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Abstract

This thesis concerns the influence of the fluid compressibility on the flow behavior
of granular-fluid mixtures. Experiments on the outflow of a fluid-saturated granular
medium from a laboratory-scale test rig are presented. The fluid phase consists of
tap water at room temperature, while for the solid phase we have used spherical glass
beads with diameters of 0.5, 2 and 4 mm, and mixtures thereof. The solid particle
flow is captured on video and measured by Particle Image Velocimetry (PIV), and
the pore fluid pressure is measured by absolute pressure sensors and highly sensitive
dynamic pressure sensors. The results reveal strong interaction and feedback effects
between the solid’s flow behavior and the pressure of the pore fluid. The pore fluid
pressure appears to have an outstanding influence on the overall flow process. The
fluid pressure is in turn influenced by the porosity evolution of the solid phase. The
dependence of the pressure on porosity can be explained by taking into account the
fluid compressibility.
Based on the above observations, mass and momentum balances for a compressible
fluid and an incompressible solid phase are employed in the development of a con-
tinuum mixture model. Due to the complexity of the experimentally observed flow
pattern, the system of equations is closed with constitutive equations for the more
simple case of batch sedimentation. The underlying balance equations are kept in
their general form to allow for future extensions of the model to more complex flows.
Batch sedimentation and the experimentally observed flow are linked by the fact that
a relative motion between the phases and the full range of solid volume fractions are
observed in both processes. However, batch sedimentation involves smaller Reynolds
numbers and simpler boundary conditions. Due to the compressibility of the fluid
phase, both transport phenomena and the propagation of acoustic waves are cap-
tured by the model.
The mixture model for batch sedimentation is numerically implemented into a dis-
continuous Galerkin framework. Acoustic waves reaching the boundaries of the com-
putational domain are treated by special open boundary conditions that allow their
free outflow. A number of standard Computational Fluid Dynamics benchmarks is
used to verify the performance and accuracy of the numerical scheme. Then, numer-
ical calculations of batch sedimentation are presented. The results for steady-state
sedimentation are found to be in very good agreement with an analytical solution.
Moreover, in the very beginning of the simulations, dynamic effects are observed that
are due to the compressibility of the fluid phase and that have not yet been reported
in the literature.





Zusammenfassung

Diese Dissertation beschäftigt sich mit dem Einfluss der Fluidkompressibilität auf das
Fließverhalten granular-fluider Mischungen. Zunächst werden experimentelle Ergeb-
nisse zum Ausfließen eines fluidgesättigten granularen Mediums aus einem kleinskali-
gen Behälter gezeigt. Die Fluidphase besteht aus Leitungswasser bei Raumtemper-
atur, während für die granulare Phase runde Glaskugeln mit Durchmessern von 0,5,
2 und 4 mm, sowie Mischungen derselben verwendet werden. Das Fließverhalten der
Glaskugeln wird per Video und mittels Particle Image Velocimetry (PIV) aufgezeich-
net. Der Porenfluiddruck wird mittels Absolutdrucksensoren sowie hochempfindlichen
dynamischen Drucksensoren gemessen. Die Resultate zeigen starke Interaktions- und
Kopplungseffekte zwischen dem Fließverhalten des fluidisierten granularen Festkör-
pers und dem Porenfluiddruck. Der Porenfluiddruck scheint einen herausragenden
Einfluss auf den gesamten Fließprozess zu haben. Der Fluiddruck wird wiederum
von der Porositätsentwicklung der Festkörperphase beeinflusst. Die Abhängigkeit des
Druckes von der Porosität lässt sich erklären, wenn das Porenfluid als kompressibel
angenommen wird.
Basierend auf den o. g. Beobachtungen werden Massen- und Impulsbilanzen für
ein kompressibles Fluid und eine inkompressible Festkörperphase verwendet, um
ein Kontinuums-Mischungsmodell zu entwickeln. Aufgrund der Komplexität des ex-
perimentell beobachteten Fließprozesses werden jedoch zunächst Konstitutivgesetze
für das einfachere Beispiel eines Sedimentationsprozesses eingesetzt. Die zugrun-
deliegenden Erhaltungsgleichungen bleiben aber in ihrer allgemeinen Form erhal-
ten, um eine spätere Erweiterung des Modells auf komplexere Fließprozesse zu er-
möglichen. Die Ähnlichkeit zwischen dem Sedimentationsprozess und dem experi-
mentell beobachteten Fließprozesses ist durch die in beiden Prozessen auftretende Rel-
ativbewegung der beiden Phasen sowie die identische Bandbreite auftretender Volu-
menanteile des Festkörpers gegeben. Sedimentation ist jedoch mit kleineren Reynold-
szahlen und einfacheren Randbedingungen verbunden. Aufgrund der Kompressibil-
ität der Fluidphase werden sowohl Massentransportprozesse als auch die Ausbreitung
akustischer Wellen im Modell abgebildet.
Das Mischungsmodell für Sedimentation wird numerisch mittels eines diskontinuier-
lichen Galerkin-Verfahrens implementiert. Akustischen Wellen wird der Austritt über
die Ränder des Rechengebiets mittels spezieller offener Randbedingungen ermöglicht.
Die Funktion und Exaktheit der numerischen Methode wird mittels einiger Standard-
Benchmarks der numerischen Fluiddynamik verifiziert. Schließlich werden Simula-
tionsergebnisse eines Sedimentationsprozesses gezeigt. Die Resultate für stationäre
Sedimentation sind in sehr guter Übereinstimmung mit einer analytischen Lösung.
Des Weiteren werden zu Beginn der Simulationen dynamische Effekte beobachtet, die
der Kompressibilität der Fluidphase zuzuschreiben sind und über die in der Literatur
bisher nicht berichtet wurde.
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Chapter 1

Introduction

1.1 Mechanical models for solid-fluid mixture flows

The subject of this thesis is the flow behavior of fluidized aggregates of solid grains
and a continuous fluid filling the void space between the grains. The outflow of
a granular-fluid mixture from a laboratory test rig and batch sedimentation serve
as examples of such flows. In the field of dry fluidized granular materials, numerous
problems have been investigated, cf. e.g. [34, 69]. However, if a fluid is added into the
pore space, the situation is surprisingly more complex. Brennen [11] notes: "All of the
above analysis [concerning dry granular flows] assumed that the effect of the interstitial
fluid was negligible. When the fluid dynamics of the interstitial fluid have a significant
effect on the granular flow, analysis of the rheology becomes even more complex and
our understanding is quite incomplete". Although this statement is already a bit
dated, it’s message is as relevant as ever. Next we give an overview of the scientific
fields where fully saturated granular flows are investigated, and a classification of
mathematical modeling methodologies used in the respective contexts.
Depending on the problem and the scale of interest, two principally different ap-
proaches to describe mixtures of a continuous fluid and dispersed gaseous, fluid or
solid particles are found in the literature: in microscopic models, an equation of mo-
tion is solved for each particle. Macroscopic, or continuum models, on the other hand,
investigate the averaged motion of the constituents or phases of the mixture within a
Representative Elementary Volume (REV), cf. [23, 75].
Binary, i.e., two-phase mixture models based on a microscopic formulation are pro-
posed e.g. by Yazdchi et al. [87]. A mesh-free Discrete Element Method (DEM) is
used to numerically calculate the motion of single solid particles, while the flow of the
continuous fluid is usually solved using "classical" Stokes- or Navier-Stokes solvers
based on a Finite-Volume, Finite-Difference or Finite-Element schemes. Newer con-
tributions (e.g. [55, 57]) propose to use mesh-free methods, as Lattice-Boltzmann
(LB) or Smoothed Particle Hydrodynamics (SPH), also for the description of the
continuous phase. The coupling between solid and liquid phase can be achieved using
a staggered scheme, where the motion of one of the phases within one time step and
the corresponding interaction forces are calculated first, and the results enter the
computation of the motion of the other phase. Microscopic models are especially
suitable for small-scale problems involving a restricted number of particles; due to
the computational cost, they are not suitable for high particle densities.
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2 CHAPTER 1. INTRODUCTION

On the other end of the model classification are macroscopic models on the continuum
scale. Such models describe the microscopic, multi-phase composition of the mixture
on a macroscopic scale by incorporating the volume fraction of each phase; and by
attributing a set of balance equations to each continuum phase instead of each mi-
croscopic particle. This approach is prevalent in numerous fields dealing with high
particle concentrations, e.g. fluidized beds [3, 33, 44], avalanches [39, 43], debris flows
[39, 80], sediment transport [13, 14, 30], slurry transport in pipelines [62], and soil
liquefaction [25].
A possible subdivision of the macroscopic continuum models could be according to
the volume fraction of the dispersed phase. Many commercial and open-source codes
in Computational Fluid Dynamics (CFD) appear to be structured along a similar
classification.

• Class A

– Mass balance equation for the mixture as a whole

– Momentum balance equation for the mixture as a whole

– This class of models is usually implemented if the physical problem involves
a low volume fraction of the dispersed phase. The resulting equations are
very similar to the Navier-Stokes equations, where the viscosity of the
mixture as a whole is determined as a function of the volume fraction of
the dispersed phase, cf. [23, 75]. The information about the velocities
of the single phases is not naturally resolved by such models and only
recovered, if desired, by postulating closure relations.

• Class B

– Mass balance equation for each constituent

– Momentum balance equation for the mixture as a whole

– Models belonging to this class can be employed when the volume fraction of
the dispersed phase is still low, but the distribution of the volume fractions
of fluid and dispersed phase is of interest. In case of density preserving (i.e.,
incompressible) constituents, the volume fractions can be directly obtained
from the mass balance, while in case of non-density preserving (i.e., com-
pressible) constituents, evolution equations for the volume fractions must
be postulated. The constituent velocities are still calculated constitutively
in this case.

• Class C

– Mass balance equation for each constituent

– Momentum balance equation for each constituent

– When the flow of the dispersed phase is not only influenced by the flow of
the continuous phase (one-way coupling), but also vice versa, the flow of
the continuous phase is significantly influenced by the dispersed phase flow
(two-way coupling), the use of a model of Class B is not possible because the
phase velocities cannot be recovered employing a constitutive law. Two-
way coupling usually occurs at high phase fractions of the dispersed phase.
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Other classifications than the one given above are of course possible, cf. e.g. [38,
Sec. 7.1]. Clearly, the numerical cost, and also the complexity increase from Class
A to Class C due to the increasing number of equations to be solved. According to
the above classification, the model developed in Chapter 3 belongs to Class C. In the
following, some application fields for the above models are presented.

