dispersion relations for different continuous damping distributions at a
constant single eigenfrequency ω1 = 1000 s−1 represented by αω ∼ δω1

. The damping
ratio distribution is αD ∼ B(D1(1−λdistr), D1(1+λdistr), 2, 2). The arrow indicates a
second peak in the inverse quality factor, due to clusters with low damping compared
to the viscosity-dominated main peak.
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16.4.2 Study of damping ratio distributions
The influence of a damping ratio distribution is investigated like the eigenfrequency
distribution but with fixed eigenfrequency αω ∼ δω1

and αD ∼ B(D1(1−λdistr), D1(1+
λdistr), 2, 2). A varying damping ratio distribution is less influential for weakly damped
clusters, Fig. 16.5 (left), because capillary effects dominate over viscous damping.
For a higher mean value of damping, the difference between a narrow and a wide
distribution becomes noticeable. Still, it is not as distinctive as a change of the eigen-
frequency distribution of the investigated case above.
Instead, another very interesting result appears. The inverse quality factor shows two
peaks for a wide distribution around a cluster type with high mean damping ratio,
cf. Fig. 16.5 (upper right graph). The major peak is due to viscous damping as it
also appears for a narrow distribution. The second peak is caused by clusters that
are weakly damped and show oscillations around the eigenfrequency ω1.

In conclusion, the characterization via eigenfrequencies is more important for the
investigated case. In particular, clusters of various eigenfrequencies can be traced
back from the dispersion relations for weak damping, which is of major importance
in residually saturated porous media. The more the clusters differ by their eigenfre-
quency, the easier they are distinguishable.
In contrast, a broader damping ratio distribution was less influential and less distinc-
tive in the present study. It only became important for higher damping ratios. For
instance, it can play an important role in characterization of systems that include
high- and low-damped clusters such as small blobs between crack tips and larger
conglomerations in long pore networks.





Chapter 17

Review

17.1 Summary and main findings
A mathematical model was developed that described wave propagation in residually
saturated porous media. The continuous solid and the continuous fluid phase were
described by classical poroelasticity. The discontinuous fluid of residual saturation
was modeled in the form of harmonic oscillators.
The heterogeneous structure of disconnected fluid clusters was accounted for by char-
acterizing them according to their mass m, eigenfrequency ω0, and damping D.
These dynamic properties were preserved during the upscaling process. Coupling
was achieved via momentum exchange with the solid phase and resulted in one addi-
tional parameter within the established mathematical formulation of biphasic media.
This extension is determined by the statistical distribution of clusters’ mass, eigen-
frequency, and damping.
Specific examples of sandstone with air and water in the residual state yield the
following results.

• The state of residual saturation adds an additional, macroscopic damping mech-
anism due to the energy stored by resonance oscillations.

• The damping ratio D determines whether the new damping mechanism is dom-
inant (D � 1) or whether classical viscous damping covers capillary effects
(D ≥ 1). The latter case coincides with larger conglomerations and therefore
converges to the case of a continuous distribution.

• The cluster distributions have a distinct and characteristic influence on the
dispersion relations.

• Clusters can be better differentiated by deviations of their eigenfrequency-
distribution than by their damping-distribution.

• The clusters’ influence is an intrinsic mechanism and not observable as an ad-
ditional wave mode. The effects are clearly of a two-scale nature.
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17.2 Conclusions and outlook
The results predict a strong relationship between cluster properties and wave be-
havior. Therefore, the dynamic properties could be clearly related to their effect on
dispersion relations. In turn, conclusions about cluster geometry and distribution are
possible on the basis of experimental wave measurements. Hence, the presented model
can serve as a tool for inverse analysis. It allows a characterization of the physical
situation and data interpretation with very little computational effort. Possible ap-
plications include systems for which material data is known but the state of residual
saturation is of interest, for example, the vadose zone or laboratory samples. More-
over, understanding of the physical situation will be further supported in combination
with modern imaging techniques [121]. An experimental comparison will doubtlessly
be the most interesting and important next step for future research.

Referring to the theoretical approach, the model relies on momentum exchange be-
tween clusters and the solid. This is limited to a liquid-gas combination and examples
were provided for a liquid in the residual state. The inverse situation was also studied,
for example, by Minnaert [147], Smeulders & van Dongen [192], and Frehner et al.
[73].
A generalized framework for two arbitrary pore fluids, especially two liquids, can
be achieved consistently by an intermediate-term step. This is the determination of
fluid-fluid momentum interaction, for example, based on microscopic studies, as used
for liquid clusters in Part IV. Moreover, a second, straightforward extension can be
constructed from frequency-dependent, dynamic properties such as stiffness or eigen-
frequency, to account for multiple modes of resonance.

Ganglia mobilization in residually saturated porous media is a topic of ongoing dis-
cussions, cf. [38, 94, 96]. Two of its main motivations are enhanced oil recovery [17]
and ground water remediation [38, 173, 174]. The presented results (together with
oscillator data from Part IV) lead to the conclusion that seismic stimulation has to
be considered skeptically, for two reasons. The first is that seismic waves act in a
frequency range that is typically too low. This is in agreement with the conclusion of
Pride et al. [164]. The second relates to the relatively high attenuation for distances
beyond a few km. To date, and to the current knowledge of the author, linear seismic
waves do not seem to be an appropriate technique for ganglia stimulation at great
depths.
However, application of higher frequencies in smaller samples was successful in first
experiments [38], encouraging future application under laboratory conditions or for
ground water remediation in near-surface regions. In all cases, a foresighted treatment
of the stimulated region has to be assured with respect to possible damage of the solid
framework. Thus, models like the presented one are essential for understanding and
applicable prediction.



Part IV

Microscopic, oscillating fluid
clusters





Chapter 18

Introduction

18.1 Motivation and literature

The previous part described wave propagation in residually saturated porous media
by the combination of two scales. On the one hand, modeling of the continuous phases
is known from previous investigations. On the other hand, the fluid clusters were im-
plemented exemplarily, and a general theory was not presented, due to the focus on
macroscopic wave theory. For this reason, the following part provides a detailed study
and classification of oscillating fluid clusters on the microscale.
Fluid clusters have been of interest for hundreds of years [48, 49, 233]. Their phys-
ical description is based on fluid dynamics and unifies research areas such as ther-
modynamics and surface chemistry. The physical processes are reflected in various
applications such as dispersive solutions in modern apparatus manufacture and sound-
absorbing air blobs at offshore drilling. Fluid clusters have also attracted considerable
attention in modern research. Numerous investigations deal with their static and dy-
namic behavior theoretically, experimentally, and numerically.
An early but fundamental treatise on oscillations of cylindrical liquid bridges is that
of Sanz & Diez [183]. They provide analytical solutions and results of zero-gravity ex-
periments from a space lab mission [135]. The non-linearity of droplet oscillations was
studied by Kowalewski & Bruhn [111]. A boundary layer analysis was used by Higuera
& Nicolás [91] for unsymmetrical oscillations of nearly inviscid liquid bridges at the
limit of large capillary Reynolds numbers. Perez et al. [158] focused on the influence
of the droplet shape on resonance frequencies, comparing experimental and theoret-
ical results. Symmetric oscillation modes of liquid bridges under gravity load were
investigated by Demin [50]. Motivated by blob mobilization, the analytic treatment
and Lattice-Boltzmann models of Hilpert et al. [94] and Hilpert [92] concentrated on
entrapped fluid clusters in slender pore channels. This was extended by Hsu et al.
[96] with experimentally proven resonance effects.
Recent developments in numerical tools have also enriched the investigation of dy-
namic fluid clusters by a variety of approaches. Resonance of a single liquid bridge
was found numerically by Liang & Kawaji [122] within a discrete range of excitation
frequencies. A Level Set Function tracked the fluid-fluid interface. Situations such
as spreading and meniscus forming were modeled in the numerical studies of Walkley
et al. [215, 216] using an adaptive, arbitrary Lagrangian-Eulerian Finite Element
method to solve the Stokes equations. It was followed by the contributions of Sak-
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sono & Perić [177, 178] on the basis of a fundamental FE-description for static and
dynamic fluid clusters, including stretched liquid bridges and freely oscillating blobs.

Much study in the past and in recent years has helped to improve our understand-
ing of fluid cluster dynamics. Various questions have been addressed, ranging from
equations for basic phenomena to sophisticated solution techniques. Nevertheless,
important and interesting questions remain. With respect to wave propagation in
residually saturated porous media, oscillating fluid clusters constitute one part of a
more comprehensive, dynamic system. In special applications, their oscillations are
important for ground water remediation or characterization [38, 92, 198]. The pre-
ceding chapter demonstrated that traveling waves are influenced by the existence of
clusters in characteristic frequency bands (cf. Section 16.3). Therefore, it is of great
importance to combine the complicated, dynamic cluster physics with more compre-
hensive models and characteristic observations. Thus, a key questions arises: how can
dynamic clusters be classified qualitatively and quantitatively?
The following chapters define the physical system of an oscillating fluid cluster and
develop a theoretical model for its description. Subsequently, a typical classification
with respect to dynamic parameters is presented and discussed. Finally, a systematic,
numerical investigation quantifies a wide range of pinned cluster types with respect
to several variations.

Parts of this study have been submitted previously for publication and may be avail-
able shortly after completion of this treatise in [116, 117].
It should be further noted that all physical properties belong to one scale, which cor-
responds to the microscale of the previous sections. No macroscale properties appear
by default. Hence, a special distinction of microscale and macroscale properties is
not required and avoided. The symbols are similar to those of the previous chapters
and definitions are not renewed if they can be transferred directly from the previous
chapters. The main difference is the omission of partial properties such as partial
densities or pressure. A separate list of symbols for this part is given in the section
on notations and conventions.

18.2 Aims and structure
The original motivation is to implement the fluid cluster behavior into a comprehen-
sive wave model. Thus the aims are: (i) description of the clusters’ dynamic behavior;
(ii) classification of the clusters’ oscillations; and (iii) quantification of the dynamic
properties of specific clusters. The structure of the chapters is as follows.

• A theoretical description of a fluid cluster inside a porous matrix is derived
first. This leads to a variational formulation of the governing equations and is
specialized for a Newtonian liquid cluster in a rigid solid matrix and surrounded
by a gas.
The cluster is then reduced to a harmonic oscillator model. Various types of
oscillations are classified and assumptions and modifications are discussed.

• A systematic, numerical study follows. Eigenfrequency and damping ratio are
determined for various geometries and material parameters. Moreover, the role
of clusters as oscillators in macroscopic wave propagation is discussed quantita-
tively.
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• An oscillating liquid bridge is investigated experimentally and compared to the
results of the theoretical and numerical studies.

• The conclusion summarizes the qualitative and quantitative findings and illus-
trates the resonance effects in terms of wave propagation in porous media.





Chapter 19

Theory and variational
formulation

The motion of a fluid cluster in a solid matrix is described mathematically. First, the
physical situation is introduced and specific, geometric relationships of (sub-)manifolds
are provided. Subsequently, physical relationships are reviewed and assumptions are
justified. Momentum balances at the fluid-fluid interface and at the contact curve are
emphasized because they govern the motion of oscillating fluid clusters.
Different variants of motions are distinguished such as pinned or sliding clusters. A
special focus is on incompressible, Newtonian liquid clusters surrounded by a gas and
captured in a rigid matrix. Finally, a variational formulation of mass and momentum
conservation is presented. These equations determine the cluster’s motion via calcu-
lation of pressure and velocity.

19.1 The physical system

The physical system of interest is a fluid cluster embedded in a solid matrix and
surrounded by another immiscible fluid. The word cluster should include bridges,
patches, columns, and all other kinds of fluid conglomerations. The solid matrix can
be a package of grains or a skeleton such as synthetic foam. Symbol s denotes the
solid. The cluster fluid is denoted by l and the surrounding fluid is denoted by g. This
naming is motivated by a later specialization on a liquid cluster and a surrounding gas.
Nevertheless, the general approach and theoretical development accounts for arbitrary
fluid-fluid combinations (including liquids or gases on either side) and l and g only
serve as a first symbolic distinction. The symbol f indicates that the relationship or
statement is valid for both fluids f ∈ {l, g}.
Geometrically, the system can be divided into volumes, surfaces, and curves (also
called lines), cf. Fig. 19.1. The volumes of the three bulk phases α ∈ {l, g, s} read Vα.
Surfaces can be subdivided into two categories. Interfaces between two bulk phases
α 6= β write Aαβ for all pairs αβ ∈ {lg, ls, gs}. Boundary surfaces, intersecting bulk
phase α at the spatial boundary of the investigated system, are written as Ab

α. The
total boundary surface is composed of the single boundary surfacesAb = Ab

l ∪Ab
g∪Ab

s .
In a similar manner to the surfaces, two types of curves can be distinguished. Three
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bulk phases, or three interfaces respectively, meet in the contact curves Clgs. The
boundary curves Cbαβ confine the interfaces Aαβ at the system’s boundary. For general
relationships, ζ represents any arbitrary bulk phase α, surface αβ, or curve αβγ.
Additionally, normal vectors nAαβ point from phase α to phase β. A single index
is used, nAα , to denote an arbitrary normal vector at the boundary of bulk phase
α pointing outwards. At the boundary surfaces, normal vectors are denoted by nbα.
Normal vectors nCαβ at the contact line Clgs are oriented outwards of the interfaces
and tangential to them. This is similar at the boundary curves, where the defined
normal vectors nbαβ also point outwards and are tangential to the interfaces.

Figure 19.1: The physical system of a fluid cluster and corresponding definitions.

19.2 Geometric properties and relationships
Further definitions and relationships are provided for the geometry of an oscillating
fluid cluster, because they are useful for formulation and interpretation of the physical
laws. This section follows the work of Steinmann [200] in most parts, which provides
a fundamental description of deformational continuum mechanics. Phase indices are
avoided for better readability and because of general validity.
For each surface A with normal vector n, the surface unity tensor IA is defined as

IA = I− n⊗ n, (19.1)

where I = δij ei ⊗ ej , 1 ≤ i, j ≤ 3, is the 2nd order unity tensor. With it, surface
gradient and surface divergence follow as

gradA(•) = grad (•) · IA, (19.2)

divA(•) = gradA(•) : I = gradA(•) : IA. (19.3)
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The total curvature κ (twice the mean curvature) is then defined as

κ := −divA (n) , (19.4)

with
divA IA = κn. (19.5)

The surface divergence theorem is an analogue of the general divergence theorem for
a two-dimensional hyperspace A, embedded in three-dimensional space, and limited
by the curve C. It is written as∫

A
divA(•)da =

∫
C
(•) · nC dc−

∫
A
κ(•) · n da, (19.6)

where n denotes the normal vector field of surface A and nC denotes the normal vector
field of the surface’s boundary C, pointing outwards of the surface and tangential to
it.
An infinitesimal change of an initial surface area A under displacement u can be
written as21, cf. [83],

δA =

∫
A
divA u da. (19.7)

The above expressions relate to the initial geometry A, i.e. before variational defor-
mation.
The description of a curve can be carried out by its Frenet frame, i.e. the orthogonal
tangent, normal, and binormal unit vectors, et, en, and em = et × en. The curve
unity tensor can be then introduced as

IC = I− en ⊗ en − em ⊗ em = et ⊗ et (19.8)

while the curve gradient and curve divergence follow as

gradC(•) = grad (•) · IC , (19.9)

div C(•) = gradC(•) : I = gradC(•) : IC . (19.10)

The line curvature is then defined as

κc := −div C (en) , (19.11)

where div C IC = κc en. If the line curvature κc vanishes, vectors en and em are not
uniquely defined with respect to rotations around the et-axis.
For a curve lying in a surface with normal vector n, the tangential space of the surface
is spanned by et and tg := et×n. In this special case, the line curvature can be split
into a geodesic and a normal curvature of the line, κg and κn, as

κcen = κnn + κgtg. (19.12)

The normal curvature represents the part that is already caused by the curved surface.
The geodesic curvature represents the curvature with respect to the surface.

21Note the similar mathematical structure for volumes. An infinitesimal change of volume can be
related to divu instead of divA u, cf. Eq. (5.9) for the case of incompressibility.
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19.3 Structure of the set of equations
To characterize the dynamic behavior of an oscillating fluid cluster, its movement in
time t has to be known. This knowledge requires experimental data or an accurate
description by physical laws that can be solved for certain systems. A framework for
the latter will be developed in this section.
The current position xζ of any bulk phase, surface, or curve ζ ∈ {α, αβ, αβγ} can
be determined from the balance of momentum. This implies a determination of the
further unknowns, density ρζR (1 scalar) and symmetric Cauchy stress tensor TζR (6
unknowns, symmetry is assumed due to balance of angular momentum). Moreover,
the Cauchy stress tensor TζR can be split into a pressure related part, −pζI, and
extra stresses, TζRE .
As a first assumption, temperature changes are assumed to be insignificant (in partic-
ular, their influence on material properties) although the system is dissipative by na-
ture. The only information required is that about the initial temperature ϑ0 = ϑ(t0).
Therefore, conservation of energy is not required for modeling. The ten unknowns of
xζ , ρζR, and TζR are then determined by: balance of momentum (3), balance of mass
(1), and constitutive relationships for the Cauchy stress tensor TζR (6) including an
equation of state for the pressure and a relationship between extra stresses and de-
formation or velocity gradient respectively.

The following sections will present the leading equations, their physical origins, justi-
fied assumptions, and the final mathematical framework. Note that the used structure
slightly differs from classical continuum mechanics, because it is geared towards the
physical complexity and focuses on the driving physical processes.

19.4 Mass balance
No mass exchange is assumed to appear between the constituents due of evaporation or
other sources. Hence, mass conservation holds for each single bulk phase α separately
and local conservation of mass is written as

∂

∂t
ραR + div

(
ραRvα

)
= 0. (19.13a)

In case of incompressibility, i.e. ραR = const., it reduces to the local volume balance

div (vα) = 0. (19.13b)

At a later stage, it will be considered that liquids can usually be assumed to be
incompressible more likely than gases.
Interfaces and contact curves should have no own mass or density in the presented
model, because their mass distribution becomes important at smaller scales only, for
example, for molecular dynamics. In the present case, the mass is approximately
distributed among the bulk phases only, cf. [79, 144, 148].
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19.5 Relationships between stress and deformation
This section is put in front of the momentum balances, because later assumptions and
simplifications are principally based on the stress formulations and understanding of
the interfaces and contact curves.