Sediment transport models describe two-phase flow processes of fluid-granular mix-
tures at a large range of volume fractions of the dispersed particles. Most contributions
make use of the so-called Navier-Stokes-Fourier-Fick equations (Class A), consisting of
the mass and momentum balance equations of the mixture and an advection-diffusion
equation for the description of the temporal evolution of the sediment surface. Nu-
merical implementations often use staggered approaches for the coupling of the two
processes: First, the flow equations are solved. The results deliver boundary con-
ditions for the advection-diffusion process; and in turn the results from that process
enter the calculation of the flow field [50, 61, 65]. The solution variable is the barycen-
tric velocity of the mixture, so that the information on the phase velocities remains
unknown. The staggered approach allows to restrict the computational domain to the
area above the sediment bed, where the sediment concentration is sufficiently low to
enable the use of a model of Class A. However, when the sediment is redistributed,
the computational domain must be re-meshed according to the new shape of the bot-
tom boundary. Moreover, the flow within the sediment bed is not captured in these
models. Suitable methods as e.g. Volume-of-Fluid (VOF) and Level-Set methods are
used for the resolution of the sediment surface. The idea of the VOF method is to
monitor the gradient of sediment concentration within the computational domain; the
interface is located near the isoline of the gradient’s maximum. The Level-Set method
employs a partial differential equation (a so-called Level-Set function) to locate the
position of the interface at each timestep. While the VOF method is easy to imple-
ment and numerically cheap, the interface tends to be "smeared out". The Level-Set
method, on the other hand, is more precise, but involves the numerical solution of an
additional partial differential equation.

Binary geophysical mass flows (e.g., landslides and debris flows) are usually described
in the framework of Mixture Theory, using mass and momentum balance equations for
both the solid constituent and the mixture (Class B), or the solid and fluid constituents
(Class C). However, most numerical implementations exploit the assumption that the
longitudinal dimensions of the flow are much greater than the height, and transfer the
equations to so-called shallow water equations, thereby reducing the dimensionality
of the problem by one [68, 81].

Another application of Mixture Theory models is the field of Fluidized Beds, where
the mass and momentum balance equations of both continuous and dispersed phases
are implemented (Class C) due to the high phase fractions of the dispersed phase [3,
33, 44]. The majority of contributions is however devoted to gas-solid mixtures; liquid-
solid mixtures are less prominent, cf. [88]. Need for research is seen in relation to the
viscosity of the particle phase and the behavior close to densest packing [88]. Note that
in Fluidized Beds the fluid is pumped through the porous medium from below; hence
the fluid pressure is a control variable. Consequently, the type of flow is different from
geophysical mass flows because in case of Fluidized Beds the particles are maintained
in a fluidized state by an externally applied pressure; whereas geophysical mass flows
might be triggered by an instantaneous increase in pore pressure, but once in motion,
are self-sustaining.
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Rusche [73] proposed a binary mixture model for the case of a high volume frac-
tion of the dispersed phase (Class C) that is independent of the aggregate state of
the phases. His work forms the basis of the multi-phase branch of the Open-source
software OpenFOAM. Numerical examples are related to fluid-gas and fluid-fluid mix-
tures. OpenFOAM employs the Finite Volume Method to solve the partial differential
equations, cf. Section 1.3.

1.2 Motivation and outline

The motivation for this study is given by the collapse of the Historical Archive of the
City of Cologne into an underground cavity, causing two casualties in March 2009.
It is believed that the cavity was created by the failure of a diaphragm wall and
subsequent efflux of the water-saturated soil into a nearby excavation pit. Although
many research fields are concerned with solid-fluid mixtures in general (cf. Section
1.1), the outflow of a solid-fluid mixture through an orifice from a confined reservoir
seems not to be well understood. Hence experiments on the outflow of a fully water-
saturated assembly of spherical glass beads from a container were conducted and are
presented in Chapter 2. The container is 50 cm high and has a basal surface of 10 x 20
cm. The flow process is impulsively started by opening a hatch at the bottom of one of
the side walls. The experimental setup is a small version of a large-scale experimental
facility at the Institute and Laboratory of Geotechnics of the Technical University
of Darmstadt, cf. [46], for the investigation of the flow behavior of water-saturated
gravelly soils. The experiment at the University of Darmstadt focuses on a realistic
flow process at a large scale using natural soils. However, due to the sheer scale of
the experimental setup, the effort in terms of material and workforce to conduct one
single experiment is relatively high. In contrast, the small-scale experiment focuses on
the understanding of the physical processes during the fluid-solid mixture flow. The
smaller scale allows to conduct more experiments at low cost; while at the same time,
it is possible to use more exact measurement equipment under laboratory conditions.
Moreover, due to the low material need, it is possible to systematically vary the grain
sizes and to use mixtures thereof. The use of spherical glass beads allows for a simple
estimation of the permeability. Yet, the geometry of both experiments was chosen to
coincide to allow for a later comparison of the results. The results may also be relevant
in the field of landslides and debris flows, because the failure mechanism leading to
these mass flows is often similar to that observed in the experiments, where the
generation of a local weakness of the porous medium leads to the subsequent failure
of the complete porous skeleton.
The observations made during the experiments clearly show that the observed phe-
nomena cannot be explained without accounting for the compressibility of the pore
fluid. The compressibility of water is so low that it is usually assumed incompressible
in models of solid-liquid mixtures. However, a low compressibility leads to a strong
reaction in terms of pressure to small changes in fluid volume. In case of the experi-
ments shown here, the volume that is available for the fluid is determined by the pore
space. The fluidization of a porous skeleton, in turn, is associated with an increase in
pore space.
These observations motivate the development of a new mixture model for the flow of
fluid-granular mixtures, assuming incompressible grains and a weakly compressible,
barotropic pore fluid in Chapter 3. In the following, the term hybrid model will be
used to indicate the use of a compressible and an incompressible constituent. Tradi-



1.3. NUMERICAL IMPLEMENTATION 5

tionally, the reason to assume weak compressibility is a numerical one: it is assumed
in numerical frameworks where it is desirable to avoid implicit integration schemes,
e.g. Smoothed Particle Hydrodynamics (SPH, [63, 76]), to approximate the behavior
of fluids that would be assumed incompressible in other numerical frameworks. Im-
plicit integration is necessary when the pressure appears as a free variable. In SPH
in particular, the implementation of incompressible models is also possible, and weak
compressibility is solely assumed for reasons of numerical efficiency. Here, the idea
behind weak compressibility is twofold: on the one hand, as in SPH, the assumption
of a weakly compressible pore fluid allows for the use of relatively simple, explicit
time integration schemes. On the other hand, however, effects that occur due to the
compressibility of the pore fluid, e.g. the phenomena presented in Chapter 2, and
also the propagation of acoustic waves are described by the model.
Due to the complexity of the mixture flow presented in Chapter 2, the balance equa-
tions of the hybrid model are supplied with constitutive relations for the application
of batch sedimentation of spherical particles in water. The balance equations are,
however, kept in their general form to allow for a simple extension of the model to
other types of flow. As yet, apparently only three contributions [15, 53, 54] have
dealt with the implementation of such a general model for the description of batch
sedimentation, and none of them employs a compressible fluid phase.
Chapter 4 outlines the numerical implementation of the model into a discountinuous
Galerkin (dG) framework. The method is first introduced in 1-D and examples are
given, then the 2-D case is presented. Numerical benchmarks for the structurally sim-
ilar weakly compressible Navier-Stokes equations are shown. Due to the compressible
nature of the fluid, acoustic waves may emerge within the computational domain,
requiring a special treatment of in- and outflow boundaries. The approach used here
is described and verified by a numerical example. Finally, the implementation of the
mixture model equations is described.
Chapter 5 deals with the actual simulations of batch sedimentation. It is shown that
for stationary sedimentation, the results converge to an analytically derived solution.
However, at the beginning of the numerical experiments, visible and significant effects
due to fluid compressibility are found. To obtain a better understanding of the coupled
system of equations and the process of sedimentation itself, the single terms of the
momentum balance are separated into their contributions to the overall force balance
within the different areas of the sedimentation vessel. Finally, a parameter study
reveals the influence of several constants appearing in the constitutive laws on the
sedimentation process.

1.3 Numerical implementation

The mathematical model presented in Chapter 3 consists of a system of strongly cou-
pled conservation laws (Class C, cf. Section 1.1). Traditionally, two methods have
emerged to solve such problems, namely the Finite-Difference Method (FDM) and the
Finite Volume Method (FVM). While the FDM is robust and relatively simple to im-
plement, it requires the use of structured grids and fails on complex geometries. The
FVM does not suffer from this shortcoming and has nowadays become the standard
in many commercial and non-commercial CFD solvers. It is based on a local approx-
imation of the solution within a computational grid cell, while the global solution is
recovered by means of a numerical flux between adjacent elements. The choice of the
flux allows for the consideration of specific requirements of the equations to be solved;
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e.g. in problems involving a preferred propagation direction, like convection domi-
nated problems, so-called upwind fluxes are used to increase the stability. Due to the
locality of the scheme, it is easily parallelizable for computation on multi-processor
computers. However, the FVM has strong limitations in the possible order of ap-
proximation, and as a consequence, it is not hp-adaptive. The term hp-adaptivity
relates to a flexible, local refinement of the computational mesh in terms of grid cell
size (h-adaptivity) and approximation order (p-adaptivity). Another method, tradi-
tionally used in fields dealing with elliptic problems, is the Finite Element Method
(FEM). In FEM, a high-order approximation and hp-adaptivity are relatively easy
to achieve. Here, the approximation of the solution is not defined locally, but rather
on a global level comprising the full computational domain. This globality, in turn,
leads to potential stability issues for problems where information flows in a preferred
direction.
The issues with each of the methods outlined above have led to the development of the
discontinuous Galerkin (dG) method, which combines many advantages from FVM
and FEM. Within each single element, the approximation corresponds to that of FEM,
while the coupling between the single elements to a contiguous domain is achieved via
a numerical flux over the element boundaries, as in FVM. This combined approach
makes the method robust for convection dominated problems, easily parallelizable
as FVM; and at the same time the method is of high approximation order and hp-
adaptive as FEM.
The coupled model equations to be implemented are similar to the compressible
Navier-Stokes equations, hence contain hyperbolic and parabolic parts. Suitable dG
methods for this type of equations were first proposed by Bassi & Rebay [5] and
Cockburn & Shu [16]. They are nowadays known by the name Local Discontinuous
Galerkin (LDG). Here, operators of second order are first transferred into systems of
first-order equations, which are then implemented using the standard dG approach.
More advanced methods that emerged from LDG are the Compact Discontinuous
Galerkin (CDG) method [66] and the CDG2 method [10], which only contain next
neighbors in the flux term and hence are more compact and more suitable for parallel
implementation. Alternatives for the treatment of elliptic terms include the Internal
Penalty (IP) and Bassy-Rebay 2 (BR2) methods, cf. [10]. The codes developed for
this thesis rely on the nodal dG method as outlined by Hesthaven & Warburton [35]
and partly on the Open-source dG software Pydgeon by Klöckner et al. [47].



Chapter 2

Experiment

2.1 Introduction and motivation

The influence of the pore fluid pressure on the behavior of a granular solid skeleton
is well known from research on e.g. fluidized beds or soil liquefaction: Increased pore
pressures lead to a decrease in contact stresses between the grains, potentially to an
extent where the contact stresses go to zero, and the solid skeleton loses its ability to
sustain shear stresses - the solid skeleton liquefies. This causality is described by the
principle of effective stress, first proposed by Terzaghi [82] and extended by Biot [9].
According to this principle, the total stress T in a solid-fluid mixture is related to the
effective stress T

s
E

of the solid skeleton and the pore pressure p by

T = T

s
E

� ↵ pf I, (2.1)

where I is the unit tensor. The coefficient ↵ is called Biot’s coefficient, and is given
by

↵ = 1� Km

Ks
, (2.2)

where Km and Ks are the effective bulk modulus of the granular solid skeleton and
the bulk modulus of the solid material, respectively (cf. [84]). Note that the bulk
moduli of the solid material alone and the solid skeleton, which consists of an assembly
of solid particles, may be massively different. While the material bulk modulus is a
material property, the skeleton bulk modulus depends mainly on the contact forces
between the grains.
Depending on the degree of consolidation, a granular solid skeleton will usually react
to deformation by rearrangement of the grains rather than by a deformation of the
solid grains themselves. When a granular solid skeleton is unconsolidated (e.g. beach
sand or the glass beads used in the experiment described below), Ks � Km, so that
↵! 1, and the effective stress principle reduces to

T = T

s
E

� pf I. (2.3)

Theories on fluidized beds and soil liquefaction assume an increase in pore pressure
that leads to the failure of the porous skeleton. In soil liquefaction the pore pressure
increase is a feedback effect that is created by compaction of a loose, unconsolidated
material, e.g. due to earthquakes. However, for the actual liquefaction a high enough

7



8 CHAPTER 2. EXPERIMENT

pore pressure is a prerequisite. In this sense, variations in the pore pressure can be
seen as a precondition for the onset of flow of the porous skeleton. In fluidized beds,
a fluid is pumped through the unconsolidated porous medium from below, so that
the pore pressure again acts as a precondition for fluidization. The pore pressure is
a control variable. The idea of the experiments presented in this chapter is to study
the feedback effects between fluid pressure and bulk flow behavior when the pore
pressure is not a control variable, but when, instead, the failure of the unconsolidated,
fluid-saturated porous skeleton is induced by a local weakness. One specific example
is the collapse of the historical archive of the city of Cologne, Germany in 2009.
The collapse was apparently caused by the failure of a diaphragm wall in a subway
excavation pit near the building (i.e., a local weakening of the porous skeleton), which
caused an underground landslide and led to the development of a cavity underneath
the building. The building then collapsed into the cavity. On a more abstract level,
it is not difficult to imagine that other types of catastrophic landslides and debris
flows may not be caused by the ensemble failure of a large body of soil due to heavy
rainfall increasing pore pressures, but by a rather local imperfection that propagates
(whatever the onset mechanism may be) through the porous skeleton as a porosity
wave, leading to sequential failure of certain areas of soil, and thereby creating the
often surprisingly large extent of debris flows.
To get an insight into the aforementioned problems, experiments were carried out,
with a focus on the onset of flow of the fluid-granular mixture. The experimental
procedure involved mono- or bi-disperse mixtures of glass beads of different sizes
that were poured into a container and then saturated with water. At the beginning
of an experiment, a hatch was opened at the bottom of the container to allow the
fluid-saturated granular mixture to flow out. During the experiments, grain velocities
were monitored by Particle Image Velocimetry, further described in Section 2.3.
The pore pressure was measured by absolute pressure sensors over the full duration
of an experiment, and by high-precision dynamic pressure sensors at the onset of flow.

2.2 Experimental setup

The experimental apparatus consists of a x = 200mm wide, y = 100mm deep and
z = 500mm high (internal dimensions) rectangular cuboid, with a 40mm high hatch
at the bottom, normal to the x-direction. The full experimental setup is depicted
schematically in Figures 2.1 and 2.3. The test rig is a 1 : 20 downscaled version of a
similar apparatus used at the Institute and Laboratory of Geotechnics at the Tech-
nical University of Darmstadt for flow experiments with gravel-water mixtures (cf.
[46]).
The rig was equipped with pressure transducers at different heights in the wall oppos-
ing the hatch (Figure 2.3). The pressure sensors measure only the pore fluid pressure.
It was constructionally assured that a mechanical contact between the sensors’ mea-
suring membrane and glass beads is not possible, that is, there is only water in contact
with the membrane. Consequently, the pressures pf measured here correspond to the
true fluid pressure in the presence of only one phase, pfR. We used two types of pres-
sure sensors: (i) Kistler piezoresistive absolute pressure sensors, type 4005BA5A2, in
conjunction with 4618A2 amplifiers, giving an analog signal output of 0 � 10V cor-
responding to 0 � 500 kPa absolute pressure; and (ii) PCB high resolution, dynamic
ICP R� pressure sensors, type 112A22, giving ±5V output, corresponding to ±345 kPa
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Figure 2.1: Schematic view and photograph of the test rig used for flow experiments

relative to the stationary ambient pressure. The two types of pressure sensors are
substantially different: When a step function pressure signal is applied (cf. Figure
2.2), the absolute pressure sensors’ output corresponds exactly to the input signal,
e.g. when the pressure is increased from 0 kPa to 50 kPa, the output signal changes
from 0V to 1V accordingly. In contrast, the working principle of a dynamic pressure
sensor is rather like that of a microphone: While the output emerging from a step
function pressure input signal also reflects the onset time and amplitude of the step
function, the output will exponentially decay back to zero if the pressure is constantly
kept at the new level. The decay time depends on a couple of factors, the most im-
portant one being the discharge time constant (DTC). The DTC determines the time
in which a step function input signal decays from 100% to 37% of its original value.
As a rule of thumb, in the first 10% of DTC, time and signal decay have a linear
one-to-one relationship, i.e. if the sensors have a DTC of 1 s - which is the DTC of the
sensors used in this experiment - then within the first 0.1 s of the experiment, 10%
of the signal decay. A good introduction into dynamic pressure measurement can be
found on the PCB webpage [2].

p

t

Figure 2.2: Illustration of the reaction of absolute and dynamic pressure sensors to a step function
pressure input. The pressure is depicted in red. The absolute pressure sensor output signal,
depicted in blue, follows with a slight delay and contains relatively much noise. The signal
stays on the new, higher level. The dynamic pressure sensor output signal, depicted in yellow,
follows the input pressure almost instantaneously and contains very little noise. The signal
decays back to zero.
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Figure 2.3: Overview of the experimental setup. The initial filling level of glass beads is denoted
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, and the filling level of water is zf
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.

While dynamic pressure sensors can only measure absolute pressures on relatively
short timescales, and short-lived oscillations on longer timescales, their advantage
lies in their temporal and amplitude precision. In practice, we measured a signal
noise of ⇡ 400Pa with the static Kistler sensors, while for the dynamic sensors the
noise was ⇡ 15Pa. The resonant frequencies are 100 kHz and 250 kHz for the Kistler
and PCB sensors, respectively. The use of both types of sensors allowed for the
investigation of high-resolution pressure signals on a short timescale of 0.1 s at the
beginning of the experiments, and over the timescale of a complete experiment at a
lower resolution. The pressure sensor data were recorded at a sampling rate of 96 kHz
using an HBM QuantumX MX410B data acquisition system and processed using the
HBM acquisition software catman AP.
A high-speed camera Phantom v4.3 was used to capture grain movement in detail
at 1000 frames per second for a maximum of 4.5 s. The image data were processed
using the Phantom Camera Control application PCC. The resolution of 800x600 pixels
corresponds to an image section of ⇡ 17.5x13mm. For the largest grains, the camera
was positioned slightly further away from the test rig, yielding an image section of
⇡ 26x19.5mm. We used a frequency generator to create a trigger signal to start the
high speed camera. To synchronize data from the camera and the pressure sensors, the
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trigger signal was also recorded by the data acquisition system. The hatch was opened
manually when the trigger signal turned to "on", as indicated by an oscilloscope (cf.
Figure 2.3). A conventional digital compact camera Casio Exilim EX-ZR200 captured
the total view of the test rig at 240 frames per second and a resolution of 430x320
pixels during each experiment.

no. experiment L0.1
L0.2

L1.1
L1.2

L2.1
L2.2

L3.1
L3.2

L4.1
L4.2

L5.1
L5.2

grain size [mm] no
grains

0.5 2 4 0.5 (50%)
2 (50%)

0.5 (50%)
4 (50%)

Table 2.1: Grain sizes used in experiments

The series of experiments described here includes twelve experiments, cf. Table 2.1.
Each experiment was repeated once to check data consistency. Two experiments (L0)
were conducted using only water, without glass beads. Experiments L1 to L3 in-
volved the use of monodisperse (uniform grain size) grain-water mixtures; with the
grain diameter increasing from experiment L1 to L3. Four experiments (L4 and L5)
were conducted using bidisperse mixtures (two distinct grain sizes).
The experiments were set up as follows: First, the test rig was filled with tap water to
about one third. Then, a scoop of glass beads was carefully submerged to avoid ex-
cessive air entrainment, and then allowed to sink to the bottom of the test rig. In case
of bidisperse mixtures, the grain sizes segregated due to their different sedimentation
velocities, and the grains settled in layers. To ensure a homogeneous distribution of
grains at the beginning of an experiment, the mixture was stirred each time after
adding a 5 cm layer of grains. This procedure worked surprisingly well and resulted
porous mixture that looked satisfactorily homogeneous and isotropic.