19.5.1 Fluids

For a barotropic fluid f ∈ {l, g}, pressure, density, and temperature are related by
the equation of state. For neglected temperature changes, density and pressure are
related in the linearized case by the fluids’ bulk modulus Kf of the initial state as

ρfR − ρfR0
ρfR0

=
pfR − pfR0

Kf
. (19.14)

The fluids f are further assumed to be Newtonian fluids. Hence, their extra stress
tensor relates to the velocity gradient gradvf and dynamic viscosity ηfR (for vanishing
volume viscosity) as

TfR
E = ηfR

((
gradvf + gradTvf

)
− 2

3
div (vf) I

)
. (19.15)

The (total) Cauchy stress tensor of a fluid phase then becomes

TfR = TfR
E − p

fRI = ηfR
((

gradvf + gradTvf

)
− 2

3
div (vf) I

)
− pfRI (19.16a)

and simplifies for an incompressible fluid to, cf. Eq. (19.13b),

TfR = ηfR
(

gradvf + gradTvf

)
− pfRI. (19.16b)

Pressure pfR generally depends on deformation via density and mass balance and has
a negative sign, following the conventions of classical continuum mechanics with pos-
itive tensile stresses. In the case of incompressibility, pfR is not related to density via
a constitutive law, cf. Eq. (19.14). Instead, it plays the role of a Lagrange parame-
ter and is determined by the boundary conditions. Moreover, linear oscillations are
assumed, causing arbitrarily small velocities and Reynolds numbers. Thus, turbulent
flow effects are neglected.

19.5.2 Solid

The stress tensor TsR of a Hookean material is related to the linearized strain tensor
εs = 1

2 (gradus + gradTus) with solid displacement us = (xs − xs,0) via the material
Lamé parameters µgrains and λgrains as

TsR = 2µgrains εs + λgrains tr(εs) I. (19.17)

This approach can be further split into a volumetric part (psR = −1/3 trace(TsR))
and a deviatoric part (TsR

dev = TsR + psR) and it can also be extended to a more
sophisticated rheology. Nevertheless, its current form is sufficient for the further
investigation.
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19.5.3 Interfaces - surface energy/tension

A molecule inside a bulk material is equally attracted in all directions by the sur-
rounding molecules. However, this situation changes at the interface with a second
material. The attraction forces can differ at both sides of the interface. For exam-
ple, a water molecule at the surface of a water drop is differently attracted by water
molecules inside the drop compared to air molecules outside. Hence, energy is re-
quired or released whenever a molecule moves from the interior bulk to the interface
and vice versa. This energy - necessary to create the interfacial area between two
phases α and β - is called surface energy σαβ . It is an energy per interfacial area with
units of N m−1.
A fluid cluster that tries to minimize its energy, therefore, tries to minimize its surface
area. Thus, fluid drops shape like perfect spheres in the absence of further influences.
Because the interfacial area only changes due to tangential strain, a resistance against
tangential stretch of the surface is the result of surface energy. Hence, it is also called
surface tension, a force per length acting tangential to the interface. This interpreta-
tion is often used for modeling on a length scale, where the material is assumed to be
continuous and which is connected to the thermodynamic definition of pressure.

Figure 19.2: Idealized sketch of surface tension as molecular attraction for a water
drop on an apple skin.

Generally, surface energy can depend on the two kinds of bulk materials α and β,
temperature, density, and geometry. An influence of the geometry can be neglected
if the local radii are much bigger than the Tolman-length δTolman ≤ 10−9 m [208].
This is assumed for the present investigations. It implies that the surface does not
differ significantly from a plane on the molecular scale and the surface molecules are
approximately half attracted by each of both materials (the tangential forces sketched
in Fig. 19.2 would be parallel and cancel each other out).
A dependence of surface energy on temperature and density changes is also assumed
to be of small influence for a linear theory. In conclusion, σαβ is a constant material
parameter in the following investigations. The corresponding interface stress TαβR

acts tangentially to the interface and is

TαβR = σαβ IA. (19.18)
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Interpretation as variational work

For better physical understanding, the change of energy, due to surface area variation
δA and via displacement u, can be rewritten as, cf. Eq. (19.5), Eq. (19.6), and
Eq. (19.7),

σαβ δA = σαβ
∫
A
divA u da

= σαβ
∫
C
u · nC dc− σαβ

∫
A
κu · n da

= σαβ
∫
C
u · nC dc−

∫
A
divA(σαβ IA) · uda.

The first equation underlines that only the tangential part of strain affects the energy
variation. Proceeding with a further split, the second line consists of two parts. The
first term shows the influence of the moving boundary C. For flat surfaces with κ = 0,
for example, a first variation of area only occurs if the boundaries of the flat surface
move. It can be compared to elongation of an elastic, plain tissue at its ends.
The second term of the second line accounts for displacements inside the interface. It
shows that only normal displacements of the interface influence the area and that it
is directly proportional to curvature κ. This effect can be compared to inflation of a
soap bubble with fixed borders. In the third line, the second term is replaced by a
stress divergence times displacement as it is known from variational calculus. As can
be seen, the stress tensor coincides with the expression in Eq. (19.18).

Comparison with other surface models

Note that further dependencies on strain (elastic behavior) or velocity (viscous be-
havior) are excluded for σαβ that accounts for the pure attraction difference of both
materials. Moreover, shear effects are not taken into account because pure shearing
does not change the area. This exception includes shearing tangential to the interface
as well as normal to it. Such behavior is different for other surface models such as
solid shell structures.
For an analogue example, consider the energy variation for an ideal gas under com-
pression being pgR δV, pgR determining the pressure and the bulk modulus at the
same time. In the same way σαβ counteracts the change of surface area in the tan-
gential directions of IA, pgR counteracts the change of volume acting in all spatial
directions according to I.

19.5.4 Curves - curve energy/tension
Similar to volumes and surfaces, a line energy or curve energy (or, less common, curve
tension) γlgs is introduced for the contact curve, acting tangential to the curve as

TlgsR = γlgsIC . (19.19)

This energy is connected to a length change of the curve and has the unit of en-
ergy/length, i.e. N. It will be demonstrated below that a classical curve energy is not
required for the modeling of oscillating fluid clusters, because the attraction poten-
tials are covered by the interface energies and surface irregularities will be modeled
by an external friction-like influence.
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19.6 Variational approach and momentum balance
of bulk volumes

19.6.1 Comprehensive variational approach

In addition to the mass balances, the momentum balances constitute the second part
of the major leading equations. A general variational formulation allows to unify the
momentum balances of all components, i.e. volumes, surfaces, and curves. It follows
from [200] that

δW =
∑

α∈{l,g,s}

∫
Vα

[
−ραR d2

dt2
xα + divTαR + fα

]
· δv̂ dv

+
∑

αβ∈{lg,ls,gs}

∫
Aαβ

−ραβR d2

dt2
xαβ + divATαβR + fαβ −

∑
adjacent bulk

volumes ξ∈{α,β}

TξR · nAξ

 · δv̂ da

+
∑

α∈{l,g,s}

∫
Ab
α

−ρb,αR d2

dt2
xb,α + divATb,αR + fb,α −

∑
adjacent regions ξ

TξR · nAξ
 · δv̂ da

+

∫
Clgs

−ρlgsR d2

dt2
xlgs + divCTlgsR + flgs −

∑
adjacent interfaces
ξχ∈{lg,ls,gs}

TξχR · nCξχ

 · δv̂ dc

+
∑

αβ∈{lg,ls,gs}

∫
Cbαβ

−ρb,αβR d2

dt2
xb,αβ + divCTb,αβR +fb,αβ −

∑
adjacent

surfaces ξχ

TξχR · nCξχ

· δv̂ dc

(19.20)

vanishes for all variations δv̂. The relationship between total (material) and partial
time derivative

d2

dt2
xζ =

∂

∂t
vζ + grad(vζ) · vζ . (19.21)

will be used in the final equations to express acceleration in terms of velocity becom-
ing a primary variable.

The validity of Eq. (19.20) for arbitrary variations δv̂ yields local validity of the
individual parts. It results in the required set of equations and boundary conditions,
technically. Nevertheless, this section aims at the physical description and the indi-
vidual equations are therefore investigated in more detail. Special attention is given
to two key aspects by separate sections: momentum balance at interfaces, resulting in
the Young-Laplace equation, and momentum balance at the contact curve, resulting in
the definition of Young’s contact angle. These sections are comprehensively discussed
because they determine the characteristic behavior of dynamic liquid clusters.
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19.6.2 Momentum balance for bulk volumes
For bulk volumes Vα, the local momentum balance reads

ραR
d2

dt2
xα − divTαR = fα,

where the volume forces are typically gravity forces

fα = ραR g.

Solid

Using the constitutive law of a Hookean material, Eq. (19.17), the local momentum
balance for the solid results in the Lamé-Navier equations

ρsR
d2

dt2
us −

(
µgrains div gradus + (µgrains + λgrains) grad divus

)
= ρsR g.

Fluids

The constitutive law for a Newtonian fluid, Eq. (19.16a), yields the local momentum
balance for compressible fluids f ∈ {l, g}

ρfR
(
∂

∂t
vf + grad(vf) · vf

)
+ grad pfR

−ηfR div
((

gradvf + gradTvf

)
− 2

3
div (vf) I

)
= ρfR g

(19.22a)

and for incompressible fluids, cf. Eq. (19.16b),

ρfR
(
∂

∂t
vf + grad(vf) · vf

)
+ grad pfR − ηfR div

(
gradvf + gradTvf

)
= ρfR g.

(19.22b)
Together with the mass balance, Eq. (19.13a) and Eq. (19.13b) respectively, the local
momentum balance constitutes the well-known Navier-Stokes equations.

Simplifications

Up to now, the set of equations has a high complexity for analytical or numerical
solutions. A few important assumptions can be made, in which •̃ indicates a rep-
resentative, characteristic value of •. In particular, the solid’s deformation will be
disregarded because of its relatively high inertia and low formability. This assump-
tion is also used in virtually all other research on this topic, although it is not explicitly
mentioned. Furthermore, the relatively low inertia and viscosity of the surrounding
gas makes its influence negligible. A later comparison with results from literature will
support the following assumptions and justifications, cf. Section 20.2.2.

Rigid solid The fluid cluster is connected with the solid and interacts with the
neighboring region, transferring momentum and inducing strain. Such an interacting
region can consist of adjacent grains of soil or beams of a foam. Let this region have
a characteristic length l̃ and volume Ṽs ≈ l̃3. A grain diameter is an example for l̃.
Very narrow solid structures such as shells or wires should be neglected, so that the
characteristic length is not smaller than the characteristic cluster radius, l̃ ≥ R̃.
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A representative strain component, denoted by ε̃s, can then be approximatively ex-
pressed by the ratio of length change to initial length ε̃s ≈ (l̃ − l̃0)/l̃0. With it, the
elastic strain energy of the solid is not less than the order of Ẽs ≈ Ṽs K̃

grains ε̃2 ≈
l̃30 K̃

grains ((l̃− l̃0)/l̃0)2 ≈ l̃0 K̃grains (l̃− l̃0)2. K̃grains represents the solid’s elastic stiff-
ness with respect to deformation such as a characteristic bulk modulus.
The energy of creating an interfacial area between both fluids, with characteristic
radius R̃ and surface tension σ̃lg, is of the order of Ẽlg ≈ σ̃lgR̃2. Let this energy
be (completely or incompletely) transferred to the surrounding solid, i.e. Ẽs ≤ Ẽlg.
This yields, with typical properties of σ̃lg ≤ 10−1 N m−1, K̃grains ≈ 1010 N m−2, and
l̃ ≥ R̃ ≥ 10−6 m,

l̃ − l̃0
R̃
≤

√
σ̃lg

K̃grains l̃0
≤ 10−2 � 1 and

dl̃
dR̃
≈

√
σ̃lg

K̃grains l̃0
� 1. (19.23)

As a result, the solid’s volumetric and shear deformation are negligible small compared
to the fluid under the load of capillary forces. This is in accordance with everyday
experience. In contrast to solids, typical fluids have no resistance against shape change
and accommodate surface tension. Consequently, the solid is assumed to be rigid for
the further considerations.

Inert solid The solid structure enclosing the fluid cluster should have a significantly
larger mass (neglecting structures such as shells, wires or fur), i.e. m̃s � m̃l. During
oscillations, due to capillary forces, the fluid cluster is accelerated and not more
energy is passed to acceleration of the solid. Comparing the corresponding inertia
terms, m̃s (d2xs/dt2) ≤ m̃l (d2xl/dt2), shows that the solid acceleration is relatively
small with respect to the fluid cluster,

∥∥d2xs/dt2
∥∥ / ∥∥d2xl/dt2

∥∥ ≤ m̃l/m̃s � 1. This
shows that the solid cannot only be assumed to be rigid but also to be unmoved. The
solid’s influence reduces to that of a rigid boundary and saves further calculation.

Negligible gas as second fluid phase Density and viscosity of a gas at at-
mospheric conditions are much smaller than the ones of a liquid cluster, ρ̃gR �
ρ̃lR, η̃gR � η̃lR. Furthermore, the movement of the gas phase near the liquid cluster
is coupled to the cluster’s movement itself because the behavior of both fluids is con-
nected via the interface’s deformation.
Hence, accelerations and velocities as well as their spatial derivatives are assumed
to be of same order, d2xg/dt2 ≈ d2xl/dt2 and div grad(vg) ≈ div grad(vl). At
greater distances, the surrounding fluid is assumed to be in rest, so that velocity
and acceleration terms vanish. As a first result, corresponding inertia terms, vis-
cous terms, and body forces are negligible for the gas phase as ρ̃gR (d2xg/dt2) �
ρ̃lR (d2xl/dt2), η̃gR div grad(vg) � η̃lR div grad(vl), ρ̃

gR g � ρ̃lR g. Because these
terms also determine the pressure gradient via momentum conservation, pressure
gradients inside the gas phase are assumed to be of smaller influence than in the
liquid cluster as well. In conclusion, local changes of gas stress are neglected with
respect to their effect on the liquid cluster’s energy and momentum. The exchange
of momentum between liquid cluster and the surrounding fluid is therefore neglected
if the second fluid is a gas. The surrounding fluid’s influence reduces to a constant
surrounding pressure pext.
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19.7 Momentum balance at surfaces
The balance of momentum is now evaluated for interfaces and boundary surfaces.
The Young-Laplace equation results from the equilibrium momentum balance at the
fluid-fluid interface.

19.7.1 Momentum balance at interfaces and the Young-Laplace
equation

At each interface Aαβ , the local momentum balance reads

ραβR
d2

dt2
xαβ − divATαβR +

∑
adjacent bulk

volumes ξ∈{α,β}

TξR · nAξ = fαβ . (19.24)

Mass is only distributed to the bulk phases in this model, i.e. ραβR = 0 and ραβRg =
f = 0. Moreover, the solid is assumed to be rigid and undeformed, so that the
solid-fluid interfaces are also in rest and do not need to considered for calculations.
Replacing divATαβR with eqs. Eq. (19.18), Eq. (19.1), and Eq. (19.4), using nAαβ =
nAα = −nAβ , and splitting the stress tensor into pressure and extra stresses yields(

−TαRE + TβRE
)
· nAα +

(
pαR − pβR + σαβκ

)
nAα = 0 (19.25)

for the fluid-fluid interfaces. The curvature κ = −divA(nAαβ ) is related to the normal
vector pointing from inner fluid α to outer fluid β. Without viscous shear stresses
TαRE and TβRE , cf. Eq. (19.15), this expression results in the famous Young-Laplace
equation that relates the pressure difference to surface tension times curvature.

pβR − pαR = σαβκ (19.26)

The influence of the surrounding fluid becomes negligible if it is a gas, as shown in
the paragraph above, i.e. Tg

E · nAα ≈ 0, pgR ≈ pext = const.

Simplifications

Incompressible liquids The fluid clusters’ oscillations are driven by the stiffness
that is due to surface tension times curvature, cf. the resulting pressure difference
in Eq. (19.26). In the further investigations, the corresponding pressure difference is
assumed to be of the order of ∆p̃ = σ̃lg/R̃ ≈ (10−1 N m−1) / (10−6 m) = 105 N m−2

or smaller. The fluid’s bulk modulus K̃l relates it to the volume change of the clus-
ter by ∆p̃ = −K̃l∆Ṽ /Ṽ . The combination of these relationships yields |∆Ṽ /Ṽ | ≈
σ̃lg/(R̃ K̃l). For typical liquids, for example, water and air, with σ̃lg ≈ 10−1 N m−1,
K̃l ≈ 109 N m−2, and R̃ ≥ 10−6 m, the relative volume change is of the order of∣∣∣∆Ṽ /Ṽ ∣∣∣ ≈ σ̃lg/(R̃ K̃l) ≤ 10−4. (19.27)

Hence, the liquid volume is assumed to remain constant. Consequently, density
changes are negligible because fluid cluster mass is constant and

∣∣∆ρ̃lR/ρ̃lR∣∣ ≈ |∆Ṽ /Ṽ |.
The assumption of a constant density simplifies the balances of mass and momentum
and eliminates the need for an equation of state. The initial pressure can also be set
to an arbitrary reference value when using the appropriate initial density value.
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Furthermore, this assumption prevents the propagation of local sound waves that
have wavelengths much smaller than R and occur at relatively small time spans. As
a result, local sound propagation processes are not considered and do not need to be
calculated. This is consistent with the long wavelength approximation for macroscopic
theories, in which such smaller-scale waves are not stimulated.

19.7.2 Momentum balance at boundary surfaces
Pure boundary surfaces are artificial boundaries of the physical system, which is why
they miss mass and surface energy by default. Acceleration terms, volume forces,
and surface stresses vanish. The two adjacent regions are the inner bulk volume of
solid, liquid, or gas and the surrounding environment with opposite normal vectors.
Let text := Text · next be the forces due to the external load of the surrounding
environment and normal on the system’s boundary. The local momentum balance

ρb,αR
d2

dt2
xb,α − divATb,αR − fb,α +

∑
adjacent regions ξ

TξR · nAξ = 0 (19.28)

becomes the typical boundary condition (Cauchy theorem)

TαR · nAb = text. (19.29)

If the boundary surface coincides with an interface between to bulk phases, the sur-
rounding environment corresponds to the surrounding fluid and both conditions be-
come

TαRE · nAα −
(
pαR − σκ

)
nAα = −text = TβRE · nAα − pβRnAα . (19.30)

19.8 Momentum balance at curves
The balance of momentum is now evaluated for contact curves and boundary curves.
Momentum balance at the contact curves leads to the derivation of (equilibrium)
Young’s contact angle as well as advancing and receding contact angles for static and
the dynamic clusters.

19.8.1 Momentum balance at contact curves and contact an-
gles

Local momentum balance at contact the curve Clgs is

ρlgsR
d2

dt2
xlgs − divCTlgsR +

∑
adjacent interfaces
ξχ∈{lg,ls,gs}

TξχR · nCξχ = flgs. (19.31)

Until now, it is assumed that the contact curve has no mass, curve energy, and
volumetric forces, because all energy contributions are captured by the bulk phases
and interfaces. The adjacent interfaces Aξχ, ξχ ∈ {lg, ls, gs}, have a stress tensor
of the form σξχIA and the normal vectors are tangential to the interfaces, so that
IA · nCξχ = nCξχ , cf. Fig. 19.1. With it, the local momentum balance at the contact
curve simplifies to

− (σlgnClg + σlsnCls + σgsnCgs) = 0. (19.32)
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Physically, the contact curve moves until the system minimized energy with respect
to the three different interface energies. Another interpretation is that of a balance
of surface tensions, which may be more obvious in the upper equation. The outcome
consists of three angles between each pair of the tangential vectors summing up to
360◦, cf. Fig. 19.3. Nevertheless, the special but justified assumption of a rigid solid
in Section 19.6.2 yields the following practical interpretations.