2.3 Results
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Figure 2.4: Unfiltered (black) and filtered (red) absolute pressure signal
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Due to the high amount of noise in the absolute pressure signal, the data were filtered
using a 300Hz low pass filter for better readability. No hardware filter was used
to avoid loss of any potentially important information. The open-source Python
framework ObsPy [8], originally intended for processing seismological data, was used
for filtering. A comparison of the unfiltered and filtered signal for experiment L0.1
shows that the frequency content of interest is still present in the filtered signal,
while the noise is reduced (Figure 2.4). All pressures are given in mmH2O, for easy
comparison to the hydrostatic pressure ⇢gz expected from the water level, z. Note
that for each experiment the time t = 0 was set manually to the moment when the
pressure curves significantly deviated from zero.
The high-speed image data were processed using Particle Image Velocimetry (PIV).
Originally, PIV emerged as a non-intrusive technique to measure fluid flow processes.
In a nutshell, PIV works as follows: A small number of neutrally buoyant tracer
particles is added to the fluid. During the flow process, two or more images of the
flow including tracer particles are captured. Each image is subdivided into several so-
called interrogation windows. The average displacement vector between two successive
images is then approximated for each interrogation window using a cross-correlation
technique. During the last two decades, PIV has found more and more application in
the field of granular flows, see e.g. [24, 58, 77]. This extension is somewhat natural
because a granular flow contains ‘tracer’ particles by definition.
In this study, the open-source program JPIV [1] was used for PIV analysis. The size of
the interrogation windows was set such that each interrogation window would contain
at least six to ten particles. It turned out that an interrogation window size of 64
pixels for experiments involving 0.5 mm glass beads yielded the best results, and 260
and 300 pixels for 2 mm and 4 mm glass beads, respectively. One displacement field
was obtained for each subsequent pair of images from the high-speed camera. The
analysis of the data revealed significant outliers in each of the displacement fields.
These outliers are presumably due to an effect described by Eckart et al. [24]: The
cross correlation technique used for the calculation of the displacement fields relies on
the assumption that each pair of subsequent images contains the same information -
here, the same grains in the same configuration - only displaced by a certain value
that is calculated by the cross-correlation. The type of granular flow investigated here,
however, is not entirely two-dimensional, but may contain a component normal to the
image section. Thus, grains might leave the image section towards the inside of the
test rig and be replaced by other grains between two image frames. Another problem,
also noted by Eckart et al. [24], arises because the grain assembly is not only displaced,
but also deformed during the flow process, which also cannot be captured by cross-
correlation. However, robust and well-tested techniques are implemented in JPIV
(see [1] and citations therein) to find such outliers by a normalization procedure. The
outliers were then replaced by the median for each displacement field. Further data
processing involved the calculation of the average velocity from each displacement
field. Moreover, the gradients of the velocity fields were calculated and averaged over
the whole field, yielding information about average shear rates and divergence of the
granular flow within the image section. Valuable PIV data could only be obtained
for the beginning of the experiments; at later times the grain velocity is so high that
the high-speed images, although involving short exposure times of 830µs, become
blurred, and the resulting velocity data are very noisy.
The flow process can be subdivided into five different stages, as described in Section
2.3.1, and the total view videos were used to decide when each of the stages was fully
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developed. Results for selected experiments are shown in Table 2.2.
To understand the processes during the outflow of granular-fluid mixtures from the
test rig, it is illustrative to first describe in a qualitative manner all macroscopic
observations, and to compare these observations with the absolute pressure data.
This is done in the following subsection. After that, the focus is turned to the first
0.1 s of the experiments, and the high-speed image data are analyzed together with
the high-resolution pressure data from the dynamic pressure sensors.

2.3.1 The phenomenology of an experiment

For simplicity, let us start with the reference experiment L0.1 that uses only water
instead of a mixture. The flow process can roughly be subdivided into three intrinsic
timescales, denoted by �t1, �t2 and �t5, see the upper left plot in Figure 2.5. At
time t = 0, the hatch is opened, and water immediately starts to flow out. The pres-
sure decreases to approximately the atmospheric pressure (�360mmH2O, because
the pressure sensor is installed 360 mm below the initial water level) during �t1. The
pressure then returns to the hydrostatic pressure during �t2. During the last period
of the experiment, �t5, the observed flow pattern is relatively stationary, and the
pressure coincides with the hydrostatic pressure ⇢gz expected from the optically ob-
served water column height z. The mixture experiments involve two additional time
periods �t3 and �t4 that are not seen in the single-phase (water) experiments.

no. experiment L0.1 L1.1 L3.2 L4.2
hatch opens (�t1) 0 s 0 s 0 s 0 s
flow starts (�t2,3) 0 s 0.4 s 0 s 0 s
flow fully developed (�t4) 0.1 s 2.1 s 0.6 s 1.4 s
grain surface reaches hatch (�t5) no grains 4.3 s 1.0 s 4.1 s

Table 2.2: Different stages of flow as inferred from total view video sequences

Let us now refer to the mixture flow experiment L1.1 involving small (0.5 mm) grains.
Here and in all other mixture flow experiments, five intrinsic timescales�t1 to�t5 can
be discriminated, see the upper right plot in Figure 2.5. Upon opening of the hatch,
the pressure drops within �t1. Note that the pressure drop is stronger in amplitude
than for pure water. At the same time, as observed during the experiments, high-
speed images show that the grains visibly accelerate for a very short time, but then
almost cease to move. In the next period �t2, the pressure recovers slightly. Yet, it
remains well below the hydrostatic pressure ⇢gz, and even decreases further during
the next period, �t3. Macroscopically, it can be seen in the videos that clumps of
grains fall out of the test rig at the opening, and the high-speed images indicate
that the grains near the hatch move very slowly. The beginning of �t4 marks a
clear transition, visible in the videos, from the very stagnant behavior observed so
far, that was characterized by slow water flow and clumps of grains shearing off the
bulk granular skeleton near the hatch, to a fully developed, stationary bulk flow of the
granular-fluid mixture. Meanwhile, the pressure increases, and reaches the hydrostatic
level ⇢gz at the end of �t4. The high-frequency noise during this period is due to
the high acoustic noise intensity created by the fast outflow of glass beads. Finally,
at the beginning of �t5, the uppermost layer of grains reaches the upper edge of the
hatch, letting the remaining water flow out freely and unobstructed by grains. Time
periods �t3,4 have no correspondence in the single-phase experiments. During �t5,
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Figure 2.5: Fluid pressures and intrinsic time scales of experiments on a semi-logarithmic scale.
Each panel exemplarily depicts one type of experiment: no grains (upper left), small grains
(0.5 mm, upper right), larger grains (4 mm, lower left), bidisperse mixture (2 mm and 0.5
mm, lower right).
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however, the pressure curves for both the single-phase reference experiments and the
mixture experiments are similar and correspond to the hydrostatic water level.
The experiments L4 and L5 involving bidisperse mixtures (lower right plot in Figure
2.5 shows experiment L4.2) are very similar to the experiments L1 involving 0.5
mm grains. Note, however, that the absolute pore pressure drops slightly below
the atmospheric pressure. The experiments L2 and L3 involving larger (2 and 4
mm) grains show similarities to both the single-phase experiment L0 and the small
grain experiments L1, L4 and L5 described above. The lower left plot in Figure 2.5
shows experiment L3.2. At the beginning, the grains immediately start to flow; a
deceleration of the grains, as in the small grain experiments, is not macroscopically
visible in the high-speed image data. Yet, the flow starts much less vigorously than
the outflow of water, and one can discriminate between a developing flow from �t1 to
�t3 and a fully developed flow during �t4 (cf. Table 2.2). The boundaries between
the different stages of the flow are not very clear during the first three time periods,
which is also reflected in the pressure time series. The boundary between �t4 and �t5
is clearly existent, but much less distinct. Note the amplitude of the initial pressure
drop, �590mmH2O, i.e., 230mmH2O below atmospheric pressure.

2.3.2 Particle Image Velocimetry and high-resolution pressure
data

The dynamic pressure sensors measure pressure differences on short time scales; and
absolute pressures can only be inferred from the data shortly after an initial pres-
sure perturbation. Hence we now focus on the first 0.1 s after the beginning of an
experiment (corresponding to �t1 and �t2), as the signal decay on this time scale
is less than 10%. Figures 2.6 and 2.7 show dynamic pressure sensor data along with
absolute values of y- and z-velocity components obtained from PIV analyses for all
twelve experiments. The fluid pressure axes have the same scaling in all twelve plots;
however, the velocity axes were grouped into the small grain experiments (0.5 mm,
L1), large grain experiments (2 and 4 mm, L2 and L3), and bidisperse mixtures (L4
and L5); and only the velocity axes in each group have equal scaling.
Let us investigate some commonalities of all granular flow experiments. First, note
that in all experiments the beginning of the pressure drop coincides with an increase
in grain velocity. As the pressure drops further, the grain velocity decreases again.
For the larger monodisperse mixtures, this effect is less distinct. In all experiments,
the initial pressure drop at the beginning of an experiment is larger than for pure
water. At t = 0, the test rig is filled with 460mm of water, so for the lower sensor,
installed 50mm above the bottom of the test rig, atmospheric pressure corresponds to
�410mmH2O. In most experiments, this pressure is even undercut for a short time
during the initial pressure drop. The smallest pressure drop occurs in case of the 0.5
mm grains, while the pressure drop is largest for the 4 mm grains, 239mmH2O below
atmospheric pressure in experiment L3.2. In case of the single-phase experiments
L0, the data from both pressure sensors almost coincide; while in case of the mixture
experiments, the lower pressure sensors (depicted by the red lines) show a significantly
lower pressure - although the hydrostatic pressure, i.e., the water head is higher for
this sensor, and both sensors were calibrated to zero at the beginning of an experiment.
Data collected in preparatory experiments using two absolute pressure sensors show
that this difference is maintained until the beginning of �t5. At this time, when the
grain surface reaches the hatch, the two pressure time series switch their positions,
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Figure 2.6: Fluid pressures and grain velocities for the experiments L0 (top), L1 (middle), L2
(bottom). Orange / red: upper and lower dynamic pressure sensor; dark / light blue: absolute
value of grain x- and z- velocities obtained from PIV measurements
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Figure 2.7: Fluid pressures and grain velocities for the experiments L3 (top), L4 (middle), L5
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and the lower pressure sensor shows a higher pressure, as could be expected from the
hydrostatic water level.
The first four plots in Figures 2.8 and 2.9 depict the elements of the (non-symmetric)
velocity gradient tensor with respect to a Cartesian system, as inferred from the high
speed image data:

gradvs =

 

@us
@x

@us
@z

@ws
@x

@ws
@z

!

, (2.4)

with vs = [usws]T , and us and ws the x- and z-components of the velocity vector
of the solid grains, respectively. In (2.4), we have assumed planar flow, i.e., for the
velocity vs in y-direction we have vs = 0, and likewise for the derivatives in y-direction
@•
@y

= 0. All zero components were omitted in the definitions of vs and gradvs. The
partial derivatives in (2.4) were computed in Matlab R� using the gradient function,
which employs a central difference scheme for interior data points, and single-sided
differences at the edges of a matrix. The diagonal elements of the velocity gradient
tensor contain information on the volumetric deformation of the porous skeleton,
while the non-diagonal elements contain information on rotation and shear. The rate
of volume deformation is given by the divergence of velocity, that is, the sum of the
diagonal elements of the velocity gradient tensor,

divvs =
@us

@x
+
@ws

@z
, (2.5)

(lower left plots in Figures 2.8 and 2.9) and the (rotation-free) shear rate is given
by the symmetric part of the velocity gradient tensor, that is, the average of the
non-diagonal elements,

devvs =
1

2

✓

@us

@z
+
@ws

@x

◆

(2.6)

(lower right plots in Figures 2.8 and 2.9).
Experiments L1.1 and L5.2 were arbitrarily chosen to be shown here; the respective
plots are qualitatively similar for all experiments. The signal-to-noise ratio is relatively
low in these plots. However, at the time of the initial pressure drop, a peak can be
recognized in each of the plots. While experiment L1.1 shows compaction in x- and
dilation in z- direction, experiment L5.2 shows exactly the opposite. Due to the
fact that the derivatives in both directions have opposite signs, almost no signal is
observed in the divergence plots. After the initial pressure drop, however, compaction
is observed in experiment L1.1 and dilation in experiment L5.2; however the signal is
relatively close to the noise. The signals are clear enough to state that the granular
skeleton is being sheared within the interrogation window.

2.4 Discussion
The flow has to pass through a reduced cross section at the outlet. Hence the move-
ment of the granular phase cannot be purely translational or rotational; instead, it
has to fluidise in order to pass through the outlet. It is a common and reasonable
observation that when an assembly of grains fluidises, its porosity increases, i.e., it
behaves dilatant. This porosity increase can easily be understood by considering the
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Figure 2.9: Dynamic pressure sensor data (orange and red) with averaged derivatives of the
velocity fields (blue) for experiment L5.2
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process of granular fluidisation on the grain scale. Consider some neighboring layers
of grains (Figure 2.10). At random close packing, the grains of one layer come to
rest in the voids between the other layer’s grains. In order to pass one another, the
layers first have to dislodge from one another, thereby increasing the porosity. Under
fully undrained conditions (i.e., no water inflow into, and no water outflow from the
pore space), and if the pore fluid is compressible, a porosity increase must lead to a
decrease in fluid pressure, because the fluid’s volume increases while its mass remains
constant. The pressure drop will be stronger for a less compressible fluid, and in the
theoretical limit of an incompressible fluid, the pressure would instantaneously drop
to zero. Under fully drained conditions (free water inflow into, and water outflow
from the pore space), a porosity increase leads to fluid inflow, while the fluid pressure
remains constant. In case of the experiments described here, the conditions are fully
drained only near the interface between grains and water; away from the interface,
drainage is inhibited by the finite permeability of the porous skeleton. Hence we can
postulate that a porosity increase within the porous medium may lead to a local,
instantaneous, short-lived pressure decrease, if the pore fluid is as little compressible
as water.

a) b)

Figure 2.10: Illustration of a fluidizing assembly of grains. Grains are depicted in yellow, pore
space in blue. On the left, the grains are closely packed. In order to move as indicated by
the arrows, the grain layers first have to dislodge from each other, thereby increasing the
porosity.

Adopting the assumption made above that the porous skeleton behaves dilatant when
it fluidises, and that dilatancy causes a local, instantaneous decrease in pore pressure,
the results outlined in Section 2.3 can be interpreted as follows: The local instanta-
neous fluid pressure gradient is immense when the hatch opens at the beginning of
�t1: The fluid pressure just near the hatch drops to the atmospheric pressure, while
the pressure a short distance away is still the initial hydrostatic pressure. The fluid re-
acts with a strong acceleration towards the hatch, thereby accelerating the grains via
viscous drag. An indication of how strong the fluid is locally accelerated is given by
the fast and vigorous onset of flow in case of the single-phase experiments. In parallel
to the acceleration of both phases, the fluid pressure drops. According to Terzaghi’s
principle, cf. equation (2.3), the effective stress of the solid skeleton is increased when
the pore pressure is decreased; so that the grains are effectively consolidated due to
the pressure drop. The consolidation of grains may lead to the subsequent reduction
of their velocity, although this effect seems to depend on the actual composition of
the solid skeleton, and is less pronounced or even inexistent for larger grain sizes. If
the assumption holds that the granular medium behaves dilatant, then dilatancy may
explain why the initial fluid pressure drop is stronger in case of the experiments with
glass beads than in case of the single-phase experiments: Using the definition of the
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bulk modulus,

K = �V
dp

dV
, (2.7)

where p represents the fluid pressure, V is the fluid volume, and a value of K =
2.2GPa for water, it can be inferred that under undrained conditions a change in
pressure of 100mmH2O, which is in the range of magnitudes observed in the exper-
iments, is obtained by a decrease of only 4.5 · 10�3 per cent of volume. In other
words, in a confined container completely filled with water saturated glass beads, a
porosity increase in the fifth decimal place causes a pressure decrease of 100mmH2O.
As the fluid pressure is measured locally within the porous medium at some dis-
tance from the interface between grains and pure water, a porosity increase due to
dilatancy may well serve as an explanation for the stronger pressure drop during
�t1 compared to the fluid-only experiments. The drainage appears to be insuffi-
cient to maintain hydrostatic pressure within the pore space. Water entering into the
porous medium from above due to the pressure gradient should lead to an increase
in pressure up to the hydrostatic pressure, while porosity production should lead to
a decrease in pressure. The hypothesis of insufficient drainage is supported by the
observation that the lower of the two sensors experiences the lower pressure, although
both sensors were calibrated to zero at the beginning of each experiment. One more
indication is given by the fact that experiments L2 and L3, involving larger grain
sizes and hence higher permeability, show higher pore pressures during �t2, possibly
resulting from better drainage. Note that the change in porosity ��, where porosity
� = dV f/( dV s+ dV f), and dV f and dV s denote the fluid and solid volume, respec-
tively, is not only determined by a non-constant fluid volume, but also a non-constant
solid volume.
Unfortunately, the high-speed image data quality remains too uncertain considering
resolution and accuracy to directly quantify the amount of porosity increase. Yet, the
image section represents only a small portion of the entire test rig, and to estimate
more precisely the influence of porosity production on the pore pressure, measure-
ments of the grain velocity gradient over a larger image section are necessary. The
small size of the image section may also serve as an explanation for the somewhat
surprising result that the porous medium is compacted in x-direction and dilated in
z-direction at the beginning of experiment L1.1. It would be plausible to observe
exactly the opposite, as in experiment L5.2, because we expect acceleration of the
grains in x-direction (towards the outlet), while due to the overburden together with
the pressure drop, compaction in z-direction would not be surprising. It is concluded
that the data quality must be improved to exactly quantify porosity increase.
At the end of �t1, the fluid pressure has dropped to its minimum. Meanwhile, the
grains have slowed down (depending on the grain size), but have not entirely ceased
to move. If we again assume that the grains behave dilatant, their movement causes
a local increase in fluid volume, and the fluid pressure does not return to the hydro-
static pressure, but remains somewhat lower during �t2. Yet, the pressure increase
might assist in further fluidising the grains by reducing the effective stress. During
�t3, the pressure decreases yet again, accompanied by an increase in grain velocity.
If we further follow the argument of a dilatant porous skeleton influencing the fluid
pressure, we may interpret the observation as follows: The porous skeleton increases
in velocity due to further fluidisation, i.e. the pore space is further increased, thereby
reducing the apparent viscosity of the solid phase and reducing the fluid pressure.
This process continues until a steady state flow is reached at the beginning of �t4.
The following pore pressure increase could be interpreted as follows: First, the gran-



2.5. CONCLUSIONS 23

ular surface moves towards the sensor, so that the porous layer between sensor and
pure water diminishes. Second, the production of new pore space does not increase
anymore, but is steady, because the outflow is in steady state. Together, these ef-
fects may lead to an increase in pressure up to the hydrostatic pressure. Finally, the
hydrostatic pressure curve during �t5 can be explained with the apparent change in
flow mechanism; water can now flow out freely above the grain layer, and hence the
pressure is simply hydrostatic.
Let us shortly review the repeatability of the experiments. Clearly, the grain velocity
data of the two experiments L1 show a striking difference of almost one order of mag-
nitude in the measured grain velocities, although the experimental setup is identical.
However, in the other experiment pairs, the results are reasonably comparable; and
even in case of the experiments L1, the observed trends (a velocity peak accompanied
by a pressure drop; subsequent pressure recovery and development of a stationary ve-
locity) are the same as in all the other experiments. If experiments L1 are compared
to experiments L4 and L5, both also involving 0.5 mm grains, experiment L1.2 could
be labeled as an outlier to all other experiments. There are two possible reasons for
the observed differences in experiments L1, but also in the other experiments. The
main disadvantage of the experimental setup is the manual operation of the hatch.
Although it was assured that always the same experimenter opened the hatch using a
standardized procedure, a non-automatic operation may lead to erratic results. The
second possible source of error is more subtle and concerns the complexity of the
experiment. Both pressure and PIV measurements were conducted in-situ at discrete
spatial positions. The exact behavior of the porous medium, for example the develop-
ment of a specific shear band, however, may not be deterministic – in one experiment,
the shear band might be visible in the high-speed image data, in another experiment
the shear band might pass just next to the image section. Summing up, however, the
expressed criticism does not contradict any of the conclusions drawn from the data,
because all conclusions rely on qualitative trends rather than quantitative data in the
measured time series, and these trends appear to be robust.

2.5 Conclusions

Experiments were conducted using a relatively simple setup to study the flow behav-
ior of water-saturated glass beads close to the dense packing limit. A combination of
measurement techniques operating at different spatial and temporal scales was used:
in-situ absolute and dynamic, high-resolution pore pressure measurements at differ-
ent spatial positions, and grain velocity measurements inferred from Particle Image
Velocimetry. Together with simple visual observations of the flow behavior of the
mixture inferred from slow-motion video recordings, we conclude:

• the flow is dominated by strong feedback effects between pore pressure and the
grains’ flow behavior. If we attribute an apparent viscosity µs to the fluidized
solid to describe its resistance to flow, analogous to the dynamic viscosity of
a fluid, then this apparent viscosity is largely determined by the increase or
decrease in extra stresses due to pore pressure decrease or increase, respectively;
i.e. µs = µs(pf);

• dilatancy (porosity increase) of the fluidizing porous skeleton occurs to be the
most important parameter for the determination of the pore pressure;
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• although the test rig is open to atmospheric pressure at the top, the conditions
within the fluidizing porous medium are not fully drained, that is, a porosity
increase is not instantaneously compensated by fluid inflow into the pore space.
Instead, the pressure of the compressible pore fluid drops as a reaction to a
porosity increase;

• the fluidisation of fluid-saturated, unconsolidated porous media is in principle
a self-inhibiting process when resulting from a local weakness in the porous
skeleton, because fluidisation of the porous medium leads to a local instanta-
neous decrease in pore pressure, which in turn increases the effective stresses,
potentially stabilizing the porous skeleton. The degree of self-inhibition seems
to depend largely on the actual configuration of the porous medium. While
self-inhibition is almost negligible in case of the larger grains, its effect seems to
increase anti-proportionally to the permeability of the porous skeleton.

• Clues have been given over the whole range of intrinsic time scales regarding
the observed flow pattern to be caused by an interaction of a dilatant, fluidising
granular medium with a compressible pore fluid. The findings emphasize the
importance of the coupling between the behavior of grains and fluid. They also
show that conventional mathematical/numerical models assuming an incom-
pressible pore fluid are clearly not sufficient to explain the observed behavior,
and motivate the development of new models involving a compressible fluid
phase.