Θ

σgs

σls

σlg

Figure 19.3: Contact curve Clgs with three enclosed angles (dotted arrows) and balance
of surface tensions (solid arrows).

Curve energy at rigid walls

An interesting effect can be achieved if curve energy is considered in combination with
a rigid solid, even though classical curve energy will be neglected in the further inves-
tigation. The divergence of the stress tensor can be reformulated with Eq. (19.19),
Eq. (19.8), and Eq. (19.11) to

divCTlgsR = κcγ
lgsm. (19.33)

For an unmoved, rigid, impermeable solid, the fluid does not move normal to the wall.
Thus, any variation of movement or velocity vanishes in this direction, δv · n = 0.
Use of Eq. (19.12) then results in

divCTlgsR · δv = κcγ
lgsen · δv = κgγ

lgstg · δv. (19.34)

Interestingly, only the geodesic curvature κg and the tangential movement of the
contact curve tg · δv contribute to the variation of energy at the solid wall. The
normal curvature of the curve, cf. Eq. (19.12), is due to the geometry of the (rigid)
wall surface and has no influence.

Young’s contact angle

In addition to the Young-Laplace equation, Eq. (19.26), Young’s contact angle is the
second basic property of static drops on solid surfaces. For this reason, let us consider
a rigid and smooth solid surface. In this special case, only two of the three enclosed
angles at the contact curve are variable, Fig. 19.3. The angle between the fluid-solid
interfaces Als and Ags is fixed by the solid. The remaining two angles sum up to
an angle that is predetermined by the solids geometry, so that only one of them is
independent. Furthermore, normal vectors nCls = −nCgs point in opposite directions
for the case of a sufficiently smooth, differentiable, solid surface. Θ is now defined to
be the angle between nClg and nCls with cos Θ = nClg · nCls . Multiplying Eq. (19.32)
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with −nCls yields for the equilibrium state, with ΘYoung := Θeq,

σlg cos ΘYoung + σls − σgs eq
= 0

σlg 6=0⇔ cos ΘYoung
eq
=
σgs − σls

σlg
. (19.35)

The left equation can be interpreted as a balance of surface tensions in tangential
direction, cf. Fig. 19.3. In equilibrium, Θ is also known as Young’s contact angle
ΘYoung. For 0◦ ≤ ΘYoung < 90◦, the enclosed fluid is called the wetting phase and
the outer one is the non-wetting phase and vice versa for 90◦ < ΘYoung ≤ 90◦.
Another important situation appears for a rigid solid. The increase of Als then equals
to the decrease of Ags meaning dAls = −dAgs and σlsdAls + σgsdAgs = (σls −
σgs) dAls = −σlg cos ΘYoung dAls. In conclusion, the energetic state of the interfaces
is completely determined by the two material parameters σlg and ΘYoung. It reduces
the number of material parameters from originally three surface energies to two.
Accordingly, experimental data is often available for surface tensions between liquids
(σlg) and contact angles for the solid-fluid-fluid combination (ΘYoung). Information
about surface energies between solids and other materials is more difficult to determine
and rarely available.

Static advancing and receding contact angle

Surface tension and Young’s contact angle are two important parameters of a fluid
cluster but do not suffice for a realistic description. This should be explained by an
example. Under ideal conditions, a water drop on a flat surface spreads its contact
curve until it reaches a circular shape and Young’s contact angle. However, one
knows from experiments and daily observations that this is not the case: rain drops
on a window are not perfectly round and water on an apple skin can show different
contact angles at the same time, Fig. 19.4a). Surface tension or Young’s contact angle
cannot explain this behavior. The origins are namely “local surface defects (chemical
and topographical)” Tadmor [203]. Each surface is practically irregular because of
geometrical or chemical changes on smaller scales. This causes energetic potentials
the contact curve has to pass.
Detailed knowledge and modeling of this smaller scale imperfections is usually limi-
ted to investigations at corresponding length scales, for instance, at a resolution of
surface roughness. It comes with too much effort for many applications and modeling
including the present case. Therefore, this situation is accounted for by the so-called
static advancing and receding contact angles, Θre ≤ ΘYoung ≤ Θad. These angles
determine in which range, [Θre,Θad], the contact angle can change without movement
of the contact curve. This phenomenon is also known as contact angle hysteresis or
angular hysteresis.
The modeling approach follows the idea of Santos & White [182], which was inspired
by Adam & Jessop [1], and implements contact angle hysteresis analogously to static,
dry friction (in contrast to velocity-related, viscous friction inside the cluster). It is a
local property of the solid’s surface due to chemical or mechanical treatment. Hence,
a friction force per length, flgs(Θ), is introduced acting perpendicular to the curve
and tangential to the solid’s surface as

flgs(Θ) := flgs(Θ)nCls : =
(
σlg cos Θ + σls − σgs

)
nCls

= σlg (cos Θ− cos ΘYoung)nCls , if Θre ≤ Θ ≤ Θad.
(19.36)

Therewith, the local momentum balance enhances from Eq. (19.32) to

− (σlgnClg + σlsnCls + σgsnCgs) + flgs = 0 (19.37)
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and the relationship of Young’s contact angle, Eq. (19.35), enhances to

− (σlg cos Θ+σls−σgs)+ flgs(Θ) = −σlg (cos Θ− cos ΘYoung)+ flgs(Θ) = 0. (19.38)

The character of the additional term is that of a volume force, although other models
in literature sometimes use curve energy for this purpose. A description via a classical
curve energy should be avoided here, because this physical phenomenon has no origin
at the curve itself. Moreover, typical curve energy works tangentially to the curve
only. Hence, for zero curvature κc or geodesic curvature κg, such curve energy has no
influence, cf. Eq. (19.33) and Eq. (19.34). In contrast, curvature free defects exist and
should be considered, for example, a straight gap that prevents the cluster’s contact
curve from moving over it. Thus, a friction-based force is preferred, accounting for
the smaller scale imperfections of the solid’s surface.

a) Receding and advancing
contact angle

b) Different con-
tact angles

c) Trapped air and
distorted circular
shape on a rough
surface

d) Rough surface re-
quires a steeper slope for
moving and causes a wa-
ter film

Figure 19.4: Influence of solid imperfections: Picture a) shows the receding and
advancing contact angle of a water drop on an apple under gravity. Pictures b) - d)
show water drops on a clean surface (from the factory; lower drops) and on a roughen
surface (by emery paper; upper drops) of acrylic glass. The situation of trapped gas
inclusions at the liquid-solid surface is also called Cassie-Baxter state in contrast to
an inclusion-free Wenzel state.

Dynamic advancing and receding contact angle

Similar to for static, dry friction, the threshold values of [Θre,Θad] may be exceeded
causing the contact curve to move. For this case, the definition of flgs is extended, as
suggested by Santos & White [182] and similar to dynamic, dry friction, as

flgs(Θ) :=


σlg (cos Θre,dyn − cos ΘYoung) , once Θ < Θre, while Θ < Θre,dyn

σlg (cos Θ− cos ΘYoung) , if Θre ≤ Θ ≤ Θad,

σlg (cos Θad,dyn − cos ΘYoung) , once Θ > Θad, while Θ > Θad,dyn

(19.39)
As dry, static and dynamic friction can differ in classical mechanic systems, the static
and dynamic contact angles can differ in the receding or advancing case. With it, the
behavior of the contact curve is determined by the material properties σlg, ΘYoung,
Θad, Θre, Θad,dyn, and Θre,dyn. In general, these material properties need to be
determined for each fluid-fluid-solid combination and also depend on the treatment of
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the solid (cleaned chemically, polished, etc.). In the special case of pinned clusters (i.e.
no slip occurs at the solid wall), flgs can be modeled as an arbitrarily high threshold
value to resist each excitation. In the other special case of sliding clusters (i.e. slip
occurs at the solid wall) and negligible resistance of the contact curve (for example,
for an almost perfectly regular solid surface), flgs → 0.

Slip and no-slip condition near the moving contact curve
The no-slip boundary condition is a well-established assumption for many situations
of fluid flow between solid walls. However, this assumption does not only fail if
a continuum theory is not applicable, for example, at the molecular length scale,
but obviously also contradicts the present description of a moving contact curve.
Thus, another boundary condition is necessary if a dynamic contact curve should be
included.
Modeling fluids’s slip near the contact curve can become difficult, as a lower-scale
phenomenon, and is still not fully discovered by current research investigations [169].
Typical approaches make use of molecular dynamics or continuous composition fields,
modeling the interfaces as compositions of both fluids with a finite depth [169, 176].
A rough approximation of the necessary boundary condition can be based on the
so-called generalized Navier boundary condition as described by Qian et al. [169] and
reading ∫

lAlg

βslip vslip dx =

∫
lAls

−ηlR
(
gradvf + gradTvf

)
· nCls dx

−
[
σlg (cos Θ− cos ΘYoung)− flgs(Θ)

]
nCls .

This implementation requires an appropriate resolution and/or approximation of the
contact curve region with thickness lAlg

. The slip velocity vslip coincides with the
fluid velocity vf for the case of a rigid solid. The left hand side and the first term
of the right hand side constitute the Navier boundary equation. The slip coefficient
βslip is usually high enough to assume no-slip conditions, vslip ≈ 0, for single phase
flows on scales much larger than the molecule scale. The second term of the right
hand side adds the so-called uncompensated Young stress due to the contact curve.
This term is able to mobilize the contact curve and the fluid near it. In this case,
βslip becomes an important local parameter determining the behavior of the contact
curve and the entire cluster.

Summary of contact curve conditions
In conclusion, three typical boundary conditions can be classified with respect to
the contact curve behavior, Fig. 19.5. First, the classical no-slip boundary condition,
uf−us = 0, holds for pinned clusters and the contact angle remains between the static
receding and advancing limit. This is practically valid for most cases if the acting
forces are small enough, due to the imperfections of solids. Second, the use of the
generalized Navier boundary conditions becomes necessary if the acting forces reach
a threshold value and the contact curve starts to move. For such a dynamic contact
curve, the boundary condition is of Neumann type and more precisely momentum
transfer is proportional to βslipvslip.
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Moreover, a special case occurs for total wetting. No contact curve exists, if the
cluster’s fluid covers the entire solid wall. The contact area between surrounding
fluid and solid is missing. Still, for modeling purposes, the cluster can be described
separately from the fluid film. It interacts with the covering fluid film via viscous
stresses (that depend on the velocity gradient as shown in Eq. (19.16a)) and is not
coupled to the solid by a velocity boundary condition. Assuming an underground of a
continuous fluid film with constant thickness, the contact angle Θ becomes 180◦ and
resistance against contact curve movement vanishes, flgs → 0.

a) Pinned b) Moving c) Moving at wet-
ting fluid film

Figure 19.5: Movement for typical contact curve conditions.

19.8.2 Momentum balance at boundary curves

Boundary curves have no energy or mass as a part of an artificial boundary of the
system. Surface energy is constant in the present investigation and, therefore, surface
stress is constant on both sides of an artificial boundary curve within an interface.
Additionally, the surface is assumed to be smooth and the tangential vectors of the
surface are assumed to be continuously differentiable. Thus, normal vectors on the
boundary curve are opposite to each other for both adjacent surfaces and the stresses
cancel each other out. With it, local momentum conservation

ρb,αβR
d2

dt2
xb,αβ − divCTb,αβR +

∑
adjacent

surfaces ξχ

TξχR · nCξχ = fb,αβ (19.40)

becomes trivial, namely 0 = 0. In other applications, such as solid shell structures,
this equation becomes a boundary condition for the surface stress. Furthermore, the
momentum balances of the boundary curve and contact curve superpose to that of
the contact curve, if both curves coincide.

Closing remarks The physical phenomena mentioned above can be explained in
more detail on smaller scales. The measurable contact angle can differ from the one
measured on the mm-scale on scales of a few Å. In addition, a precursor-film can
be found on this scale for moving contact curves [234]. Furthermore, the pressure
difference inside the cluster becomes unlimited, theoretically, for decreasing radii and
continuum descriptions (including the classical pressure definition) thus become in-
valid. Properties of the solid, such as surface tension or contact angle hysteresis, can
be related to smaller scale geometric structures like those used by the lotus plant.
Moreover, relationships between equilibrium contact angle, contact angle hysteresis,
and curve energy can be found [203].
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19.9 Final equations for an incompressible, Newto-
nian liquid cluster surrounded by gas in a rigid
matrix

Until now, the physical processes were explained and described mathematically. The
very general case considers deformation of the solid, movement of the surrounding
fluid, etc. It is included in the basic approach Eq. (19.13a) and Eq. (19.20), where
the corresponding constitutive relationships (such as the equation of state and the
stress-strain/strain rate relationship) need to be inserted. The final equations are
then constituted by the balance of momentum and balance of mass.
Nevertheless, certain simplifications were explained and justified for the typical liquid
cluster that is surrounded by a gas in a stiff solid matrix. This special situation is of
particular interest for the marcoscopic wave theory at residual saturation, as presented
in Part III. Hence, the assumptions are summarized below and and followed by a
final overview of leading equations for an incompressible, Newtonian liquid cluster
surrounded by gas of constant pressure in a rigid matrix. Moreover, the equations are
specified for different kind of oscillations in a variational form.

19.9.1 Summary of assumptions
The following assumptions and simplifications have been discussed in the former part
and are used for the final set of equations:

• characteristic magnitudes: cluster radii R̃ ≥ 10−6 m, surface energy σ̃lg ≤
10−1 N m−1, liquid’s bulk modulus K̃l ≥ 109 N m−2, characteristic solid length
l̃ ≥ R̃, solid’s Lamé parameters µ̃grains, λ̃grains ≥ 1010 N m−2

• temperature changes are negligible

• surface energy σlg is constant

• the solid is rigid, immobile, and impermeable

• the cluster liquid is incompressible

• the influence of a surrounding gas on the oscillating liquid cluster reduces to
that of constant pressure

• the boundaries of the cluster and the system coincide

Note that the characteristic magnitudes do not constitute fixed conditions and may
vary one magnitude or more without canceling the validity of the simplifications.

19.9.2 Governing equations
An incompressible, oscillating Newtonian liquid cluster inside an inflexible, imperme-
able solid matrix, surrounded by a gas of constant pressure can be described by the
following equations. All properties belong to the cluster fluid.
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• local mass balance inside the cluster

divvl = 0. (19.41a)

• local momentum balance inside the cluster

−ρlR
(
∂

∂ t
vl + gradvl · vl

)
−grad plR+ηlR div

(
gradvl + gradTvl

)
+ρlR g = 0.

(19.41b)

• local momentum balance/stress boundary condition at the boundary fluid-fluid
interface, which reduces to Young-Laplace equation in equilibrium

− ηlR
(

gradvl + gradTvl

)
· n +

(
plR + σlgκ

)
n = pext n. (19.41c)

• boundary conditions at the solid wall (three types)

– no slip condition for pinned clusters

vl = 0 (19.41d)

– moving contact curve at an impermeable wall with

vl · nAls = 0,

text = −
∫
lAlg

βslip vl dx.
(19.41e)

acting additionally along the contact curve width lAlg
and including an

appropriate velocity distribution; a combination with the far field region
Alg\lAlg

can be achieved via a Robin boundary condition.
– sliding motion on a wetting fluid film of negligible thickness and negligible

contact angle resistance; resistance occurs due to viscosity only

vl · nAls = 0,

text = −TlR · nAls , (19.41f)
ΘYoung → 180◦ (complete wetting).

• local momentum balance/stress boundary condition at the boundary contact
curve, which results in Young’s contact angle in equilibrium for perfectly regular
surfaces [

σlg (cos Θ− cos ΘYoung)
]
nCls = flgs(Θ)nCls , (19.41g)

where
cos Θ = nAlg · nAls ,

flgs(Θ) :=


σlg (cos Θre,dyn − cos ΘYoung) , once Θ < Θre, while Θ < Θre,dyn

σlg (cos Θ− cos ΘYoung) , if Θre ≤ Θ ≤ Θad,

σlg (cos Θad,dyn − cos ΘYoung) , once Θ > Θad, while Θ > Θad,dyn

These equations are provided as variational formulations of pressure δp̂lR and velocity
δv̂l for different types of movement (pinned, sliding, etc.) in Tab. 19.1.
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mass balance

0 =
∫
Vl

div vl δp̂
lR dv

momentum balance

general

Without any specification of boundary conditions or contact curve behavior∫
Vl

(
−ρlR

(
∂
∂ t

vl + grad(vl) · vl

)
− grad plR + ηlR div

(
grad vl + gradTvl

)
+ ρlR g

)
· δv̂l dv

+
∫
Alg

(
−ηlR

(
grad vl + gradTvl

)
· nAlg + (plR − pext + σlgκ)nAlg

)
· δv̂l da

+
∫
Als

(
−ηlR

(
grad vl + gradTvl

)
· nAls + plR nAls + text) · δv̂l da

+
∫
Clgs

(
σlg (cos(ΘYoung)− cos(Θ)) + flgs(Θ)

)
nCls · δv̂l dc = 0

pinned oscillations

flgs is high enough to resist uncompensated Young stresses → no slip occurs at
the solid wall yielding δv̂l = 0 on Clgs and Als.∫
Vl

(
−ρlR

(
∂
∂ t

vl + gradvl · vl

)
− grad plR + ηlR div

(
grad vl + gradTvl

)
+ ρlR g

)
· δv̂l dv

+
∫
Alg

(
−ηlR

(
grad vl + gradTvl

)
· nAlg + (plR − pext + σlgκ)nAlg

)
· δv̂l da = 0

moving contact curve

Interaction at Als is replaced by the near-field region at the contact curve lAls (Navier
boundary condition). For the remaining far-field region no slip is assumed but can
be replaced by slip (cf. lower equation) or a Robin boundary condition.∫
Vl

(
−ρlR

(
∂
∂ t

vl + gradvl · vl

)
− grad plR + ηlR div

(
grad vl + gradTvl

)
+ ρlR g

)
· δv̂l dv

+
∫
Alg

(
−ηlR

(
grad vl + gradTvl

)
· nAlg + (plR − pext + σlgκ)nAlg

)
· δv̂l da

+
∫
Clgs

[∫
lAlg

−ηlR
(
gradvl + gradTvl

)
· nAls − βslip vl dx

]
· δv̂l dc

+
∫
Clgs

(
σlg (cos(ΘYoung)− cos(Θ)) + flgs(Θ)

)
nCls · δv̂l dc = 0

sliding motion on a fluid film

No three-phase contact curve appears, flgs → 0 and ΘYoung → 180◦. The boundary
stress at former Als becomes that of the surrounding liquid.∫
Vl

(
−ρlR

(
∂
∂ t

vl + gradvl · vl

)
− grad plR + ηlR div

(
grad vl + gradTvl

)
+ ρlR g

)
· δv̂l dv

+
∫
Alg

(
−ηlR

(
grad vl + gradTvl

)
· nAlg + (plR − pext + σlgκ)nAlg

)
· δv̂l da

+
∫
Clgs

−σlg (1 + cos(Θ)) nCls · δv̂l dc = 0

Table 19.1: Final variations of mass and momentum balance for different conditions.
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19.10 The oscillating fluid cluster as a harmonic os-
cillator

19.10.1 Motivation and concept
A detailed description of oscillating fluid clusters is scientifically interesting but can
include geometries of high complexity. Additionally, oscillating fluid clusters are also
important as components of major systems, for example, for wave propagation in
residually saturated porous media. In such cases, the clusters’ complexity often needs
to be reduced for efficient modeling of the entire system. Their oscillation behavior
requires a classification by a few characteristic parameters.
Therefore, three properties were demonstrated in the previous theoretical investiga-
tion: (i) the cluster has inertia due to its mass (or density ρlR in local form); (ii) it
is damped due to viscosity (represented by ηlR grad v in local form); and (iii) it has
stiffness due to the attempt of minimizing surface energy (σlgκ in local form). These
three properties correspond to the properties of a harmonic oscillator, whose motion
q(t) is described by the partial differential equation

m q̈ + d q̇ + c q = F (t), cf. Eq. (3.2).

For that reason and inspired by the ideas in [72, 198], an oscillating fluid cluster
is modeled as an uni-dimensional harmonic oscillator, cf. Fig. 19.6. This approach
is supported by oscillator-like resonance effects observed in theory, experiment, and
numerical simulation [38, 96, 122, 183].

stiffness

damping inertia (ρlR)
(ηlR gradvl)

(σlgκ)

d

c

m

Figure 19.6: Physical behavior of an oscillating fluid cluster as a harmonic oscillator
with mass m, stiffness c, and damping d.

As a result, the barycentric motion of an oscillating fluid cluster can be described by
the three properties: mass m, stiffness c, and damping d. All properties of a harmonic
oscillator can be applied as introduced in Section 3.2. Thus, the oscillating cluster
can be alternatively described by the set of mass m, undamped eigenfrequency ω0,
and damping ratio D. This triple, {m,ω0, D}, turns out to be highly beneficial for
the physical description and classification of oscillating fluid clusters, cf. Chapter 16.
Hence, special attention will be given to classification of fluid clusters by those three
characteristic, dynamic properties. Moreover, further properties such as resonance
frequencies or amplification factors can be derived from them.
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19.10.2 Typical forms of cluster oscillations

Various forms of cluster oscillations can occur depending on the condition at the
contact curve (pinned/moving). Some classical forms of fluid cluster oscillations can
be characterized as follows.

A B C D

Figure 19.7: Typical forms of cluster oscillations for different conditions.

A Imperfections of the surface prevent contact curve movement for small devia-
tions. The cluster is pinned. This is the case in many applications without a
special treatment of the surface.

B A fluid film covers the entire solid surface, ΘYoung → 180◦ and flgs → 0. The
cluster slides on the film and is described separately. Only viscous effects and
geometric restrictions, resulting in a changing interface area, counteract a move-
ment.

C The contact curve starts to move if the deviation is large enough to overcome
the limits of the static contact angle, Θre or Θad. The moving contact curve
damps the oscillations in addition to the viscous flow.

D Similar to C but at a surface with significant defects, the moving cluster leaves
a fluid film behind. This is a mix of cases B and C. The film is increased by
every oscillation, due to the new contact area between fluid and solid.

Typical linear oscillations are represented by case A. Linear sliding oscillations are
given for two special cases of perfectly regular surfaces: case B and case C with
negligible pinning forces (Θre ≈ ΘYoung ≈ Θad). Case C and D generally require
deviations that are not arbitrarily small and change from one kind of movement to
another like a stick slip. Thus, they describe non-linear oscillations.

19.10.3 Limitations and extensions of the harmonic-oscillator
model

The reduction of an oscillating continuum to an uni-dimensional oscillator comes with
simplifications and three important limitations need to be considered.

Multiple oscillation modes

A fluid cluster is a continuous body and can oscillate via different modes. For example,
Sanz & Diez [183] proved theoretically and experimentally different transversal modes
of an oil bridge. This effect can be accounted for by various extensions. One approach
is the introduction of frequency-dependent stiffness and damping. For each mode, the
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corresponding stiffness and damping change near the respective oscillation frequency.
This approach is convenient if the different oscillation modes should be distinguished
in the frequency regime. Another possible approach is the use of a lumped-mass
model, including more than one degree of freedom.
For applications, the lowest modes of oscillation are often the most important because
they gather the highest amount of energy. The excitation of a specific oscillation mode
depends, amongst others, on the cluster position in relation to external stimulation,
which leads over to the next point.

Directional dependence

As a three-dimensional system, a fluid cluster can oscillate in various directions. There
are often preferred directions, for instance, lateral and transversal to the symmetry
axis of a water bridge. Further oscillation modes consist of superposition or as mul-
tiples of the basic modes. The stimulation of a certain direction depends on the
position of the fluid cluster with respect to the stimulating boundary condition such
as a passing wave front.
In the case of randomly distributed fluid clusters in porous media, the fluid clusters
can be assumed to be stimulated evenly distributed from all possible directions. The
anisotropy of a single cluster is averaged over the REV to an isotropic and even dis-
tribution of different excitation directions. Higher multiples of the same direction can
then be included by a frequency dependence of the dynamic parameters or a lumped
mass approach as mentioned above.

Frequency-dependent velocity profile

A further local effect of the fluid cluster is simplified because of the uni-dimensional
approach: the velocity flow profile. The harmonic-oscillator model does not contain
information about the velocity distribution because its motion has only one degree
of freedom. Nevertheless, it is known that the velocity profile of an oscillating fluid
flow in a pore channel depends on the oscillation frequency [25, 112, 226]; also see
Section 10.3. Additionally, the flow profile determines damping via its gradient and
stiffness via curvature of the interface shape. In conclusion, stiffness c and damping d
(or undamped eigenfrequency ω0 and damping ratio D respectively) generally depend
on oscillation frequency ω with respect to the barycentric motion.
Following the classical approach of Biot [25] and Womersley [226], the frequency
dependence can be rewritten as a dependence on the dimensionless number

N(ω) =
ρlR h2 ω

ηlR
. (19.42)

The characteristic length h is related to the direction of the velocity gradient, i.e.
perpendicular to the main flow direction. In the case of an oscillation parallel to the
solid walls, h is comparable to the wall distance or pore diameter and N becomes the
squared Womersley number, cf. Eq. (10.6). If the cluster oscillations are not parallel
to the enclosing pore channel walls, h will account for another characteristic length,
for example, for the cluster diameter between the fluid-fluid interfaces.
It follows for free cluster oscillations that eigenfrequency ω0 is a solution of the implicit
problem

ω0 =

√
c(N(ω0))

m
. (19.43)
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One unique solution exists for c = const. For general c(N)-relationships, however, a
solution can become arbitrarily complex; if there is at least one solution. The same
situation occurs with respect to damping d or ω0 and D, respectively. Nevertheless,
the study of frequency-dependent flow profiles in [25, 226] and the observed oscillator-
like behavior in [94, 122, 183] are reasonable grounds to assume that a frequency
dependence of the dynamic properties is limited and an oscillator-like rheology is a
good approximation. This is supported by the findings of the following two chapters.



Chapter 20

Systematic, numerical
investigation of oscillating,
pinned liquid clusters

The previous chapter provided insights into the theoretical description and classifica-
tion of oscillating fluid clusters. This chapter follows with a comprehensive, quanti-
tative, numerical analysis.
Two basic types of water clusters surrounded by air are investigated with variations of
different geometric and material properties. They are pinned to account for a typical
form of linear oscillations. The first cluster type is based on a cylinder that is pinned
at top and bottom representing a liquid bridge between two grains. The second type
is based on a slender cylinder that is pinned along its lateral surface. It represents a
water cluster enclosed in a slender pore channel. Moreover, frequency dependence of
the characteristic, dynamic properties is determined for different clusters and limited
in the case of resonance effects.

20.1 Methodology

20.1.1 Governing equations
A variational formulation of mass and momentum balance was used to determine the
transient motion of the cluster. The applied equations can be found in Tab. 19.1
(mass balance and the second version of momentum balance). Due to restrictions
of the used Finite Element (FE) solver determining the total curvature of a surface
κ, the momentum balance was slightly reformulated. For this reason, the surface
divergence theorem Eq. (19.6) was combined with the definition of surface stress and
contact angle as∫

Cslg
−σlg cos(Θ)nCls · δv dc+

∫
Alg

σlg κ δv · nAlg da =

∫
Alg

σlg divA(δv) da,

where the first term vanishes for pinned oscillations. Additionally, the divergence
theorem was applied to TlR · δv with symmetric, liquid stress tensor TlR in order to

165
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replace∫
Vl

divTlR · δv dv −
∫
Alg∪Als

(TlR · δv) · n da =

∫
Vl
TlR : grad(δv) dv.

20.1.2 Numerical implementation and processing

There have been different numerical approaches for the simulation of static and dy-
namic fluid clusters, each with its own advantages and shortcomings, cf. Section 18.1.
In the present study, mass and momentum balance were solved using the FE package
Comsol Multiphysics. Based on the variational approach, the equations were derived
in an updated Lagrange formulation. Derivatives are taken with respect to the Eule-
rian (spatial) coordinates.
This method does not require an adaptation of material parameters for interaction
terms, in contrast to particle-based methods, and successfully avoids numerical loss
of volume. Furthermore, the flexibility of an FE-solution for not pre-stabilized, gen-
eral, partial differential equations in a weak formulation was an important advantage
for the present work. The Eulerian viewpoint allowed a precise investigation of solid
and fluid physics within a general mathematical framework. The isolation from fur-
ther transformations between material and spatial coordinates proved to be beneficial
for the foregoing, theoretical study because a comparison with well-known equations
was straightforward. A total Lagrange formulation can be achieved as well but de-
tailed transformation exceeds the scope of this work, cf. the theoretical framework
of Belytschko et al. [14] and Steinmann [200] as well as the comprehensive methodic
description provided by Saksono & Perić [177, 178].
Mass and momentum balance were implemented as fully-coupled weak formulations.
A moving mesh (geometry shape order 2, Winslow smoothing type) accounted for the
updated interface geometry. Velocities were discretized by quadratic shape functions
of Lagrange type while linear shape functions were used for the pressure22. Further-
more, standard and well-established FE-solvers (Pardiso) were used. Remeshing (due
to eddies and distorted elements) turned out to be not necessary for the first periods
of oscillations.
The final work flow of the numerical investigation is summarized in Fig. 20.1.

20.1.3 Clusters investigated

Two typical kinds of clusters were investigated and are denoted as model I and model
II. The origin of material parameters is water surrounded by air at ambient conditions
(ρlR = 1000 kg m−3, ηlR = 10−3 Pa s, σlg = 70× 10−3 N m−1, ΘYoung initially set to
90◦). Appendix E.1 contains a tabular overview.

Model I

Model I is a water cylinder that is pinned at top and bottom between two parallel
walls of distance l, cf. Fig. 20.2. It can represent a liquid bridge between two grains.
The initial version is of 1 mm length and width. Characteristic geometrical properties

22The liquid is assumed to be incompressible. This assumption requires lower order shape functions
for pressure compared to velocity according to the Babuška-Brezzi condition, cf. Braess [31] and/or
the use of Taylor-Hood elements.
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1. Defining geometry, material properties, equations, boundary conditions,
and initial conditions

2. Calculating the equilibrium state

(Necessary for the contact angle and geometric shape functions to adapt;
pinning or contact curve resistance turned off)

3. Small deflection of the pinned cluster by an external body force

4. Calculating the dynamical response in time and recording the barycentric
motion

5. Determination of oscillator parameters m, ω0, D, and others from barycen-
tric motion as described in Section 3.2

Figure 20.1: Numerical work flow for the study of cluster oscillations.

include volume V := Vl, hydraulic radius R =
√
V/(πl), specific interfacial areas23

alg = Alg/Vl as well as als = Als/Vl, and slenderness Λ = l/R.
The investigation of model I includes general variations of oscillation direction (trans-
versal and parallel to the symmetry axis in equilibrium), volume V , slenderness Λ,
Young’s contact angle ΘYoung, density ρlR, dynamic viscosity ηlR, and surface tension
σlg. The variations are by factors 1/8, 1/4, 1/2, 2, 4, and 8, except for Young’s
contact angle (which varies between 34◦ and 117◦) and slenderness (which is limited
by instability of very slender geometries). These variations cover a wide range of
possible combinations.

23Note that interfacial areas are defined with respect to the cluster volume. They are linked to
the macroscopic definition via saturation, cf. [86].
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Model II

Model II is a water cylinder pinned along the lateral surface like a water column that
is trapped in a pore channel, cf. Fig. 20.2. The basis version is of 10 mm length and
1 mm width. Again, l describes the length parallel to the axis of symmetry but is
connected to the dilatation of the solid-liquid surface for model II.
The investigation of model II varies volume V , length l, slenderness Λ, as well as
dynamic viscosity ηlR. The variations are larger than for model I to cover extreme
ranges in geometry and viscosity as they may occur at different depths in soil. Due
to physical restrictions (including overdamped oscillators for high viscosities or de-
composing and rapture for extreme slenderness) and technical limitations (including
meshing of high aspect ratios) the investigated samples are not as many as for model
I but cover a broader range. In addition, this model was also winded with different
parameters τ ∈ {0, 1/4, 1/2, 1, 2}, cf. Fig. 20.2.

model I model II τ = 1/4

τ = 1/2 τ = 1

ΘYoung

ΘYoung

l

l

τ = 0

τ = 2

Figure 20.2: Investigated types of fluid clusters.

Frequency-dependent stiffness and damping

A frequency dependence of cluster stiffness and damping can occur, due to frequency-
dependent flow profiles as explained in Section 19.10.3. Furthermore, it was motivated
and replaced by the dependence on a dimensionless number N .
To quantify the frequency dependence of stiffness and damping, four different clusters
were studied for various values of N . These include a small and a big version of model
I (l = 10−5 m and l = 10−2 m, Λ = 2) as well as a small and a big version of model
II (l = 10−4 m and l = 10−1 m, Λ = 20). The characteristic length h is chosen to
be half of the initial cluster diameter transversal to flow direction, which is the pore
radius for typical oscillating flow through channels.
The influence of the frequency-dependent flow profile was studied for different di-
mensionless numbers N by varying density ρlR. As a result, c(N) and d(N) were
determined. The pair {ω0, D} cannot be compared for different N(ρ) directly, be-
cause it also depends on density, explicitly. Nevertheless, c(N) and d(N) do not
depend on ρ, except via N(ρ), and are therefore an appropriate representation of
frequency-dependent damping and stiffness. Moreover, N is directly proportional to
the oscillation frequency, which is why frequency-dependent stiffness and damping of
an oscillating fluid cluster can be deduced from their dependence on N .

20.2 Results and discussion
The multiplicity of simulated clusters entails a large amount of interpretable data.
Hence, the results are categorized with respect to individual properties and directly
followed by the corresponding discussion. The main focus was determination of ω0

and D for various cluster types. Raw data can be found in Section E.1.
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20.2.1 Accuracy and sensitivity of the numerical solutions

Numerical processing and evaluation has been tested with respect to its accuracy in
several points. The cluster excitation has been tested with an external body force, ini-
tial displacement, and a sinusoidal body force of different amplitudes for unmodified
model I and different viscosities. The results of these excitation methods diverged less
than one percent (except for seven percent for D in the case of very small, sensitive
values D < 0.02), which is in the range of the expected uncertainty of the numerical
method. Therefore and because of its simple numerical implementation, a body force
has been chosen for stimulation in the other cases.
A fast Fourier transformation (FFT) was applied to the calculated signal of time-
dependent barycentric motion numerically. This procedure was based on the Matlab
FFT-function and enhanced by a Tukey window and zero-padding to obtain an im-
proved numerical performance. The FFT of the signals showed a major peak at one
frequency with a deviation of less than 5 % from the measurement via the oscilla-
tion’s period, cf. Eq. (3.9). Only for the cases of extreme slenderness (factor > 4 or
< 1/4), further peaks of minor intensity occured at multiples of the first peak’s fre-
quency. Thus, it can be assumed that the first eigenmodes have been stimulated and
observed. This will be further supported by comparison with results from literature.
Calculated ω0 values could be assumed to be stable within deviations of a few per-
cent or less with respect to variations of: mesh size, time stepping, deflection/volume
force amplitude, and choice of the time interval among multiple oscillation periods.
The solution of damping parameter D was sensitive for weakly damped oscillations
because of the relatively small changes in amplitude. As a result, the instability for
D ≤ 0.01 is expected in the order of ≤ 15 %.
Pressure difference in equilibrium deviated less than one percent from the analytic
solution of the Young-Laplace equation, which was available in all cases except for
the variation of the contact angle. This very good agreement supports the choice of
the spatial discretization and geometric shape functions.
In conclusion, the solutions for ω0 were stable in the lower single-digit percentage
area. Damping coefficients deviated stronger for low damping (≤ 15 % for D ≤ 0.01)
but the order of magnitude and the qualitative behavior was still captured in these
cases.

20.2.2 Comparison with literature

Sanz & Diez [183] provided experimental data of an oscillating oil column tested
during the D-1 Spacelab Mission [135]. The measured angular resonance frequency of
the oil cylinder, pinned between two 35 mm-discs, was in the range of 1.068 s−1 and
1.194 s−1. This result is supported by Liang & Kawaji [122]. The presented method
agrees well with an angular resonance frequency of 1.181 s−1.
In addition, Hilpert et al. [94] derived an analytic solution for the resonance frequency
of undamped fluid clusters in a straight tube with radius R and length l of

ωHilpert =
√

(σlg sin (180◦ −ΘYoung)(1 + sin (180◦ −ΘYoung))2 / (ρlRR2 l).

in the present notation. For model II, ωHilpert yields an angular frequency of 669.328 s−1

while the presented method yields 623.517 s−1 (−6.84 % deviation) for the variation
of lowest viscosity. Moreover, the analytic solution ωHilpert of [94] predicts that the
undamped eigenfrequency depends on cluster mass but not on its slenderness. This
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was confirmed in the numerical calculations of varying slenderness. The constant
ω0(Λ) relationship can be specifically seen in Fig. 20.7. Fluctuations of few percent
around a constant value occur and can be explained by two reasons: first, by influence
of the changing velocity profile for different radii and, second, by other wave modes,
which were observed in the FFT for very high values of slenderness. Nevertheless,
these fluctuations are very small for the investigated clusters and the prediction of
Hilpert’s solution is in good agreement.
Liang & Kawaji simulated an oil bridge surrounded by air numerically using a Level
Set Function [122]. This cluster type is comparable to the one investigated experimen-
tally by Sanz & Diez [183], but it additionally accounts for a surrounding air phase.
The surface oscillation amplitude reached its peak at a stimulating angular frequency
of 56.55 s−1. The simulation of the presented method agrees well again predicting an
angular resonance frequency of 55.66 s−1 (−1.57 % deviation).
Eventually, the good agreement with results from literature confirms the used meth-
ods. All comparisons, including experiments [183], analytical solutions [94], as well as
other numerical methods [122], demonstrated a very good accordance with deviations
of a few percent. Additionally, the theoretical assumptions, including a rigid wall and
a negligible gas phase, were fully supported.