Regarding future work, it is desirable to increase the accuracy of the PIV measure-
ments in order to quantify the porosity production rate during the experiment. Knowl-
edge of the porosity production rate would allow to calculate exactly the pressure drop
associated with porosity increase, and the necessary amount of water inflow from the
top to reach the actual measured pressure. A larger image section for the PIV mea-
surements would allow to investigate how fluidization is distributed inside the test rig
over time. Moreover, it would be interesting if a porosity wave propagates through
the porous skeleton at the onset of flow.
In the series of experiments shown here, the porosity and permeability of the porous
medium were varied systematically by using glass beads of different sizes and mix-
tures thereof; however, clear correlations with the observed flow patterns could not
be deduced. An improvement of the hatch opening mechanism might be helpful in
establishing such relations.
Preliminary experiments, not shown here, using a slightly different setup without PIV
involved the variation of the filling height of glass spheres, thereby varying the ratio
between pore pressure and extra stresses. In some cases, increasing the filling levels
led to complete stagnation of the granular medium, while decreasing the filling levels
led to increased flow rates. A systematic analysis of the data is left for further work.



Chapter 3

Two-phase hybrid continuum
mixture model for batch
sedimentation

3.1 Introduction and motivation

The behavior of the solid-fluid mixture flow presented in Chapter 2 was interpreted
by assuming that the compressibility of the pore fluid is of major importance. Based
on this insight, a hybrid modeling framework involving an incompressible solid phase
and a weakly compressible fluid phase is developed. Sections 3.2 and 3.3 introduce
the framework and tools necessary for the derivation of a continuum mixture model;
the general balance equations are then derived from first principles in Section 3.4,
and constitutive laws are added in Section 3.5. The flow described in Chapter 2 is
relatively complex, so that as a first step, we resort here to the more simple case of
batch sedimentation. However, the balance equations are general enough to allow
for extension to the flow presented in Chapter 2 by adding additional appropriate
constitutive laws and adjusting the boundary conditions.
Most existing mathematical descriptions of sedimentation are based on the one-
dimensional kinematic theory of Kynch [51], which employs a continuity equation
for the concentration of sediment particles. The equation is solved using the method
of characteristics to give the position of the settling front (interface between clear
water and sediment-water mixture at initial concentration) and the bed front (inter-
face between sediment bed and sediment-water mixture). As the term "kinematic"
suggests, the model ignores the detailed description of forces on the particles, and
assumes that the local solid velocity is a function of the local solid concentration only.
A great number of extensions and tailored variants has evolved from this model to
account for e.g. sedimentation-consolidation or continuous sedimentation, see [14, 72]
for an overview.
Sediment transport naturally involves the sedimentation of particles, beneath erosion
and the actual transport process. Studies in this field are abundant, see e.g. [4, 19,
20, 65]. However, the study of batch sedimentation seems largely to be based on
Kynch’s theory. In fact, there seem to be only three publications to date [15, 53, 54]

25
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that use an implementation of a full continuum mixture model (mass and momentum
balances for each phase) for the modeling of sedimentation processes.
All of the above models assume that both phases, solid particles and fluid, are ma-
terial incompressible, that is, the fluid alone or a single solid particle are assumed
incrompressible, while the solid or fluid phases in the mixture might still be com-
pressible due to changes in the volume fraction of the constituents. While the com-
pressibility of water is indeed small, and might be neglected for most types of mixture
flows, the importance of effects due to fluid compressibility was shown in Chapter
2, and necessitates the development of new models accounting for the material com-
pressibility of water. Moreover, acoustic and transient effects are not captured by
incompressible models. The hybrid model developed here allows the description of
both mass transport and acoustic effects within the same framework.

3.2 Framework

REV: dm, dv

v̂s v̂f

'f

's

dmf

dms

dvf

dvs

vf

vs

microscopic model macroscopic model

Figure 3.1: Microscopic model (left) and macroscopic model (right), adapted to the present
model after [78]. On the microscopic scale, each solid grain and the surrounding fluid have a
discrete location and a unique velocity v̂s and v̂f. On the macroscopic scale, these microscopic
heterogeneities are not visible, and the phases are instead characterized by their volume
fractions and their average velocities vs and vf.

The present model is developed within the framework of Truesdell’s [83] Mixture The-
ory (see [21, 44]). The theory assumes that matter is spread evenly (continuously)
throughout the body and fills out the body completely. From an observer’s macro-
scopic perspective outside the body (cf. the macroscopic model in Figure 3.1, right),
the microscopic heterogeneities (i.e. the discrete particles, cf. the macroscopic model
in Figure 3.1, left) are not visible. In other words, the whole domain, containing the
sediment particles and water, is modeled on a macroscopic scale, i. e. as a contin-
uum, with each Representative Elementary Volume (REV) described by the physical
properties of a mixture ' = 's + 'f where the superscripts s, f are used for the solid
and fluid phase, respectively (cf. Figure 3.1).
The behavior of this mixture, according to Truesdell’s metaphysical principles, is a
superposition of the behavior of its constituents ↵, ↵ 2 {s, f}. Hence the physical
properties of a REV depend on the volume fractions of the constituents inside this
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REV. All volume elements within the domain contain the same constituents, but in
varying volumetric fractions. Consequently, on the macroscopic scale, we are unable
to resolve the behavior of single grains. We do, however, know the percentage compo-
sition of each constituent within a REV, and how the constituents behave on average.
In this framework, the sediment front and bed front are not sharp, discrete bound-
aries, but are represented by the location of the maximum porosity gradients within
the domain. This approach of resolving phase boundaries has been used since the
early days of Computational Fluid Mechanics to resolve fluid surfaces in free surface
flows, and has been termed Volume of Fluid method (VOF), the classic work being
[36].
The density, often called the effective or true density [78] of a material is defined as

⇢↵R :=
dm↵

dv↵
, (3.1)

where dm↵ is a mass element and dv↵ is the volume occupied by this element. The
partial density of a constituent is the mass of that constituent per volume of the
mixture,

⇢↵ :=
dm↵

dv
. (3.2)

The volume fraction of a constituent is introduced as

n↵ :=
dv↵

dv
. (3.3)

We assume that there are no voids in the mixture, that is,
P

↵

dv↵ = dv, so that
the sum of the volume fractions must equal unity,

X

↵

n↵ = 1. (3.4)

The benefit of this concept is that when one of the volume fractions is known, the
second one is known automatically in case of biphasic mixtures. On the other hand,
it implies the loss of one free variable, usually leading to complications in calculating
the pressure.

3.3 Kinematical assumptions
Kinematics investigates the motion of material points within a continuum without
considering the applied forces. This section introduces the most important kinemati-
cal concepts associated with the framework of Mixture Theory. The idea of mixture
theory is that any spatial point is simultaneously occupied by material points of all
mixture constituents at once. Each material point P↵ starting at some reference po-
sition at time t0 follows its very own motion function (cf. Figure 3.2). By identifying
each material point with its position in the reference (starting) configuration, we ob-
tain its position x at time t > t0 as a function �

↵

of the reference position X

↵

and
time t:

x = �
↵

(X
↵

, t) . (3.5)

At time t0, by definition, the material point occupies the position X

↵

,

X

↵

= �
↵

(X
↵

, t0) . (3.6)
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⌦(t0)

⌦(t1)

⌦(t2)

0

Pf

Ps

P

Ps

Pf

Xf

Xs

x

�s

�f

Figure 3.2: Illustration of Kinematics of superimposed continua, modified after [78]. Material
points Pf, Ps, identified by their positions Xf, Xs in the reference configuration (left), are
mapped by their motion functions �f, �s into current configurations, where they may occupy
the same (middle) or different (right) spatial points.

As any two material points Pf and Ps follow their own motion functions �f and �s,
they may start in different spatial positions Xf and Xs at time t0, then occupy the
same spatial point x at a later time t1 and again occupy two different spatial points
at time t2 (Figure 3.2).
Velocity and acceleration of the motion (3.5) are given as the differentiation with
respect to time

v

↵

(X
↵

, t) =
d

dt
(�

↵

(X
↵

, t)) , (3.7)

a

↵

(X
↵

, t) =
d2

dt2
(�

↵

(X
↵

, t)) .

It is clear that velocity and acceleration depend on the reference position X

↵

of a
constituent and on time. This corresponds to the situation of an observer following a
material point P↵ along its path �

↵

through space and time and is commonly referred
to as the Lagrangian description. A different description can be given by an observer
fixed in space, watching material points passing by (Eulerian specification). Such a
specification can be achieved by inverting (3.5), yielding a function that depends on
the current position x and time t,

X

↵

= ��1
↵

(x, t) . (3.8)

Physically, this inversion implies that only one material point P↵ of a constituent '↵

can occupy a specific spatial position x at a specific time t, and that this material
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point started from exactly one reference position. The velocity and acceleration can
then be written as

v

↵

(x, t) = v

↵

�

��1
↵

(x, t) , t
�

, (3.9)
a

↵

(x, t) = a

↵

�

��1
↵

(x, t) , t
�

.

The mixture velocity, called the barycentric velocity, is defined as

v =
1

⇢

X

↵

⇢↵v
↵

. (3.10)

The deformation gradient corresponding to constituent ↵ is defined as the gradient
of (3.5) with respect to the reference configuration X

↵

F

↵

= Grad
↵

x =
d

dX
↵

(�
↵

(X
↵

, t)) . (3.11)

It constitutes a linear mapping of line elements dX
↵

in the reference configuration
into line elements dx in the current configuration,

dx = F

↵

· dX
↵

. (3.12)

The velocity gradient L

↵

is defined as

L

↵

= gradv
↵

(x, t). (3.13)

Since by the chain rule we have

Grad
↵

v

↵

(X
↵

, t) = Grad
↵

v

↵

(x, t) = gradv
↵

(x, t)Grad
↵

x = L

↵

F

↵

, (3.14)

and, on the other hand,

Grad
↵

v

↵

(X
↵

, t) = Grad
↵

d

dt
(�

↵

(X
↵

, t))

=
d

dt
(Grad

↵

�
↵

(X
↵

, t)) =
d

dt
F

↵

:= Ḟ

↵

, (3.15)

we obtain
L

↵

F

↵

= Ḟ

↵

, (3.16)

and therefore
L

↵

= Ḟ

↵

F

�1
↵

. (3.17)

Like any tensor, L

↵

can be decomposed into a symmetric part D

↵

and a skew-
symmetric part W

↵

,

L

↵

= D

↵

+W

↵

=
1

2

�

L

↵

+ L

T

↵

�

+
1

2

�

L

↵

� L

T

↵

�

. (3.18)

D

↵

is referred to as deformation or strain rate tensor, where the superposed T denotes
the transposition and W

↵

is the spin tensor. In the following, we will only use D

↵

.
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3.4 Balance equations
It is known from experience that within a closed system, certain measurable physical
quantities can neither be created nor destroyed, they can only be redistributed
in space - that is, these physical quantities are conserved. Examples are mass,
momentum and energy, among others. This conservation property of a physical
quantity is mathematically stated as a conservation law.
For open systems, i.e. systems where some quantity (conserved or not) can enter or
leave via a system boundary, one can devise a balance equation, stating how much of
the quantity enters the domain within a fixed amount of time, how much leaves the
domain, how much is created or consumed within the domain and, consequently, by
how much the amount of the quantity inside the domain increases or decreases. Such
balance equations are useful for the mathematical description of physical systems;
and if the equations can be solved either analytically or numerically, they can be
used for the prediction of the behavior of a system subjected to a set of specified
boundary conditions.