20.2.3 Systematic classification

The major focus of this quantitative analysis is to provide an overview of the char-
acteristic, dynamic parameters ω0 and D for various kinds of fluid clusters. Mass m
can be easily determined from its geometry and density. The basic simulation results
can be found in Section E.1 and are figuratively presented in Fig. 20.4 and Fig. 20.5.

Model I

The first model was studied for oscillations perpendicular and parallel to the sym-
metry axis. Both directions show the same behavior qualitatively, cf. the overview
in Fig. 20.4 and Fig. 20.5. In general, the investigated clusters’ angular, undamped
eigenfrequencies ω0 were up to several thousand s−1. Furthermore, damping was low
with D ≤ 0.1.
A limitation of slenderness occurred for very long bridges of model I and can be ex-
plained physically. For large wall distances, the clusters started necking in their center
because the physical configuration of two single blobs at the walls was more stable.
Irregularities, for example, due to numerical effects, caused the system to turn from
an unstable cylindrical equilibrium into two single blobs.
Considering ω0, surface tension σlg reflected its role as stiffness while density ρlR and
volume V = Vl composed the cluster mass. More precisely, each doubling of surface
tension or bisection of density or volume increased ω0 by a factor of

√
2 with high

accuracy (deviation from factor
√

2 was less than 1.5 % for all investigated cases).
This coincides with the behavior of a classical harmonic oscillator.
Furthermore, ω0 fell with growing slenderness Λ and also decreased slightly for higher
values of dynamic viscosity ηlR. Interestingly, the undamped eigenfrequency showed
a peak for varying equilibrium contact angle ΘYoung. In equilibrium, the cluster’s
curvature can be described by two radii; one for the circumferential and one for the
lateral direction. In case of the maximum of ω0(ΘYoung), both radii combine to the
stiffest combination. On both sides of this peak, two different contact angles can
result in the same stiffness.
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Damping parameter D was already low (< 5 %) for the initial case. It increased ex-
ponentially with growing viscosity ηlR. On the contrary, D decreased for all other
variations in the order of one magnitude. Each case was still within the range of low
damping.

Model II

The second model initially showed a higher damping (× 3) and lower eigenfrequency
(× 1/2) compared to model I with transversal oscillation direction, cf. Fig. 20.6. The
variations were larger and support the former observations of model I with respect to
common variations.
Changes of ω0 occurred also for different winding but were within the uncertainty
of the calculations. A dependence could not be confirmed for the investigated varia-
tions. Another comparable independence occurred for altering slenderness, which is
in agreement with the analytical prediction by Hilpert et al. [94] as mentioned during
the comparison with literature above. Very small deviations around the mean value
of ω0(Λ) can be explained by a dependence on the dimensionless number N or limited
numerical accuracy. A change of cluster length influenced ω0 markedly and according
to the respective increase of mass.
Damping ratio D increased significantly for higher winding τ . This can be explained
by secondary flows caused by the tortuous geometry. Another substantial increase in
damping, however, is demonstrably connected to larger slenderness and length. The
reason is an increasing influence of viscous forces (inside the bulk cluster) compared
to decreasing influence of the capillary forces (at the fluid-fluid interfaces) for larger
slenderness.

In addition to the principle relationships mentioned, a curve fitting of ω0 and D
is provided in Tab. E.1 and Tab. E.2, see also the example in Fig. 20.3. These tables
serve as an important quantitative classification for further application and indicator
for sensitivity of specific variations. For instance, the eigenfrequencies and damping
ratios can be calculated explicitly for various volumes, contact angles, or viscosities.
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Figure 20.3: Fitted curves for variations of V of model I, transversal oscillation direc-
tion according to Tab. E.1 and Tab. E.2.
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20.2.4 Interfacial areas
(Specific) interfacial areas (alg = Alg/Vl and als = Als/Vl) are characteristic geomet-
ric parameters of the physical system. They take a special position in macroscopic
theories, containing additional micro-structure information next to volume fractions.
Thus, interfacial areas are investigated separately because they can be directly con-
nected to macroscopic theories24.
Geometrically, interfacial areas of the cluster liquid and the solid, als, can be inter-
preted as the inverse characteristic diameter of the interface between both liquids, for
instance, as a pore space diameter. Interfacial areas between both fluids, alg, repre-
sent an inverse characteristic diameter of the interface between solid and cluster, for
example, the cluster length in pore direction. Both kinds of interfacial areas depend
on other geometric properties such as volume, length, slenderness, or contact angle.
Hence, they cannot be treated as distinct microscopic properties but change with the
other variations.
Focusing first on alg, no consistent relationship occurs between alg and the dynamic
cluster properties ω0 and D. The observations show an opposed correlation between
alg and ω0 or D respectively for varying slenderness and volume, cf. Fig. 20.7. For
example, alg decreases and the cluster becomes more inert (↓ ω0) with increasing vol-
ume. On the contrary, alg decreases as well for decreasing slenderness but the cluster
becomes more stiff (↑ ω0). Thus, neither an explicit causality nor a correlation can
be predicted on the basis of the investigated samples.
For the other type of interfacial areas, ω0 tended to increase with high als values for
the geometric variations investigated. Large als represent a system with a small wall
distance. Hence, the cluster is stiffer. This is also known from the fact that a clus-
ter sags less under gravity load when the surrounding walls (such as two fingertips)
approach each other. Damping ratio D also tended to ascend with als because the
amount of viscous interaction raises compared to the influence of capillary effects.
Equilibrium contact angle ΘYoung plays a special role because it influences geometry,
but it is a material parameter itself. The observed influence on ω0 and D via inter-
facial areas is lower than by the other variations. Interestingly, the hysteresis effect
is reproduced. There can be different contact angles with different interfacial areas,
which result in the same capillary response.

20.2.5 Frequency dependence
The dynamic parameters of four different water clusters were studied with respect
to their dependence on the dimensionless number N and the oscillation frequency ω
(∝ N). A big and a small variation of model I and II were investigated to enclose
a wide range of cluster types. Basic data is given in Section E.1 and visualized in
Fig. 20.8.
The results demonstrate a dependence on N for c and d and consequently for ω0 and
D. Stiffness c(N) and the product ω0(N) d(N) were comparable for different sizes
of the same cluster type. Within the investigated range, d varied about one decade
and c within borders of 20 %. In particular, a change of N affected damping d (or
D respectively) strongly. Thus, a general dependence of the dynamic, characteristic
parameters on oscillation frequency can be deduced.

24Note that the macroscopic definition of interfacial areas, as in [89], requires a further multipli-
cation by liquid saturation.
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Figure 20.8: Stiffness and damping for different N values and cluster types. Circles
indicate the origin values with typical water properties at free oscillations.

The appearance of this dependence is supported by the ω0(ηlR) behavior of the basic
study, cf. Fig. 20.4. Viscosity does not influence mass or surface tension directly
but still showed a perceivable influence on ω0 that exceeds the limit of numerical
uncertainty. In contrast, the undamped eigenfrequency ω0 of a classical oscillator
is expected to depend only on stiffness and mass but not on damping effects. Such
divergent behavior is explained by the changing flow profile and mathematically by
the influence of ηlR on ω0 via N(ηlR). Consistently, it is depicted by the changing flow
profile of clusters with identical geometry, mass, and surface tension but at oscillations
with different N values, Fig. 20.9.

ηlR × 1, N = 309.8 ηlR × 100, N = 2.7

Figure 20.9: Influence of N on the velocity profile at the first zero crossing after
excitation of model I via viscosity modification. For small N , viscous effects dominate
and the velocity profile inside the cluster is that of Hagen-Poiseuille-flow. For large N ,
inertia effects dominate and the velocity profile flattens. N and ηlR are not completely
inversely proportional because the free-oscillation frequency changes slightly for both
variations.
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With respect to later application, further quantitative conclusions should be drawn.
Considering the amplification function of a harmonic oscillator, cf. Fig. 3.3b), the
important range of resonance is within ω0 ± 50 %. In this range, the interpolated
deviations of the four investigated clusters are limited to ≤ 4 % for c and ≤ 30 %
for d. Taking these mentioned uncertainties into account, the uncertainty of the
corresponding resonance frequency Ωres is below 5 % for initial D ≤ 0.2 and below
10 % for initial D ≤ 0.3. Additionally, the amplification function of an oscillator at
very low and high driving frequencies Ω is independent of the oscillator properties.
For low frequencies, i.e. Ω→ 0 s−1, the ampflication function is one and vanishes for
Ω→∞ s−1, Fig. 3.3b).
In conclusion, the dynamic properties ω0 and D generally depend on the stimulation
(or oscillation) frequency. Based on the solutions of oscillating flows, for example, see
[25] and Chapter 10, the resonance behavior is assumed to be bounded by two typical
processes (low and high N). Moreover, various research proved resonance effects of
fluid clusters [38, 96, 122, 183]. Thus, a real, oscillating fluid cluster is not expected to
coincide exactly with a harmonic oscillator but still shows a similar behavior changing
smoothly from one set of dynamic properties to another, cf. Fig. 3.3b) and [122] (Fig.
5 ibid.).
The resonance behavior of the low- and high-frequency regime becomes independent
of deviations of ω0 and D. For weakly damped clusters (D ≤ 0.3), the resonance
regime ω0±50 % is well approximated with uncertainties as mentioned above. Hence,
applications that are predominantly affected by resonance effects of the clusters may
still use constant ω0 and D (around ω = ω0) for modeling the dynamic behavior
of oscillating fluid clusters. Such applications can be ganglia mobilization or wave
propagation in residually saturated media as presented in Part III.

Comment on an influence of the interface

The comparison of velocity profiles for different N revealed that the velocity profiles
do not only change inside the cluster, but also at the interfaces at zero crossing
position, cf. Fig. 20.9. One possible reason is the frequency-dependent profile inside
the bulk volume, influencing the interface shape. Congruously, also capillary forces
at the interface may further influence a frequency dependence of the characteristic,
dynamic properties ω0 and D. Whereas N accounts for the ratio of viscous forces to
inertia forces inside the cluster, another dimensionless number is required to describe
the interface physics. This can be achieved, for instance, via the capillary number

Ca(ω) = hω
ηlR

σlg
. (20.1)

Ca can be understood as the ratio of two velocities: the characteristic oscillation
velocity hω and the relaxation velocity of the near-surface region σlg/ηlR, which is
reduced by viscous damping. An alternative interpretation is the ratio of the oscilla-
tion period (∝ 1/ω) to the relaxation time of the near-surface region h ηlR/σlg.
Therefore, a frequency dependence of {c, d} or {ω0, D} may be considered more gen-
erally via N(ω) and Ca(ω). Moreover, a coupling can be achieved, for example, via a
geometric parameter weighting their individual influence. A further statement about
its practical influence requires quantitative investigation of the specific cluster and
exceeds this investigation.
Independent of a more general or specific description, the encouraging findings re-
main valid. First, the dynamic properties of the oscillator-like modeling approach
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are frequency-dependent in general. Second, the typical oscillator-like behavior of the
investigated clusters supports an oscillator-like modeling with constant {ω0, D} for
the resonance regime and respective applications. The oscillator rheology is further
supported by the experiments of the following chapter.





Chapter 21

Experimental study of a liquid
bridge

The behavior of an oscillating, cylindrical liquid bridge is investigated experimentally
in this chapter. The bridge consists of a pigmented test ink with preset surface energy
and is pinned between two steel beams. A high-speed camera is used to evaluate the
dynamic behavior for free and driven oscillations. As predicted by the numerical and
theoretical studies, an oscillator rheology approximated the first oscillation mode well.
Further oscillation modes were detected at higher frequencies. A verifiable frequency
dependence of the oscillator rheology was of minor influence and below the detection
limit.

21.1 Introduction
The current experimental investigation involved the analysis of an oscillating liquid
bridge to determine its dynamic properties. First, the eigenfrequency and damping
ratio of free oscillations were determined and compared to numerical results. Based
on the decaying oscillations, ω0 and D of a corresponding oscillator rheology were
calculated.
Second, the amplification ratio was recorded for driven oscillations at various frequen-
cies. This study of a broad frequency regime aims at detection of frequency-dependent
effects that cause a deviation from the classical oscillator rheology.

21.2 Methodology

21.2.1 Experimental setup

A liquid bridge of 1× 10−8 m3 test ink i1 was placed between two hardened steel
beams i2 by the use of an Eppendorf Research pipette, cf. Fig. 21.1. The steel
beams’ diameter was 2 mm and a distance of 3.18 mm was set between them. The
ink’s surface energy was predefined and its density as well as viscosity were given
(Fischer Test Tinte, green; a pigmented mixture based on water and ethanol, cf. Ap-
pendix A for material data). The beams were connected to two parallel plates of
acrylic glass i3 . The plates were mounted on a linear sliding table i4 that allows

181
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adjusting a precise distance between the plates and between the beams via a microm-
eter caliper. Moreover, the table was mounted on a Brüel & Kjær Vibration Exciter
Type 4809 i5 . The vibration exciter produced a controlled movement of the table
and all connected elements according to the electric signal received from the Brüel
& Kjær Power Amplifier Type 2706 i6 . The latter amplified the preset signal of
the Trueform Agilent 33500B Series Waveform Generator i7 . This setup allows a
controlled movement of the liquid bridge perpendicular to its symmetry axis.
The liquid bridge was recorded by a Vision Research Phantom v4.3 high-speed camera
in combination with a Schneider-Kreuznach APO-Componon HM 4,5/90 object lensi8 . A Novoflex Macrolight Plus i9 was used for cold light illumination. Additionally,
white paper was placed behind the cluster to achieve a sufficient contrast. Adhesive
tape was placed on the top of the plates between the liquid bridge and the light source
to avoid reflections of the liquid and the steel beams.
The recordings were split into single images, which were evaluated by digital image
processing in Matlab. The image resolution was 320 pixels (width) times 504 pix-
els (height) corresponding to approximately 33 pixels/mm. Appropriate care was
taken to achieve a sufficient compromise between a high spatial resolution (requiring
larger amplitudes) and linearity of the movement (requiring lower amplitudes). Each
recording was evaluated individually with respect to this requirement. The maxi-
mum recording rate was 3000 pictures per second resulting in 20 or more pictures per
oscillation cycle (at least 40 for the range of the first oscillation mode).

21.2.2 Free oscillations
A total of eight recordings was made over a period of 21 hours at a temperature
between 20 ◦C and 23 ◦C and at ambient (laboratory) pressure conditions. Consecu-
tively, four liquid bridges were placed between the beams and stimulated by a single
pulse with and against the direction of gravity, respectively. After recording of each
bridge, the latter was removed and the steel beams were dried. The distance between
the beam ends was readjusted after the first half of the experiments.
The major property calculated was the displacement of the liquid bridge in time. For
this reason, the average of the lower and upper edge at the bridge center (i.e. the
maximum movement of the initial line of symmetry) was determined for each time
step. The decaying liquid oscillation was evaluated similar to the procedure in Chap-
ter 20, whereas the first (five to ten) oscillations were excluded to support the tuning
of the first linear mode.

21.2.3 Driven oscillations
The second part of the experiment contained driven oscillations at various frequen-
cies. The amplitude ratios of the liquid bridge (maximum amplitude of the initial
line of symmetry, cf. Fig. 21.1) to the steel beams were recorded determining the
amplification function Vamp. An FFT of the beam movement was evaluated to verify
the stimulation frequency.
The conditions were similar to those of free oscillations except for the prescribed
movement that was based on a constant sinusoidal signal. The liquid bridge was re-
placed nine times and not later than ten minutes after its placement to avoid mass
loss due to vaporization. Furthermore, the frequency was modulated in ascending and
descending order.
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Figure 21.1: Experimental setup of the oscillating liquid bridge. The white cross
inside the (upper right) digital image indicates the traced point of the liquid-bridge
movement.

21.3 Results and discussion

21.3.1 Free oscillations

The investigation of free oscillations resulted in an eigenfrequency of ω0 = 221.33 ±
4.33 s−1 and a damping ratio of D = 0.035 ± 0.011 (arithmetic mean ± standard de-
viation) for the liquid bridge. Combining these numbers with an oscillator rheology
yields a resonance frequency of Ωres = 221.06 s−1 and very weak damping.
The low standard deviation of eigenfrequencies underlines the close match of the
individual results. The high reproducibility of ω0 is caused by a low influence of un-
certainties such as the occurring temperature fluctuations. The main reason for the
relatively higher standard deviation of D is the spatial resolution of the camera sys-
tem, which records the total amplitude motion more accurately than the comparably
small decay. Nevertheless, the stability of the experimental results prove the exper-
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imental setup to be a beneficial possibility for the determination of liquid clusters’
dynamic properties and their verification.
Additionally, the liquid bridge under gravity was simulated numerically as described
in Chapter 20. The numerical results are ω0 = 297.80 s−1 and D = 0.011 (+34.55 %
deviation for ω0 and −68.57 % for D) and do not coincide with the experimental re-
sults as well as with the results from literature in Section 20.2.2.
Because of the low standard deviation of the experimental results, a systematic dif-
ference has to be considered. Herein, the most important sources of errors are uncer-
tainties of the material and geometric parameters used. In particular, the distance
and parallelism of the steel beam ends were difficult to control accurately. Hence, it
may have influenced the radius and the response of capillary pressure that is sensitive
to changes of small radii (∆p ∝ 1/R). Additionally, the experimental oscillations
required a measurable, thus sufficiently large, displacement, which may have lead to
non-linear effects.
Concerning the deviation of D, further viscous flows were induced by wall roughness
and differ from the numerical simulation. This was confirmed by the recordings at
higher frequencies, at which, for instance, comparably small surface oscillations oc-
curred. Moreover, changes of material data, an interaction with the surrounding air,
and a difference between the maximum amplitude and the barycentric motion may
have caused a deviation. Eventually, the numerical simulation predicted a correct
order of magnitude for the resonance effects and a weakly damped oscillator. A more
detailed determination and implementation of the experimental setup, unfortunately,
exceeds the scope of this work.