L↵

x,in

x x+ dx

L↵

x,out

dz

dy

dx

e

x

e

z

e

y

Figure 3.3: A control volume with crossflow.

In this section, the balance equations of the hybrid mixture model are derived. First,
before resorting to the actual model equations, it is shown how a general balance
equation for a mixture constituent can be derived based on physical intuition. For
mathematically and thermodynamically rigorous derivations of the general equations,
the reader is referred to e.g. [22, 23, 40, 44].
A general derivation of the balance equations used hereinafter in the framework of
Mixture Theory is as follows: Imagine a control volume dv = dx dy dz (see Figure
3.3) with a mixture of, for example, N components entering at the coordinate x and
leaving at x + dx. The mixture as a whole is a superposition of its N constituents.
Let L↵ be a conserved quantity of constituent ↵ and L̃↵ = L↵

dv↵

the specific amount
of the physical quantity per unit volume. Further, let us denote by Q↵ the supply,
that is, any external sources or sinks for the quantity L↵; and, in analogy with L̃↵,
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Q̃↵ = Q↵

dv↵

. For instance, if the conserved quantity was heat, a good example of a
source would be a flame underneath the control volume, heating the mixture inside.
Moreover, we also have to account for internal sources and sinks for L↵ originating
from within the mixture: One constituent may receive a portion of the quantity L↵

from another one, either due to direct exchange or indirectly due to mass exchange.
To understand this, imagine a) that L↵ denotes momentum; b) that the mixture
consists of ice and water. The two constituents may exchange momentum directly
within the control volume. Now imagine that c) some of the ice melts within the
control volume: The momentum that was formerly attributed to the (now molten)
ice must be attributed to water. These two contributions are lumped in an exchange
term, also called production, denoted by S↵ and S̃↵ = S↵

dv↵

. Note that, because L↵ is
a conserved quantity,

P

↵

S↵ = 0. Considering only flow in x-direction and assuming
zero flow in y- and z-directions, the balance equation for the quantity L↵ reads in the
most general form:

@L↵

@t
=
@L↵

x,in

@t
�
@L↵

x,out

@t
+Q↵ + S↵. (3.19)

That is, simply speaking, the rate of change of quantity L↵ per unit volume is the
difference between in- and outflow plus what is created / consumed within the volume
plus what is exchanged between the constituents within the volume. Next, assume
that the control volume has a unit cross section da perpendicular to the x-direction,
and unit volume dv = da dx. The constituent ↵ flows into the control volume at
velocity u

↵,x

= dv↵

@t da

�

�

↵,x

and leaves at velocity u
↵,x+ dx = dv↵

@t da

�

�

↵,x+ dx
. We obtain

from (3.19):

@L↵

@t
= L̃↵

x

u
↵,x

da� L̃↵

x+ dx u
↵,x+ dx da+Q↵ + S↵ (3.20)

= L̃↵

x

u
↵,x

da�
✓

L̃↵

x

u
↵,x

da+
@

@x

⇣

L̃↵

x

u
↵,x

⌘

dx da

◆

+Q↵ + S↵

= � @

@x

⇣

L̃↵

x

u
↵,x

⌘

dv +Q↵ + S↵,

and, dividing by dv,

@L̃↵

@t
= � @

@x

⇣

L̃↵

x

u
↵,x

⌘

+ Q̃↵ + S̃↵. (3.21)

If we now consider also flow in the y- and z-directions, the spatial derivative turns
into a divergence, and we arrive at

@L̃↵

@t
+ div

⇣

L̃↵

v

↵

⌘

= Q̃↵ + S̃↵, (3.22)

with the velocity vector v

↵

= [u
↵

v
↵

w
↵

]T . Introducing the concept of mass fractions
from (3.3), we obtain

@

@t

⇣

n↵L̃↵R

⌘

+ div
⇣

n↵L̃↵R

v

↵

⌘

= Q̃↵ + S̃↵. (3.23)

Equation (3.23) represents the general balance equation for constituent ↵. We assume
here isothermal conditions during the flow process, so that a mass and a momentum
balance are sufficient to describe the system.
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3.4.1 Balance of mass
After this general derivation, let us now come to the balance equations used for the
sedimentation model. To obtain the mass balance, we have to replace the arbitrary
conserved quantity L↵ by mass m↵ and its specific counterpart L̃↵R in (3.23) by the
true density ⇢↵R. Clearly, during sedimentation, there is no phase change between
the two constituents (water and solid grains), and mass is not produced or destroyed
inside the system, therefore the exchange term S̃↵ and the source term Q̃↵ are zero.
Hence, the mass balance reads:

@

@t

�

n↵⇢↵R
�

+ div
�

n↵⇢↵Rv
↵

�

= 0. (3.24)

As noted earlier, it is usually assumed in flow models for solid-liquid mixtures that
both phases are incompressible, that is, ⇢sR and ⇢fR are constant. Here, however, we
assume that the solid grains are incompressible and the fluid is weakly compressible,
meaning that density variations are assumed to be small but non-zero:

⇢sR = ⇢sR0 = const, (3.25)

⇢fR 6= const. (3.26)

The solid is assumed incompressible, so that the mass balance can be divided by the
true density, transforming the solid’s mass balance into a volume balance, while the
mass balance for the fluid remains unchanged:

@ns

@t
+ div (ns

vs) = 0 (3.27)

@

@t

�

nf⇢fR
�

+ div
�

nf⇢fRvf

�

= 0. (3.28)

3.4.2 Balance of momentum
To obtain the momentum balance, we replace L↵ by momentum m↵

v

↵

and L̃↵R

v

↵

in (3.23) by ⇢↵Rv
↵

. The source term Q̃↵ in (3.23) is denoted by q

↵ and the exchange
term S̃↵ by ŝ

↵,

@

@t

�

n↵⇢↵Rv
↵

�

+ div
�

n↵⇢↵Rv
↵

⌦ v

↵

�

= q

↵ + ŝ

↵. (3.29)

The total momentum production ŝ

↵ is decomposed into the direct momentum produc-
tion p̂

↵ and a term ˆ̀↵ that is due to mass exchange between the constituents,

ŝ

↵ = p̂

↵ + ˆ̀↵, (3.30)

with
ˆ̀↵ = n̂↵⇢↵Rv

↵

. (3.31)

and n̂↵ the volume production of constituent ↵, which in this case is zero (no mass
exchange between the constituents, see Section 3.4.1). In the sedimentation case,
drag between the fluid phase and settling grains is an example of direct momentum
production. The mixture as a whole is assumed to behave like a single continuum
body, so that the total momentum production of the mixture must vanish:

X

↵

ŝ

↵ = 0. (3.32)
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As noted earlier, in the sedimentation problem there is no mass exchange between
solid grains and fluid, and hence

ˆ̀↵ = 0,

ŝ

↵ = p̂

↵. (3.33)

A statement of the classical dynamics of Newton and Euler is that a change in the
motion, and hence momentum, of a continuous body is produced by external forces.
One may differentiate between forces f

↵

c

that are applied via direct contact on the
surface of a body, and volume or body forces f↵

b

originating from sources like gravity.
The source term q

↵ sums up to

q

↵ = f

↵

c

+ f

↵

b

. (3.34)

The surface forces are expressed by integrating all stress vectors t

↵ on the surface
@⌦↵ of the control volume,

f

↵

c

=

Z

@⌦

t

↵ da. (3.35)

Exploiting Gauss’ theorem
R

⌦ div(•) dv =
R

@⌦(•)n da and Cauchy’s theorem t =:
T · n, with the Cauchy stress tensor T and the normal vector n on the surface da,
the above integral can be rewritten as a volume integral:

f

↵

c

=

Z

⌦

divT↵ dv. (3.36)

The total body force (in the sedimentation problem: gravity) applied to a constituent
↵ is expressed as

f

↵

b

=

Z

⌦

b dm↵ =

Z

⌦

⇢↵b dv. (3.37)

Equations (3.36) and (3.37) must hold for arbitrary volumes, thus we can drop the
volume integrals:

f

↵

c

= divT↵, f

↵

b

= ⇢↵b. (3.38)

Plugging (3.38), (3.30) and (3.34) into (3.29), we arrive at the following general form
of the momentum balance of constituent ↵ in conservative form:

@

@t

�

n↵⇢↵Rv
↵

�

+ div
�

n↵⇢↵Rv
↵

⌦ v

↵

�T

↵

�

= ⇢↵b+ ŝ

↵. (3.39)

In the sedimentation case, the relations for solid and fluid are

@

@t

�

ns⇢sRvs

�

+ div
�

ns⇢sRvs ⌦ vs �T

s
�

= ⇢sb+ ŝ

s, (3.40)

@

@t

�

nf⇢fRvf

�

+ div
�

nf⇢fRvf ⌦ vf �T

f
�

= ⇢fb� ŝ

s. (3.41)

3.5 Constitutive relations for batch sedimentation
To this point, the general balance equations for a mixture of an incompressible gran-
ular solid and a weakly compressible fluid, equations (3.27), (3.28), (3.40) and (3.41)
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were derived. For the two constituents (water and sediment, ↵ = {f, s}), the system
consists of four vectorial equations. The unknowns are ns, nf, ⇢fR, vs, vf, Ts, Tf

and ŝ

s. Note that ⇢sR = const, cf. equation (3.25). Further, note that due to the
saturation condition, equation (3.4), ns and nf are not independent variables and the
number of unknowns reduces by one. To close the system of equations, constitutive
relations must be found for the stress tensors T

s and T

f, and for the momentum
exchange terms ŝs = �ŝ

f. Regarding the latter two terms, note that due to (3.33), we
are seeking constitutive equations for the direct momentum production only. These
constitutive equations are now derived for the case of batch sedimentation; thus we
change now from the general equations to a specific application that can be used as
a benchmark for validation of the model.
Let us start with the partial Cauchy stress tensors. Here, both constituents (fluid and
aggregates of solid grains) are modeled as linear viscous fluids. That is, the stress
tensor T

↵ is decomposed into the sum of hydrostatic and extra stresses,

T

↵ = �p↵I+T

↵

E

, (3.42)

where p↵ denotes the partial pressure and T

↵

E

is the viscous or extra stress tensor of the
constituent ↵. The partial pressure corresponds to the stress within the constituent
at rest. Constitutive assumptions must be postulated for both p↵ and T

↵

E

. Although
this treatment is straight-forward in case of the fluid phase because it shows a strain
rate dependent (i.e. viscous) behavior, a different treatment is possible for the solid
phase and has been applied in debris flow models; see e.g. [68, Appendix B] and
citations therein.
The extra stresses for a compressible fluid are commonly assumed as (cf. [74]):