21.3.2 Driven oscillations

The liquid bridge was stimulated at various frequencies. The frequency preset by
the waveform generator and the final frequency measured by the FFT of the beam
movement diverged by a relatively small value of less than 2.5 %. It represents the un-
certainty of the frequency domain. The amplitude of the vibration exciter decreased
with higher frequencies at constant power and was carefully readjusted to achieve a
compromise between spatial resolution and linearity of the movement. A resonance
effect of the connected experimental devices occurred at ω ≈ 2500 s−1 causing an
oscillation of the walls. Nevertheless, the corresponding frequency exceeds the fre-
quency range of interest. Oscillations at frequencies higher than 600 s−1 exceeded the
reliable spatial and temporal resolution in the present case. The measured results can
be found in Tab. E.3.

At low frequencies, the liquid bridge moved in phase with the steel beams. This
behavior was expected due to viscous coupling and predicted by the oscillator rheol-
ogy; cf. Fig. 21.2, where the results of driven oscillations are compared to an oscillator
rheology that is based on the results of free oscillations from above.
At frequencies around the predicted resonance frequency, ω → Ωres, resonance effects
occurred for the case of driven oscillations with good quantitative agreement. The
liquid bridge and the beams moved with opposite phase and the maximum amplifi-
cation measured was 5.88 % smaller than the one predicted by the oscillator model.
Furthermore, it occurred at a frequency that was 4.34 % lower than predicted.
A peak regime was observable but less pronounced for the case of driven oscillations,
cf. Fig. 21.2. The major reason for the occurred fluctuations is the displacement
of the beams. The latter was limited to avoid large (non-linear) liquid movements
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or even a detachment of the bridge and, therefore, recorded at relatively low spa-
tial resolution. As a result, the amplification function within the resonance regime,
i.e. the ratio of cluster displacement to beam displacement, is particularly sensitive
to such uncertainties of the denominator. A second reason for the deviations are
secondary flows due to imperfections of the geometry or due to non-linearity. They
have caused additional viscous damping, which led to an attenuated but expanded
resonance regime. Moreover, small changes of the geometry were caused for each
placement of a new bridge. Despite the fluctuations, however, the resonance effect
could be clearly observed within the predicted frequency range.
The influence of frequency-dependent flow profiles could not be quantified for this
exemplary experiment. The frequency range of the first oscillation mode is well ap-
proximated by an oscillator rheology with a slight shift of the decreasing part of the
amplification function to higher frequencies (frequency deviation / 15 %). However,
a frequency-dependent change of stiffness and damping may have influenced the fluc-
tuations but was below the detection limit and cannot be distinguished from other
uncertainties (of lower order). Moreover, the oscillator rheology also produced accu-
rate predictions at low frequencies. Thus, frequency-dependent oscillator properties
may have occurred but were of lower influence for the investigated case.
At higher frequencies, the amplification function does not vanish completely as pre-
dicted by the oscillator rheology. One reason for non-vanishing movement of the
bridge is the irregularity of the beams, due to roughness and slight skew. With it,
a complete decoupling is prevented. Moreover, surface oscillations occurred and in-
fluenced the measurements. The second reason for non-vanishing amplifications are
higher wave modes, which require approximations by individual oscillator models. For
example, one higher mode could be detected distinctively at 943.40 s−1, cf. Fig. 21.2.
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Figure 21.2: Experimental results of the oscillating liquid bridge stimulated at various
frequencies. The solid line represents an oscillator rheology that is based on the
measurements of free oscillations.
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21.4 Conclusion
The investigated liquid bridge demonstrated a classical oscillator behavior with a dis-
tinct low-frequency regime, a resonance regime, and a high-frequency range where
higher wave modes appeared. The results coincided with the predictions by a har-
monic oscillator model for the first wave mode (less than 6 % deviation of maximum
amplification and resonance frequency). In particular, the measurement of the eigen-
frequency via weakly damped, free oscillations benefited from the reproducibility,
whereas the numerical implementation was limited by geometrical and material un-
certainties.
The experiment agrees with the findings of the previous chapters: an oscillator rheol-
ogy can predict the behavior of a liquid cluster within a restricted frequency domain.
In the present case, the entire first wave mode was well approximated. Eventually, a
distinct deviation, due to frequency-dependent flow profiles, could not be observed.
The effect of frequency dependence was below the uncertainty of the measurements
and, with it, a lower-order effect.
Finally, the concept of oscillator-like modeling is supported by the present experiment.
Both, experimental and numerical investigations, will benefit from a focus on free os-
cillations, due to the corresponding reproducibility and reduced number of samples.
Further studies of more intricate geometries will enhance the elementary experiment
presented and a comprehensive database may help to focus on the effect of frequency
dependence.



Chapter 22

Review

22.1 Summary and main findings
The basic physical phenomena of oscillating fluid clusters were studied first. The
most important relationships are momentum balance at the fluid-fluid interface and
at the contact curve, resulting in Young-Laplace equation and Young’s contact angle.
Assumptions have been explained and justified with a special focus on Newtonian
liquid clusters surrounded by a gas. Accounting for individual oscillation types such
as pinned or sliding clusters, the main results of the theoretical chapter are

• the equations determining the cluster’s motion, Tab. 19.1.

A classification of oscillating fluid clusters was then presented. It is based on the
rheology of a harmonic oscillator. Each cluster is characterized by its mass m, eigen-
frequency ω0, and damping ratio D. This characterization also allows a practical
implementation into more comprehensive models like that of macroscopic wave prop-
agation in residually saturated porous media.
Theoretical and numerical investigations revealed that the characteristic parameters
ω0 and D generally depend on oscillation frequency. This dependence was expressed
by the dimensionless number N , which coincides with the squared Womersley number
for the case of oscillations parallel to the solid walls. Moreover, a dependence on the
capillary number Ca may also be required to account for the influence of the fluid-fluid
interface relaxation time on the flow profile. Finally, frequency-dependent ω0 and D
need to be introduced for two reasons: (i) full accuracy of the cluster motion; and (ii)
inclusion of multiple wave modes (different directions and multiples).
Nevertheless, clusters at different length scales (10 µm and 10 mm) showed a behavior
very similar to that of a harmonic oscillator in their first eigenmode. Deviations of the
predicted resonance frequency were < 10 % for weakly damped clusters. Moreover,
excitation by external stimulation becomes independent of the dynamic properties
outside the resonance regime. Thus, a classical harmonic-oscillator rheology can be
sufficient for modeling resonance effects in applications and scientific investigations.
Especially for models of wave propagation in partially saturated porous media, the
simple rheology is a good approximation, as long as capillary effects dominate (predic-
tion of Ωres within 5 % inaccuracy for D ≤ 0.2), for instance, for the model presented
in Part III. For high cluster damping, a continuous model is preferred (as presented in
Part I) and a distinction of the clusters as well as an oscillator model is not required.
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One major result is that

• oscillator-like characterization of the residual fluid via the set {m,ω0, D}

is appropriate in its intended field of application.Tab. E.1 and Tab. E.2 include the
main results of the numerical chapter for future application via analytical fitting
curves. They provide dynamic properties of clusters and their sensitivity for changes
of various geometrical and material parameters.
Typical characteristic frequencies were approximately a few thousand s−1 and all in-
vestigated clusters were weakly damped, with D values of a few percent. Investigated
clusters with larger volumes and/or wall distances showed lower resonance frequencies
and less damping. Larger pore spaces or larger fluid accumulations with lower solid-
fluid connection surface tend to support ganglia excitation. In contrast, smaller or
more tortuous versions of the investigated clusters had higher damping and resonance
frequencies. For applications, the main finding is

• the provided data of oscillating, liquid clusters, Tab. E.1 and Tab. E.2,

which serves as an important basis for the macroscopic model of wave propagation in
residually saturated porous media.
The results of the experimental investigation of a liquid bridge were similar to a
classical oscillator rheology for the entire frequency range of the first oscillation mode.
The regimes of viscous coupling, decoupling due to resonance effects, and a transition
to higher wave modes could be distinguished. The amplification function of the first
mode was well predicted by classification via mass, damping, and eigenfrequency.

22.2 Conclusions and outlook
Frequency dependence was investigated qualitatively and quantitatively, using se-
lected examples. The systematic overview of eigenfrequency and damping ratio is
important for application to wave propagation in residually saturated porous media,
as described in Part III. Furthermore, it is of fundamental interest for modeling theo-
ries that account for resonance effects of liquid clusters. Specifically, the investigated
types of clusters show resonance frequencies that exceed the seismic range. This be-
havior can be transferred to non-aqueous liquids with comparable properties. Hence,
the superior potential of mobilization techniques via wave stimulation is expected in
short-range situations [38, 198], for example, in laboratory samples or groundwater
remediation in the vadose zone.
Longer-range situations, as well as consideration of the capillary number, will lead
to a deeper understanding of the physical processes involved. Experimental results,
for example, in combination with Particle Image Velocimetry (PIV), can support the
physical interpretation and improve predictions of the impacts in specific applications.
The present theoretical work offers a very general basis for studies of various aspects
of oscillating fluid clusters. Several individual enhancements can be made, includ-
ing turbulent effects or non-Newtonian fluids. In addition to the investigated pinned
clusters, sliding clusters will be of particular interest in pre-wetted systems. Because
of large deformations and eddies, it will probably be advisable to consider alternative
numerical tools for sliding cluster motion, such as Smoothed Particle Hydrodynamics
(SPH). Another extension of vital importance is to include another liquid as the sec-
ond fluid phase, with its own inertia and viscosity. This step can extend the systematic
study to general combinations of arbitrary fluids.
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Summary
The central objective of this investigation was the propagation of linear, mechanical
waves in partially and residually saturated porous media. The general introduction
motivated the topic and elucidated the fundamentals of porous media theories and
wave propagation.
Part I developed a mathematical model for waves in partially saturated media on
the basis of fundamental physical relationships, including balance laws and constitu-
tive equations. The model allowed characterization of three longitudinal waves and
one shear wave. Frequency-dependent phase velocities and quality factors have been
studied for a variety of systems. Individual influences, including grain compressibility,
interfacial fluid-fluid areas, or mesoscopic losses were characterized with respect to
the corresponding wave properties.
Part II emphasized the importance of microscopic investigations on macroscopic theo-
ries. Frequency-dependent momentum exchange according to Biot was introduced via
dimensionless Navier-Stokes equations in a rigid tube. Subsequently, a macroscopic
characteristic frequency definition was generalized for weak solid frames, considering
the solid’s elasticity, inertia, and full-range upscaling. Microscopic, elastic tubes were
discussed with the help of specific examples and showed a deviation from the classical
rigid-tube assumption on the microscale.
Addressing the special case of residual saturation, Part III completes the macroscopic
wave model of Part I. The fluid phase of residual saturation was described in the form
of harmonic oscillators. These were distinguished with respect to their mass, eigen-
frequency, and damping. An additional attenuation mechanism, due to resonance
oscillations, was included. This made it possible to characterize the discontinuous
fluid clusters with respect to their individual influence on the dispersion relations.
The microscopic part of the two-scale approach was presented in Part IV. Oscillating
fluid clusters were theoretically described and classified via an oscillator-like rheology.
The latter proved to be an appropriate model for the frequency range of individual
oscillation modes. This was supported by the experimental study of a liquid bridge.
The systematic, numerical investigation provided specific data of various liquid clus-
ters for application.

The main findings can be summarized as follows:

Macroscale

• Mathematical model for linear, mechanical wave propagation in partially satu-
rated porous media

– hybrid model of less complexity if gases are involved

– flexible implementation to test individual phenomena

• Mathematical model for linear, mechanical wave propagation in residually sat-
urated porous media

– consideration of the heterogeneous structure of disconnected clusters via
their dynamic properties (ω0, D, m)

– additional damping mechanism due to resonance effects
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Microscale

• Oscillatory flow properties in rigid and elastic tubes

– generalized, characteristic, macroscopic frequencies (→ ω∗)

– further wave modes due to wall elasticity of deformable tubes

• Characterization of fluid cluster oscillations

– via an oscillator rheology

– frequency-dependent, dynamic properties

– database for different clusters

Conclusions
The model for continuous saturation clarified that specific physical conditions or re-
lationships have a distinct influence on wave properties. Consequently, wave propa-
gation can play a major role in the characterization of many aspects of partially sat-
urated porous media. The final, customizable set of equations provides information
about sensitivity and conditions and whether phenomena of interest can be detected
via wave propagation or not. On this basis, studies using propagating waves extend
other qualitative and quantitative research of properties such as interfacial areas or
elastic moduli.
For the case of residual saturation, the heterogeneous structure of disconnected clus-
ters differs significantly from a continuous phase with respect to its impact on wave
propagation. This difference is mainly due to resonance effects, which are caused
by fluid-fluid interfaces. It was important to distinguish between different kinds of
clusters and transfer appropriate properties to the macroscale. The advantage of this
two-scale approach relies on a compromise between preserving relevant information
on the one hand and availability as well as feasibility on the other.
Two parts about microscopic studies revealed their significance for an accurate de-
scription on the larger scale. The corresponding scale transfer proved to be highly
beneficial for the current work. In particular, the discussion about characteristic fre-
quencies illustrated the importance of a consistent approach on all considered scales.
Moreover, the upscaling process made limitations and loss of information clear, in
relation to, for instance, the oscillator rheology used for fluid clusters and stimulation
of microscopic wave modes.

In addition to the quantitative results and conceptual frameworks, specific conclu-
sions of the present work are:

• Individual phenomena have a distinct influence on wave properties, especially
in the frequency and saturation range.

• Two-scale interaction requires preservation of influential properties, specifically
dynamic properties for resonance effects in residually saturated porous media.

• Combination of different scales requires a consistent set of conditions and as-
sumptions.

• Microscopic and macroscopic understanding support each other mutually.
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A discussion was provided for each part and its individual sections. It remains to
be mentioned that the presented models rely on assumptions and act on specific sys-
tems. Generality was preserved as far as possible but had to turn into speciality
for specific investigations and quantitative conclusions. Similar to other theoretical
and experimental modeling approaches, it is important to have information about the
applicability and limitation of the results and the conclusions that are drawn. Fur-
thermore, experimental data that would be required to draw final conclusions about
the investigated systems is not currently available. For example, Brooks & Corey pa-
rameters, dynamic capillary pressure, or cluster distributions remain to be verified in
future experiments. This work can only be one further step towards the combination
of propagating waves and partially saturated porous media - interdependent with(in)
the fundament of theoretical, numerical, and experimental studies.

Outlook
Some questions have been answered and some answers have been questioned.25 Never-
theless, interesting investigations remain. Each discussed part has its own extensions
and ongoing research is motivated from many sides. Moreover, the frameworks allow
a flexible implementation of a variety of concepts. From the author’s point of view
and experience, three specific studies should be emphasized because of their scientific
significance:

• Waves in residually saturated porous media: relating microscopic, oscillator
properties and macroscopic, experimental observations such as attenuation or
mobilization.

• Stimulation of microscopic wave modes in highly elastic solid matrices.

• Analysis of frequency-dependent cluster properties: distinguishing between vol-
umetric and interface effects, for instance, numerically via dynamic particle
methods or experimentally via particle image velocimetry.

Finally, the author hopes that the present contribution will motivate and support
further research especially with the first goal mentioned in the introduction: under-
standing relevant physical principles.

25Based loosely on Pratchett [161].
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Appendix A

Material properties

SOLIDS (BULK MATERIALS)
material parameter symbol unit

effective/real density ρsR0 kg m−3

Young’s modulus Egrains Pa
Poisson’s ratio νgrains 1

material ρfR0 Egrains νgrains

silicone 1120 1.47× 106 0.499 787

steel 7900 200× 109 0.28

Table A.1: Material properties of bulk solid materials. They are primarily used for
the microscopic investigation of oscillations in elastic tubes in Part II. According to
a consensus in theories of porous media, the elastic parameters of the bulk solid are
indicated by the term grains. Properties of silicone were determined by measure-
ment of P-wave velocity and Young’s modulus. Note the silicone’s behavior close to
incompressibility (νgrains = 0.5).

When comparing elastic parameters of the following porous materials, consider the
difference between real and partial extra stresses, Eq. (5.19) and Eq. (5.21), and
that the corresponding elastic parameters differ by the factor of ns0. Also note the
naturally occurring fluctuations of material properties for natural, organic and non-
organic materials such as bones or rocks.
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SOLIDS (POROUS MATRIX)
material parameter symbol unit

effective/real density ρsR0 kg m−3

porosity φ0 1
intrinsic permeability ks m2

bulk modulus solid matrix Ks Pa
bulk modulus solid grains Kgrains Pa
shear modulus solid matrix µs Pa
skeleton deformation - grain pressure coupling Λgrains Pa

material ρsR0 φ0 ks Ks Kgrains µs

aluminum
foam 2700 0.937 2.71× 10−7 54× 106 68.6× 109 21× 106

Berea
sandstone 2650 0.19 1.88× 10−13 8× 109 36× 109 6× 109

bone
(normal) 1960 0.72 5× 10−9 3.9× 109 20.37× 109 1.6× 109

bone
(osteop.) 1960 0.95 5× 10−7 0.42× 109 20.37× 109 0.17× 109

loose soil 2600 0.3 1× 10−9 25× 106 35× 109 11.54× 106

Massilon
sandstone 2660 0.23 2.5× 10−12 1.02× 109 35× 109

(Λgrains=1010)
1.44× 109

Nivelsteiner
sandstone 2640 0.29 1.11× 10−11 9.25× 109 36.6× 109 6.73× 109

Table A.2: Material properties of porous solid materials. The bulk modulus of the
aluminum foam was calculated from its measured elastic modulus and an estimated
Poisson’s ratio of 0.33. The permeability of the aluminum foam was estimated via [60]
as (1/150) d2

p φ
3
0/(1 − φ0)2 with equivalent particle diameter dp = 440.95× 10−6 m.

Data for Berea sandstone is taken from [217], except for density of the solid grains that
is from [170]. Data of bone is from [196]. Data for (loose surface) soil is estimated on
the basis of [27, 201]. Data for Massilon sandstone is based on [151], [219], and [120]
(bulk modulus∗) with additional parameter Λgrains from [219]. Nivelsteiner properties
were taken from the comprehensive experimental results in [105] as averaged quantities
of four given samples.

*: The author wishes to express caution with respect to the bulk modulus Ks of (dry) Massilon
sandstone. Experimental data of Murphy [151] is often used to fit the material parameters but the
conversion between P-, E-, and K-waves requires appropriate care and may lead to confusion (cf.
the very similar tables of material data in [219] and [120]). Whereas (dry) sandstones typically show
a Poisson’s ratio around 0.2, Murphy [151] mentions a value of 0.02 for the total (fluid-saturated)
mixture in the investigated low-frequency regime. The latter value is particularly important for the
low-frequency behavior (when the entire mixture behaves similar to a single effective material) and
it seems to play a major role in the material-parameter determination in [120, 219].
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FLUIDS
material parameter symbol unit

effective/real density ρfR0 kg m−3

effective dynamic viscosity ηfR Pa s
bulk modulus Kf Pa
surface tension (adjacent to air) σf,air N m−1

material ρfR0 ηfR Kf σf,air

air (ambient conditions) 1.1 17.1× 10−6 1.4× 105 -

air (reservoir depth) 140 - 22× 106 -

bovine marrow (37 ◦C) 930 50× 10−3 2.0× 109 -

test ink (20 ◦C) 808.5 1.2× 10−3 - 70× 10−3

water 1000 1× 10−3 2.2× 109 70× 10−3

Table A.3: Material properties of fluids. Data of bovine marrow is taken from [196].
Information about the test ink, used in Chapter 21, is from the manufacturer’s data
sheet.

MATERIAL COMBINATIONS
material parameter symbol unit

Brooks&Corey parameter λBC 1
air entry/bubbly pressure pb Pa
parameter for dyn. extension of cap. pressure τS Pa s
residual liquid saturation slres 1
residual gas saturation sgres 1

material λBC pb τS slres sgres

Massilon sandstone,
water & air 1.5 50× 103 −1.59× 108 0.1 0.05

Nivelsteiner sandstone,
water & air 0.78 440 −6.74× 103 0.04 0.04

Table A.4: Properties of material combinations. Data for Massilon sandstone, water
& air is from [219] that is based on [151]. Data for the morphology of Nivelsteiner
sandstone, water & air is from [195], which is a data-fit based on [179] and on a typical
pc-sl curve from [185]. Dynamic parameters τS were determined via Eq. (5.48).





Appendix B

Wave equations for partial
saturation

B.1 Exchange of linearization and compositions
The linearization and composition of functions can be exchanged under certain con-
ditions. This is helpful if many and/or complicated functions need to be combined.
Let the tensors f and g be continuously differentiable functions, which can be lin-
earized and have a composition g ◦ f . The linearization point for f should be x0 and
the linearization point for g should be f0 := f(x0). Moreover, g0 := g(f(x0)) = g(f0)
and ∆x := x− x0.
The linearization of the composition around x0 is

(g ◦ f)lin,x0(x) = (g ◦ f)(x0) +
d
dε

∣∣∣∣
ε=0

(g ◦ f)(x0 + ε∆x)

= g0 +
∂g

∂f

∣∣∣∣
ε=0

· d
dε

∣∣∣∣
ε=0

f(x0 + ε∆x).

On the other hand, the composition of the linearized functions is

(glin,f0 ◦ flin,x0)(x) = g0 +
d
dε

∣∣∣∣
ε=0

g(f0 + ε∆flin,x0)

= g0 +
d
dε

∣∣∣∣
ε=0

g

(
f0 + ε

(
f0 +

d
dγ

∣∣∣∣
γ=0

(f(x0 + γ∆x))− f0

))

= g0 +
d
dε

∣∣∣∣
ε=0

g

(
f0 + ε

d
dγ

∣∣∣∣
γ=0

f(x0 + γ∆x)

)

= g0 +
∂g

∂f

∣∣∣∣
ε=0

· d
dε

∣∣∣∣
ε=0

(
f0 + ε

d
dγ

∣∣∣∣
γ=0

f(x0 + γ∆x)

)

= g0 +
∂g

∂f

∣∣∣∣
ε=0

· d
dγ

∣∣∣∣
γ=0

f(x0 + γ∆x) = (g ◦ f)lin,x0
(x).

Hence, linearization and composition of f and g can be exchanged. For complex
values, real and imaginary part need to be considered separately according to C ∼= R2.
Furthermore, the so-called Gateaux derivative is used as it is common in classical
continuum mechanics. Partial derivatives can be applied likewise via the chain rule.
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B.2 Simplification of linearized products
Let scalar f and tensor g be continuously differentiable, linearizable functions of the
same argument x. The linearization point is x0 with ∆x := x− x0, f0 := f(x0), and
g0 := g(x0). The linearization of the product becomes

(fg)lin,x0
(x) = f0g0 +

d
dε

∣∣∣∣
ε=0

(fg)(x0 + ε∆x)

= f0g0 + f0
d
dε

∣∣∣∣
ε=0

g(x0 + ε∆x) + g0
d
dε

∣∣∣∣
ε=0

f(x0 + ε∆x).

It simplifies to

f0
d
dε

∣∣∣∣
ε=0

g(x0 + ε∆x) = f0 glin,x0
(x), if g0 = 0,

g0
d
dε

∣∣∣∣
ε=0

f(x0 + ε∆x) = flin,x0
(x) g0, if f0 = 0.

Thus, if f or g vanish at the linearization point, the total expression simplifies and -
what is physically more important - information of the other term is only required at
the initial state. This state can be the equilibrium state, which is often well charac-
terized for porous media.
A specific example in the present investigations is volume fraction times pressure gra-
dient. This product appears in the momentum balance and depends on the volumetric
deformations. The pressure gradient is often assumed to vanish in equilibrium. Thus,
the volume fraction is only required to be known at the initial state.
Furthermore, material constants such as skeleton elasticity only need to be determined
at initial conditions when multiplied with the divergence of stress tensors vanishing
at equilibrium.

B.3 Algebra of the wave decomposition
The following properties have been used to transform the wave equations for a plane
wave. Therein, × indicates the cross product of vectors.

• div u⊥α = ik · u⊥α = 0

• rot u
‖
α = ik× u

‖
α = 0

• grad div uα = div grad uα + rot rot uα

• rot rot uα = rot rot u⊥α = −div grad u⊥α + grad div u⊥α = −div grad u⊥α

• grad div uα = grad div u
‖
α = div grad u

‖
α + rot rot u

‖
α = div grad u

‖
α

• div grad u = i2k2(nk · nk) u = −k2u

• ∂tu = −iω u

• ∂ttu = −ω2 u

• u
‖
α ⊥ u⊥α , thus, linearly independent

Note that other wave forms such as spherical waves may contain a dependence of
wave direction nk on location or time, which has to be considered for calculations of
the derivatives.
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B.4 Coefficients of the stiffness matrices

B.4.1 One solid and two fluid phases

CP =

λs + 2µs + c̃
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l c̃
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Note that the term
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3
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is also called the P-wave modulus accounting for the solid’s resistance.
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gR
0 )σφ

]

σεl =
Kl

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

) , σεg =
−Kg

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)
σφ =

Kl−Kg

φ0

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)
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ΠlR
εl

= −Kl, ΠlR
φ = −Kl/φ0, ΠlR

sl = −Kl/sl0

ΠgR
εg = −Kg, ΠgR

φ = −Kg/φ0, ΠgR
sl

= Kg/(1− sl0)

Hybrid model If the grains are assumed to be incompressible, i.e. Ks → ∞, the
derivatives of the fluid pressures with respect to the volumetric deformations, pfRεα ,
become directly:

plRεs = −Kl

 1

φ0
+

1

sl0

Kl−Kg

φ0

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)
 (1− φ0)

plRεl = −Kl

1 +
1

sl0

Kl

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)


plRεg =
Kl

sl0

 Kg

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)


pgRεs = −Kg

 1

φ0
− 1

1− sl0

Kl−Kg

φ0

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)
 (1− φ0)

pgRεl =
Kg

1− sl0

 Kl

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)


pgRεg = −Kg

−1 +
1

1− sl0
−Kg

∂p∆g|l

∂sl

∣∣∣
0
−
(
Kg

1−sl0
+ Kl

sl0

)


B.4.2 Biphasic mixture (one solid and one fluid)
For one single fluid phase, the stiffness matrix obtained by Biot, Eq. (11.3c), can be
used. In case of the rigid-grain assumption, a version of the P-wave stiffness matrix
with less complexity can be derived, for instance, from the case of three phases above
as

CP
biphasic,rigid grains =

(
−(2µs + λs)− (1−φ0)2

φ0
Kf −(1− φ0)Kf

−(1− φ0)Kf −φ0K
f

)
. (B.1)

This was introduced by Steeb [196] as the so-called hybrid model for a biphasic mix-
ture.



Appendix C

Analytical investigation of the
characteristic frequencies

The inverse quality factor of a biphasic medium, Q−1
χ = 2=kχ/<kχ with χ ∈ {P1,P2,S},

depends on the solutions of the wave number kχ. The squared wave number can be
written in terms of the matrix coefficients, cf. Eq. (11.3c),

k2
S =

1

µs

a11a22 − a2
12

a22
,

k2
P1,2 =

1

2

2SBWa12 − PBWa22 −RBWa11

PBWRBW − S2
BW

(
−1±

√
1−∆

)
,

∆ = 4
PBWRBW − S2

BW

2SBWa12 − PBWa22 −RBWa11
(a11a22 − a2

12),

√
1−∆

∆�1
≈ 1− ∆

2
− ∆2

8
− . . .

with abbreviation (
a11 a12

a12 a22

)
= ω2ABiot + iωBBiot.

It has been used that the square root of a complex-valued number a + ib can be
achieved from

a+ ib = (c+ id)2, a, b, c, d ∈ R,

d = ±
√

1

2

(
−a+

√
a2 + b2

)
,

c =
b

2d
.

A distinction of cases with respect to the sign of d is not necessary here, because
it appears as d2 in the required solutions. Furthermore, it is helpful to express the
inverse quality factor as Q−1

χ = ξχ +
√
ξ2
χ − 1, because

ξχ = <(kχ2)/=(kχ2)
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can be derived more easily from the eigenvalue formulation. For one dominating
diagonal element of the stiffness matrix, ξχ can be written in the form of

ξχ(ω) =[...]
ω

<(cJKD(ω/ωc,f))
− [...]

<(cJKD(ω/ωc,f)) + =2(cJKD(ω/ωc,f))

<(cJKD(ω/ωc,f))

1

ω

− [...]
=(cJKD(ω/ωc,f))

<(cJKD(ω/ωc,f))
,

where [...] represent constants depending on the entries of the density and damp-
ing matrices. Moreover, the necessary and sufficient conditions fur unique maxima
become

d
dω

Q−1
P1,S(ω) = 0⇔ d

dω
ξP1,S(ω) = 0,

d2

dω2
Q−1
P1,S(ω) < 0⇔ d2

dω2
ξP1,S(ω) < 0.



Appendix D

Upscaling of discontinuous fluid
clusters

Basic and preliminary definitions

Let Mcl,mic contain all countable (finitely or infinitely many) indices of the micro-
scopic clusters in one REV. Furthermore,Mω0

andMD contain all countable indices
of different occurring eigenfrequencies and damping ratios respectively. The volume
occupied by the fluid clusters with eigenfrequency ω0,k and damping ratio Dl is de-
noted as

Vkl =
⋃

j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

Vmic,j . (D.1)

The volume occupied by all clusters in one REV, i.e. by the entire discontinuous
phase, is

Vd =
⋃

[k,l]∈Mω0
×MD

Vkl. (D.2)

The following volume ratios can be derived from it:

nkl =
Vkl
VREV

, (D.3)

nd =
Vd
VREV

, (D.4)

αkl =
Vkl
Vd

=
nkl

nd
. (D.5)
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Mass and density of a cluster with undamped eigenfrequency ωk,0 and damping ratio
Dl becomes

mkl =
∑

j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,j , (D.6)

ρkl =
mkl

VREV
, (D.7)

ρklR =
mkl

Vkl
= ρklndαkl. (D.8)

Mass-weighted averaging of the microscopic cluster displacement yields the definition
of a macroscopic cluster displacement

ukl :=
1

mkl

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,jumic,j . (D.9)

Within the framework of a linear theory, the microscopic term mmic,jumic,j becomes
mmic,j,0umic,j after linearization around equilibrium. It follows that

ukl =
1

mkl,0

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,j,0umic,j ,

u̇kl =
1

mkl,0

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,j,0u̇mic,j ,

ükl =
1

mkl,0

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,j,0ümic,j

after linearization. Moreover, it is assumed that the adjacent solid walls (asw) move
like the solid phase in average

us ≈
1

mkl

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,juasw,j . (D.10)

Upscaling
Finally, the upscaling process can be accomplished with the parameters introduced
above. Averaging a microscopic variable (•)mic,j over one REV is executed systemat-
ically by

1

VREV

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

(•)mic,j = ndαkl
1

Vkl

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

(•)mic,j . (D.11)

In contrast to classical homogenization theories such as [86–88], integration over an
REV is replaced by summation over the clusters. This difference occurs because the
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microscopic discontinuous fluid phase is already modeled by a countable set of har-
monic oscillators. Additionally, the present upscaling procedure utilizes the linearized
version of the equations. This prevents the need for further terms (of higher order)
such as time-dependent mass change inside the REV.
Each part of the microscopic momentum balance, Eq. (15.3), is now averaged. It will
be used that the initial effective density of the clusters is assumed to be constant,
ρklR0 =: ρdR0 ≈ const. Moreover, the equation is upscaled in its linearized form around
equilibrium. It follows

1

VREV

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

mmic,j,0 ümic,j = nd0α
kl
0 m

kl
0 ükl = αkl0 ρ

d
0ükl,

1

VREV

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

[
mmic,j,0 ω

2
0,j (ümic,j − ümic,solid walls)

+2mmic,j,0 ω0,j Dj (u̇mic,j − u̇mic,solid walls)]

=αkl0 ρ
d
0

[
ω2

0,k (ukl − us) + 2ω0,kDl (u̇kl − u̇s)
]
,

1

VREV

∑
j∈Mcl,mic
ωj,0=ωk,0
Dj=Dl

− p̂jmic =: −p̂kl.

Expansion by mkl/mkl has been used in the derivation process. Applying the har-
monic approach26, Eq. (5.52), to the displacements and combining the single terms
yields

αkl0 ρ
d
0ω

2ukl = αkl0 ρ
d
0

[
ω2

0,k (ukl − us)− 2ω0,kDl ω i (ukl − us)
]

= −p̂kl. (D.12)

The left equation in Eq. (D.12) can be used to express ukl by us as

ukl =
ω2

0,k − 2ω0,k ωDl i

(ω2
0,k − ω2)− 2ω0,k ωDl i

us. (D.13)

This step eases the set of equations because the oscillator displacements do not need
to be solved. If the oscillator displacements are of particular interest, Eq. (D.13)
is suggested for their determination rather than solving an eigenvalue formulation
similar to Eq. (5.56) with a matrix size that increases with the number of oscillators.
Furthermore, momentum interaction with the solid can be written as

p̂kl = −αkl0 ρ
d
0

(
ω2

0,k − 2ω0,k ωDl i
)( ω2

0,k − 2ω0,k ωDl i

(ω2
0,k − ω2)− 2ω0,k ωDl i

− 1

)
us. (D.14)

26Note that Steeb et al. [198] used a harmonic approach of e+iωt instead e−iωt for the single
oscillator. The different sign does not contradict the results of the current framework.
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Distinction with respect to the eigenfrequencies only
An approach of less complexity is achieved by exclusive differentiation of the eigen-
frequencies. Following the averaging process above, the damping ratio becomes an
averaged value for all clusters of same eigenfrequency ω0,k as

D∗k =

∑
j∈Mcl,mic
ωj,0=ωk,0

mmic,j,0 (u̇mic,j − u̇mic,solid walls)Dj

∑
j∈Mcl,mic
ωj,0=ωk,0

mmic,j,0 (u̇mic,j − u̇mic,solid walls)
. (D.15)



Appendix E

Investigation of oscillating fluid
clusters

E.1 Numerical data
Specific data is of interest for comparison with other investigations and is, therefore,
presented in a compact form. The results of the systematic, numerical investigation
of oscillating fluid clusters are given in the following.

E.1.1 Numerical results
Model I

Initial values:

ρlR0 [kg m−3] ηlR0 [Pa s] σlg
0 [N m−1] θYoung,0 [◦] V0 [m3] Λ0 [1] l0 [m] R0 [m]

1000 0.001 0.07 90 7.85× 10−10 2 0.001 5× 10−4

Variations:

transversal oscillations parallel oscillations

ΘYoung,0 [◦] ω0 [s−1] D [1] ω0 [s−1] D [1] A∗lg [10−6 m2] A∗ls [10−6 m2]

34 855.3842 0.035165 1157.7258 0.032229 4.021 3.262
50 1096.8329 0.023033 1671.452 0.021658 3.491 2.550
64.7 1234.6209 0.018149 2087.7955 0.018533 3.250 2.110
78.3 1269.5184 0.017209 2276.7791 0.01519 3.152 1.800
90 1239.4374 0.015576 2426.1786 0.014015 3.142 1.571
99.6 1183.4079 0.015039 2473.8911 0.012591 3.143 1.375
107.2 1116.1247 0.013781 2459.3475 0.011935 3.180 1.240
112.9 1059.6556 0.013498 2426.0997 0.011464 3.210 1.130
116.7 1021.7475 0.013374 2407.4805 0.010385 3.240 1.065

∗: equilibrium interface areas for different contact angles are provided from numerical results because
they cannot be derived easily.
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transversal
oscillations:

ρ
lR
/
ρ
lR0

η
lR
/
η
lR0

σ
lg
/
σ
lg0

V
/
V
0

Λ
/
Λ
0

ratio
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]

1/8
3472.6223

0.030542
1246.671

0.003411
433.9302

0.037673
3453.0877

0.021363
3495.0059

0.049862
1/4

2462.2946
0.024076

1244.2207
0.0064096

616.7899
0.024614

2445.2961
0.019748

2475.1415
0.034183

1/2
1749.4788

0.018892
1244.2544

0.0097593
875.2667

0.01978
1750.4323

0.016608
1745.9167

0.02594
1

1239.4374
0.015576

1239.4374
0.015576

1239.4374
0.015576

1239.4374
0.015576

1239.4374
0.015576

2
877.2365

0.012
1232.3684

0.024546
1755.207

0.012044
877.5398

0.014658
861.9266

0.0090938
4

622.1281
0.0099158

1220.9227
0.038106

2483.4725
0.0084099

620.9242
0.013435

8
440.3388

0.0078071
1205.7276

0.05832
3520.0864

0.0073324
439.1106

0.012455

parallel
oscillations:

ρ
lR
/
ρ
lR0

η
lR
/
η
lR0

σ
lg
/
σ
lg0

V
/
V
0

Λ
/
Λ
0

ratio
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]
ω
0

[s −
1
]

D
[1

]

1/8
6864.6635

0.029895
2435.3566

0.0033244
851.7916

0.031078
6830.6548

0.017991
26113.0792

0.039245
1/4

4853.0682
0.022122

2435.3778
0.0053371

1206.2981
0.02276

4848.717
0.01547

13405.6902
0.036035

1/2
3418.0449

0.016093
2430.7288

0.0088942
1707.6301

0.016864
3433.7855

0.014296
5873.4781

0.021378
1

2426.1786
0.014015

2426.1786
0.014015

2426.1786
0.014015

2425.9403
0.014015

2426.1786
0.014015

2
1718.8101

0.010419
2417.1826

0.02177
3452.4672

0.009853
1716.8471

0.012294
755.2421

0.011685
4

1213.0154
0.0086385

2413.9829
0.040815

4833.3018
0.0058352

1210.7098
0.011266

8
859.3808

0.0072122
2404.3198

0.071523
6889.5486

0.0051407
869.0922

0.010569
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Model II

Initial values:

ρlR0 [kg m−3] ηlR0 [Pa s] σlg
0 [N m−1] θYoung,0 [◦] V0 [m3] Λ0 [1] l0 [m] R0 [m] τ0 [1]

1000 0.001 0.07 90 7.85× 10−9 20 0.01 5× 10−4 0

Variations:

V/V0 Λ/Λ0 l/l0

ratio ω0 [s−1] D ω0 [s−1] D ω0 [s−1] D

1/100 6121.3796 0.088025
1/10 1954.0498 0.068479 629.6177 0.018289 1989.049 0.026513
1 623.5168 0.050726 623.5168 0.050726 623.5168 0.050726
10 198.9052 0.037008 594.1154 0.14551 192.8236 0.11427
25

ηlR/ηlR0

ratio ω0 [s−1] D

1/100
1/10 632.1859 0.0065448
1 623.5168 0.050726
10 574.8614 0.25032
25 568.2999 0.55112

τ [1] (R, V = const.)

τ [1] ω0 [s−1] D

0 623.5168 0.050726
1/4 632.2969 0.050943
1/2 635.5441 0.052574
1 626.5519 0.057818
2 654.2157 0.065786

Frequency dependence

Initial values:

initial values V0 [m3] λ0 [1] l0 [m] R0 [m] τ0 [1]

model I, small 7.85E-16 2 1.00E-5 5.00E-6 -
model I, big 7.85E-7 2 1.00E-2 5.00E-3 -

model II, small 7.85E-15 20 1.00E-4 5.00E-6 0
model II, big 7.85E-6 20 1.00E-1 5.00E-3 0

Material parameters are initial values as defined above.

Variations:

model I, small, transversal oscillations:

ρlR/ρlR0 ω0 [s−1] D [1] N [1] c [kg s−2] d [10−9 kg s−1]

100 123942.6984 0.0150 309.822 1.207 292.559
10 388654.1452 0.0325 97.112 1.186 198.234
1 1199312.0032 0.0647 29.919 1.129 121.934
0.1 3705759.2590 0.1399 9.173 1.079 81.471
0.01 11598215.7563 0.3888 2.671 1.057 70.833
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model I, big, transversal oscillations:

ρlR/ρlR0 ω0 [s−1] D [1] N [1] c [kg s−2] d [10−6 kg s−1]

10 12.5756 0.0053 3143.857 1.242 1038.235
1 39.3697 0.0082 984.209 1.217 509.119
0.1 123.8879 0.0157 309.682 1.205 304.845
0.01 387.1066 0.0331 96.724 1.177 200.698

0.0001 3712.5430 0.1348 9.197 1.083 78.587
0.00001 11671.3996 0.3891 2.688 1.070 71.332

model I, small, parallel oscillations:

ρlR/ρlR0 ω0 [s−1] D [1] N [1] c [kg s−2] d [10−9 kg s−1]

100 243177.1711 0.0128 607.8933 4.6445 487.982
10 764591.4105 0.0320 191.0498 4.5914 384.686
1 2389432.2355 0.0888 59.4999 4.4841 333.264
0.1 7484650.7963 0.2531 18.1024 4.3998 297.566

model I, big, parallel oscillations:

ρlR/ρlR0 ω0 [s−1] D [1] N [1] c [kg s−2] d [10−6 kg s−1]

10 24.5301 0.0044 6132.466 4.726 1689.079
1 77.5717 0.0070 1939.244 4.726 858.989
0.1 242.9437 0.0191 607.249 4.636 728.007
0.01 764.7981 0.0332 191.094 4.594 398.245

0.0001 7455.3265 0.2567 18.014 4.365 300.628

model II, small:

ρlR/ρlR0 ω0 [s−1] D [1] N [1] c [kg s−2] d [10−9 kg s−1]

1000 19793.9393 0.0199 494.750 3.077 6189.845
100 61924.7694 0.0516 154.606 3.012 5016.179
10 190869.7971 0.1156 47.398 2.861 3464.392
1 575327.1543 0.2503 13.925 2.600 2261.654
0.5 808642.5622 0.3299 9.542 2.568 2094.962

model II, big:

ρlR/ρlR0 ω0 [s−1] D [1] N [1] c [kg s−2] d [10−6 kg s−1]

10 6.3078 0.0070 1576.911 3.125 6934.599
1 19.8624 0.0201 496.459 3.099 6284.573
0.1 62.1882 0.0499 155.276 3.037 4878.584
0.01 190.6260 0.1148 47.342 2.854 3436.312
0.001 575.8403 0.2493 13.941 2.604 2255.350
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E.1.2 Fitted ω0- and D-relationships

model δ a0 a1 a2

I, trans. ω0(δ) [s−1] ≈ a0 δ
a1 + a2

ρlR [kg m−3] 3.7785× 104 -0.4941 -5.5282
ηlR [Pa s] −1.2061× 103 0.6850 1.2495× 103

σlg [N m−1] 4.7106× 103 0.5013 -3.1055
V [m3] 0.0436 -0.4896 -12.7107
Λ [1] 1.2454× 103 -0.7407 455.5227

ω0(δ) [s−1] ≈ a0 + a1 δ + a2 δ
2

ΘYoung [◦] 40.6290 30.6553 -0.1916

I, paral. ω0(δ) [s−1] ≈ a0 δ
a1 + a2

ρlR [kg m−3] 7.7624× 104 -0.5028 14.7913
ηlR [Pa s] -194.8149 0.3010 2.4498× 103

σlg [N m−1] 9.2066× 103 0.5018 -1.3399
V [m3] 0.0739 -0.4963 -8.0223
Λ [1] 7.7757× 103 -0.9185 −1.5940× 103

ω0(δ) [s−1] ≈ a0 + a1 δ + a2 δ
2

ΘYoung [◦] -475.9924 57.3362 -0.2795

II ω0(δ) [s−1] ≈ a0 δ
a1 + a2

V [m3] 0.0597 -0.4959 -0.3258
Λ [1] -0.9950 0.6830 631.2151
l [m] 62.5843 -0.5011 -5.6027

ηlR [Pa s] -237.6737 0.2470 659.5487

ω0(δ) [s−1] ≈ a0 + a1 δ + a2 δ
2

τ [1] 628.5854 -2.9795 7.5994

Table E.1: Fitting of ω0 for variations δ. Most variations cover a range of factors
1/8 to 8, except for slenderness and the special cases of Young’s contact angle and
winding. Further note that ω0 increases very accurately by the factor

√
2 for each

doubling of σlg or bisection of ρlR, V , or l in the investigated range of low damping,
which is indicated by exponents a1 close to ±0.5.
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model δ b0 b1 b2

I, trans. D(δ) [1] ≈ b0 δb1 + b2

ρlR [kg m−3] 0.1614 -0.3531 0.0011
ηlR [Pa s] 1.0984 0.6033 -0.0013
σlg [N m−1] 0.0022 -0.5645 0.0045
V [m3] 1.1219× 10−5 -0.3045 0.0090
Λ [1] 0.0395 -0.3532 -0.0150

ΘYoung [◦] 8.5945 -1.6607 0.0104

I, paral. D(δ) [1] ≈ b0 δb1 + b2

ρlR [kg m−3] 0.2951 -0.5072 0.0042
ηlR [Pa s] 4.4395 0.8601 0.0018
σlg [N m−1] 0.0054 -0.3812 -0.0019
V [m3] 4.7021× 10−4 -0.1507 0.0024
Λ [1] 0.0534 -0.2063 -0.0300

ΘYoung [◦] 1.0522 -1.0149 0.0027

II D(δ) [1] ≈ b0 δb1 + b2

V [m3] 0.0235 -0.0732 -0.0411
Λ [1] 0.0122 0.4654 0.0014
l [m] 0.2694 0.4190 0.0116

ηlR [Pa s] 13.1007 0.8636 0.0083

D(δ) [1] ≈ b0 + b1 δ + b2 δ
2

τ [1] 0.0500 0.0060 9.7862× 10−4

Table E.2: Fitting of D for variations δ. Most variations cover a range of factors
1/8 to 8, except for slenderness and the special cases of Young’s contact angle and
winding.
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E.2 Experimental data
The following table summarizes the experimental results of the driven oscillations
described in Chapter 21.

stimulation frequency Ω [s−1] amplification function Vamp [1]

6.14 1.04
30.68 1.04
30.68 1.06
62.89 1.08
92.04 1.40
93.18 1.16
126.55 1.52
156.47 2.16
156.47 2.25
184.08 5.00
188.68 3.62
202.49 10.00
211.69 13.33
211.69 7.50
220.89 13.33
220.89 7.92
230.10 10.50
239.30 6.83
248.51 11.00
248.51 6.75
285.32 5.50
285.32 3.00
312.93 2.50
349.75 1.33
377.36 1.00
404.97 1.50
441.79 0.75
506.21 2.00
561.44 1.20

943.40 4.17

Table E.3: Experimental results of a stimulated, oscillating liquid bridge. The stimu-
lation frequency was determined via an FFT of the beam oscillations while the mea-
sured amplification function relates the movement of the liquid-bridge center to the
movement of the beams. The last value is mentioned as a representative, distinctively
captured, higher oscillation mode.





Appendix F

About objectivity and the
initial configuration in
engineering literature

F.1 Introduction
Objectivity or material frame indifference is a term that is widely used in physics
and theoretical engineering science. The following considerations focus on the use
of objectivity in the framework of continuum mechanics as it is used in engineering.
Other definitions of objectivity - although connected by the same basic concept - are
out of the current scope, including the enhancement of classical Newton’s mechanics
to the theory of relativity.
Even in continuum mechanics, there does not seem to be a common unique definition
of objectivity [6, 12, 90, 126]. Rather, there seem to be a rough, tacit consent of its
meaning or use. In theoretical continuum mechanics, an objective quantity is often
defined as a quantity that is independent of the observer. For example, a velocity is
not objective but subjective, because its value can appear differently to two observers
moving with their own, possibly different velocities. On the contrary, a velocity dif-
ference is objective because the observer velocities cancel out in its determination.
Consequently, a physical system that independent of any observer is assumed to de-
pend solely on objective quantities. This fact is used to limit and reformulate possible
dependencies or relationships determining the system’s behavior. However, confusion
can occur - consciously or unconsciously - due to a misleading definition in engineering
science including textbooks and lecture notes. The mistake is not wrong by default
but subject to misunderstanding and misinterpretation within a missing strict consen-
sus. This should be investigated and highlighted here as it remains a possible source
of wrong conclusions.
The mentioned misunderstanding has been pointed out, for example, in the contri-
bution of Liu [126] but, to the authors best knowledge, often remains disregarded in
actual works on continuum mechanics. A scientific dispute between Liu and Murdoch
developed about further implementation and application to constitutive equations
[127, 150], but it does not affect the point of interest addressed in this chapter.
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F.2 Recapitulation
The theory of continuum mechanics models, amongst others, the physical behavior of
fluids and solids. The conservation of momentum for solids includes the description
of stresses depending on strain. Furthermore, the definition of strain depends on a
deformation between two configurations. Therefore, a so-called initial/reference con-
figuration at initial time t0 is often introduced. This can be a configuration where all
quantities are known, for example, the equilibrium state.
From that reference time t0, the physical system develops in time t. Moreover, a
length dX := dx(t0) between two points changes to dx(t). dX belongs to the ini-
tial/reference configuration, whereas dx belongs to the current configuration.
An arbitrary point P should be described by one observer as P =

∑
i pibi; bi taken

as the basis of the observer and pi as the corresponding coordinates. Another ob-
server should have the basis b̂i with description P =

∑
i p̂ib̂i. Fore the sake of

convenience, the bases {b1,b2,b3} and {b̂1, b̂2, b̂3} should be orthonormal bases of
a three-dimensional space. This simplification is not necessary, but can be chosen
without limitation of validity of the following findings. It includes the assumption
that both observers measure with the same units (for example, no transformation
between angles and lengths or meters and feet).

P

O
Ô

b1

b2
b3

b̂1

b̂2

b̂3

c

Q

Figure F.1: One point for two observers. The length between the point and the origin
of measurement is obviously different.

A possible difference between the coordinates determined by the two observers can
be described by an Euclidean transformation27 as

p̂i =
∑
j

Qijpj + ci. (F.1)

Herein, Qij describes a rotation between both observers with |detQij | = 1 and QT
ij =

Q−1
ij , whereas ci describes a translation between the origins. They depend on the

relationship of the two observer systems, {b1,b2,b3} with origin O and {b̂1, b̂2, b̂3}
with origin Ô.

27Note that a distinction of an active and a passive interpretation appears in some literature.
It is often linked to moving from one observer to the other for the same point vs. moving one
point to another position for the same observer, so that both interpretations describe the same
transformation. Also note that some textbooks reduce the Euclidean transformation to Galilean
transformation implying a constant Q.
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Considering geometric properties and focusing on strain measurements, a vector a is
now called to be objective, if both observers measure the same length for it. This can
be expressed by the fact that

âi =
∑
j

Qijaj . (F.2)

Because Qij is orthogonal, the length of objective vectors does not change between
both observers, i.e. ‖ai‖ = ‖âi‖. It is observer-invariant. In an analogous manner,
one can define a tensor T =

∑
i,j Tij bi ⊗ bj =

∑
i,j T̂ij b̂i ⊗ b̂j to be objective if it

does not change the length of a vector or if the transformation between two observers
is

T̂ij =
∑
k,l

QikTklQ
T
lj . (F.3)

These definitions of objectivity were taken from literature, cf. [6, 12, 90, 126], and
are limited as we will see now.

∆P

O
Ô

b1

b2

b3

b̂1

b̂2

b̂3

c

Q

Figure F.2: A vector between two points for two observers. The distance between
both points is identical for both observers.

F.3 Source of misunderstanding
Up to now, two important terms have been introduced: initial/reference configuration
and objectivity. Many textbooks state that a vector difference is objective. It follows
for dx that

dx̂i =
∑
j

Qijdxj . (F.4)

On the contrary, many authors state for dX = dx(t0) of the initial/reference config-
uration that

dX̂i = dXj (F.5)

and dX would not be objective. Furthermore, they conclude that the deformation
tensor F = dx/dX is also not objective, because their deduction

dx̂i

dX̂j

=
∑
k

Qik
dxk
dXj

. (F.6)

contradicts the objectivity requirement for tensors Eq. (F.3), cf. [6, 12].
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This is not appropriate in general. The source of misunderstanding is Eq. (F.5). The
fact that is stated in Eq. (F.5) is an assumption without justification, because:

• Contradiction: A so-called reference/initial configuration is a subjective iden-
tification of a special time t0. This identification is independent of arbitrary
observers and the definition of objectivity. Every time could be chosen to be
the reference time. Thus, at every time, vector differences would not be objec-
tive. This is a contradiction within the theoretical framework itself.

• Example: Let two arbitrary observers measure the length of a beam at a
time t1. Subsequently, the beam is stretched and the observers measure the
new length at time t2. The times t1 and t2 should be arbitrary times. An
initial/reference configuration should not be accounted for and is not required
for the definition of objectivity. The ratio of both lengths will be the same for
both observers and therefore objective, even if the orientation or velocity of the
beam is different with respect to their system.

• Missing proof : A direct proof of Eq. (F.5) does not exist, but is introduced
as a simple statement. It remains an assumption.

There can be many reasons for stating Eq. (F.5). For example, analytical and nu-
merical calculations in solid continuum mechanics practically always use the reference
configuration to address coordinates of material points. For t > t0, material points
move, each with its own coordinate system and origin. Thus, it suggests itself to say
that all material points share the same frame at t = t0. However, the system of a
material point and that of a measuring observer should not be mixed.
Sometimes, the description via tensorial notation and index notation is also mixed.
Note that, first of all, a point P remains the same point P in tensorial notation for
two observers. The difference for both observers consists of what they (can) measure,
i.e. the coefficients. No rotation or translation exists or can be determined if the
bases of two observers are not specifically taken into account. Thus, a tensorial (just
basis-free) notation should be used with appropriate care.

F.4 Explanation

In order to clarify the situation finally, one has to consider the meaning of Eq. (F.5).
It assumes that the two observers share the same origin and basis at t0. This implies
that Qij = δij and ci = 0 at t = t0. Thus, one can write

dx̂i

dX̂j

=
∑
k

Qik
dxk
dXj

=
∑
k

Qik
dxk
dXl

δT
lj =

∑
k,l

Qik(t)
dxk
dXl

QT
lj(t0). (F.7)

This formulation adds an important, missing term: QT
lj(t0). Simply, the assumption

of Qlj(t0) = δij is too strict. In contrast, Qlj(t0) should be an arbitrary rotation.
At least, it is obvious that different transformations can appear for different times.
As a matter of course, the comparison of measurements between two observers re-
quires consideration of the time when the measurements were taken. Q(t) belongs
to dx of the current configuration and Q(t0) belongs to dX of the initial/reference
configuration. Just, the assumption of identical observers at t0 is a, by default, un-
proven condition or assumption. Generally, Q(t0) can be an arbitrary transformation
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between the observers. It was also revealed by Liu [126] and Haupt [90] with notation
Q(t0) = K. In conclusion,

dX̂i = Qij(t0) dXj . (F.8)

should be preferred to Eq. (F.5). With this extension of arbitrary Q(t0), also dX
and the deformation tensor become objective quantities (even within the restrictive
assumption of identical observers at t0). It coincides with the three counter-arguments
from above and the initial misunderstanding is solved.
A more general objectivity condition for a quantity Ξ that depends on vectors a(ta),
b(tb), c(tc), . . . , could be

Ξ(âi, b̂j , ĉk, . . .)=Ξ

(∑
l

Qil(ta)ai,
∑
l

Qjl(tb)bj ,
∑
l

Qkl(tc)ck, . . .

)
. (F.9)

Such definition of objectivity considers that measurements are compared at the time
they were taken. Nevertheless, further discussion exceeds the scope of this comment.
It should be summarized that many works using objectivity in continuum mechanics
assume identical observers at the initial/reference state. This is an assumption and
no conclusion. With it, the definition of objectivity is limited and appropriate care
has to be taken for use and comparison. In general continuum mechanics, there is no
unique definition of objectivity and specific definitions are not wrong by default but
different.
In any case, it is important to know the appropriate, physical interpretation of the
definition used. Equation Eq. (F.9) should give a first idea of a possible objectivity
condition in a sense of observer-invariant measurements. A more comprehensive the-
ory with alternative and further objectivity definitions can be found, for example, in
Liu’s contribution [126].
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