T

↵

E

= 2µ↵

✓

D

↵

� 1

3
divv

↵

I

◆

, (3.43)

with
D

↵

=
1

2

⇣

gradv
↵

+ gradT v

↵

⌘

(3.44)

and the scalar coefficient µ↵ is the dynamic viscosity. Here, we adopt the assumption
(3.43) for both phases. If the dynamic viscosity, µ↵, is constant, the extra stresses
depend linearly on the shear rate, and the fluid follows a Newtonian rheology. In our
case, this rheology is realistic for the fluid phase, and we prescribe

µf = 10�3 Pa s. (3.45)

For the solid, however, the situation is different. Ishii & Zuber [42] describe how the
apparent viscosity of a mixture changes due to the presence of a dispersed solid: A
single particle P moving through the fluid will impart a motion on the fluid. The
motion of the fluid yet again imparts forces on particles in the neighborhood. As the
particles are rigid, they do not deform as the fluid does. For the original particle P
this results in an apparent increase of the viscosity of the fluid around it. When the
solid volume fraction further increases, the particles may interact directly, creating
friction between the particles and further increasing the mixture viscosity. It is clear,
however, that it is impossible to give a relation for the viscosity of the grains directly,
because it cannot be measured; but one can give a relation for the viscosity of the
mixture, and, if the fluid viscosity is known, calculate the solid viscosity from the
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mixture and fluid viscosity by assuming that the mixture viscosity is the arithmetic
mean of the constituent viscosities,

µmixture = nsµs + nfµf. (3.46)

A multitude of viscosity equations for fluid-granular mixtures exist; examples are
[12, 26, 29, 71] to name just a few. Most viscosity corrections have in common that
they give an exponential dependence of mixture viscosity on the solid volume fraction;
cf. [42, figure 3] for a comparison. We choose the relation proposed by Ishii & Zuber
[42],

µmixture = µf

✓

1� ns

ns
max,µ

◆�2.5ns
max,µ

, (3.47)

which shows the desired properties while being relatively simple. The formulation
in (3.47) implies that µmixture ! 1 as a close packing of grains is approached,
ns ! ns

max

. This leads to undesired model behavior in the close packing limit,
because the mixture would turn almost rigid before the densest packing is reached,
and a sedimentation process would become unrealistically slow in the vicinity of the
bed front. Hence, in (3.47) ns

max,µ

is viewed as a model parameter (as opposed to a
physical parameter describing a specific property of the physical problem) that must
be greater than ns

max

and can be adjusted to fit experimental results. The reaction
of the model to a variation in ns

max,µ

is investigated in Chapter 5. The solid viscosity
can now be calculated from (3.46) and (3.47):

µs =
µf

ns

"

✓

1� ns

ns
max,µ

◆�2.5ns
max,µ

� nf

#

. (3.48)

At this point, the extra stresses T

↵

E

of (3.42) are specified, and we are left with the
definition of the pressure part p↵ of the partial stress tensor T

↵. In analogy with
kinetic gas theory, the total pressure of a mixture is the sum of the partial pressures
of the constituents (cf. Dalton’s law of partial pressures in a mixture of non-reacting
gases), so that the partial pressure of the fluid phase is given by

pf = nfpfR, (3.49)

where pfR denotes the true fluid pressure, i.e. the fluid pressure in presence of only
one single phase. Here, we assume a barotropic fluid, whose true pressure depends
on its density only. For water, the relation between pressure and density is generally
nonlinear, and can be approximated by the Tait equation [6, 17, 56, 63].

pfR =
Kf

0

�

  

⇢fR

⇢fR
ref

!

�

� 1

!

+ pfR0 . (3.50)

Here, Kf
0 is the fluid bulk modulus, ⇢fR

ref

= 1000 kg/m3 is a reference density, � is an
empirical parameter that is usually set to a value of

� ⇡ 7, (3.51)

see [6, 17, 63], and pfR0 is a reference pressure, for example atmospheric pressure. In
the model equations, the pressure occurs only in gradient expressions, so that we set

pfR0 = 0. (3.52)
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The Tait equation is in agreement with experimental measurements for water within
a few per cent accuracy over a range of pressures of several hundred Megapascal, cf.
[6, p. 56], [17, p. 38f.]. If the density variation in a given physical problem is small,
(3.50) can be approximated by a linear relation:

pfR = c2f

⇣

⇢fR � ⇢fR
ref

⌘

+ pfR0 , (3.53)

where cf is the speed of sound in the fluid, which is connected to the fluid bulk
modulus via the Newton-Laplace equation, c2f = Kf/⇢fR, and is assumed constant
here. In a real batch sedimentation process, the density variations will be less than
one per mille for water column heights of up to 100 m. In this regime, it is certainly
sufficient to use equation (3.53) instead of (3.50), cf. Figure 3.4. In Section 4.2.3, the
two pressure laws are compared using a classical, single-fluid CFD example.

⇢fR kg/m3

p
fR

[G
Pa

]

1000 1050 1100
0.0

0.1

0.2

Tait, eq. (3.50)
linear, eq. (3.53)

0.3

Figure 3.4: Comparison of the pressure laws (3.50) and (3.53), assuming Kf
0 = 2.2 GPa, � = 7,

⇢fR = 1000 kg/m3, pfR0 = 0 and cf = 1483 m/s.

The definition of the fluid pressure is a key relation in the model. On the one hand,
it allows to realistically depict the propagation of acoustic waves in the medium, and
the reaction of the fluid pressure to volumetric deformation of the fluid – and hence,
the ability to describe flow processes where this is of major importance, cf. Chapter
2. On the other hand, the high acoustic wave velocity leads to the necessity to choose
small timesteps in order to resolve the rapid wave propagation; especially in explicit
time stepping schemes this requirement can be unfavorable or even devastating. In
flow situations when both wave propagation and reaction of pressure to volumetric
deformation of the fluid are not important, cf can be treated as a model parameter
rather than a physical parameter, and greater time step sizes can be achieved by
setting the speed of sound (and hence, the fluid compressibility) to unphysically low
values. In that case, it must be assured that density variations are less than ⇡ 10%,
which can be achieved by setting cf ⇡ 10V , where V is the maximum velocity of the
fluid throughout the entire simulation and must be estimated a priori or found by
numerical experiments, see [63].
Relation (3.49) attributes only a part of the true fluid pressure to the fluid phase.
The solid particles are incompressible, so that their true pressure psR does not depend
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on their true density ⇢sR. Instead, the fluid imparts forces on the surfaces of the
incompressible solid particles, so that we can assume that the true pressure within
each of the solid particles is solely determined by the true fluid pressure surrounding
the particle, and

psR = pfR. (3.54)

Hence the difference between the fluid pressure pf and the true fluid pressure pfR,
given by nspfR, will enter the expression for the granular solid pressure.
With respect to the solid, yet another contribution to the pressure must be accounted
for. The highest physically possible volume fraction for solid particles is the densest
packing, so that some mechanism must assure that ns < ns

max

. This is achieved via
a so-called configuration [40] or particle pressure [45, 65] ps

conf

. The partial solid
pressure, in analogy to the partial fluid pressure, is hence given by

ps = nspfR + ps
conf

. (3.55)

The idea behind the configuration pressure term is an analogy observation between
gases and granular media, called kinetic theory of granular flow [18, 33, 59]. The
constitutive equation for ps

conf

is similar to the equation of state for ideal gases, but
additionally accounts for collisions and maximum volume fraction:

ps
conf

= ⇥s ⇢sR2 (1 + es) (ns)2 gs0, (3.56)

see [79]. Here, ⇥s is the granular temperature, which is analogous to the temperature
in kinetic gas theory and accounts for random fluctuations in solid grain velocity;
es = 0.9 is the coefficient of restitution for solid glass spheres, and gs0(n

s) is the radial
distribution function, for which we choose the relation

gs0 =

 

1

1� n

s

n

s
max

!1/3

, (3.57)

see [64]. Hence, the configurational pressure is calculated from an exponential function
of solid volume fraction. At low volume fractions, the particles can move freely within
the fluid, and the configurational pressure gradient of the dispersed phase disappears.
However, when ns ! ns

max

, the pressure gradient increases, resulting in a repulsive
force between the particles; and hence, the maximum solid volume fraction cannot
be exceeded. If we express the number of neighbours within a certain distance of a
given particle in terms of a coordination number K̄, then (3.57) implies that K̄ ! 0
for ns ! 0. When the solid volume fraction increases, the particles slowly start to
interact, until K̄ ! K̄

max

for ns ! ns
max

and no further compression is possible.
The random fluctuations, described by ⇥s, of non-colloidal spheres in case of batch
sedimentation are assumed to be constant and small. From a modeling point of view,
the configuration pressure is responsible for keeping the solid volume fraction below
the maximum value. At the same time, the sharp interface between settled bed and
sedimenting grains should be depicted, which requires that the grains slow down from
their equilibrium settling velocity to zero within a very short distance. In terms of the
solid configuration pressure, this behavior can be attained by keeping ⇥s as low as
possible. In this case, ps

conf

reacts very slowly to increasing values of ns as long as the
solid volume fraction is low, and very strongly when the solid volume fraction is high.
However, when the value of ⇥s is too low, the configuration pressure increases too
fast near the interface, so that a good compromise must be found. The sedimentation
model is tested for a range of values of ⇥s in Chapter 5.
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Up to this point, the stress tensors of both solid and fluid are fully specified, and only
the constitutive assumption on the momentum exchange term is left to be defined. It
can be decomposed into an equilibrium, ŝ↵

eq

, and a non-equilibrium contribution ŝ

↵

neq

,
see [41, 78]:

ŝ

↵ = ŝ

↵

eq

+ ŝ

↵

neq

. (3.58)

Let us investigate the equilibrium part. To do this, we first analyze the contribu-
tion of the pressure to the divergence of the stress tensor in equation (3.39). Recall
from (3.42) that the stress tensor is decomposed into a pressure and an extra stress
contribution. Noting that p↵ = n↵p↵R and taking the divergence of the pressure
contribution only, we can write

div
�

�n↵p↵RI
�

= �n↵ grad p↵R � p↵R gradn↵. (3.59)

Now assume an "equilibrium" situation where velocities, pressure gradients and body
forces are zero. The momentum balance (3.39) becomes:

p↵R gradn↵ = ŝ

↵

eq

(3.60)

i.e., even in a situation where the whole system is at rest, the contribution from the
equilibrium part of the exchange term is non-zero. The term on the left side was
called the buoyancy force by Drew [22]. Exploiting (3.54) for the present biphasic
model, (3.60) corresponds to

ŝ

f
eq

= �pfR gradns, (3.61)

ŝ

s
eq

= pfR gradns, (3.62)

respectively, for the fluid and the solid equilibrium momentum exchange term. In
the most general case, the non-equilibrium term ŝ

↵

neq

may consist of a multitude of
contributions (see e.g. [44, 68]), among which the most important ones are lift and
virtual mass forces, momentum exchange due to mass exchange and viscous drag.
In our case, there is no mass exchange between solid and fluid, and lift and virtual
mass forces are considered to be small and are therefore neglected. We are left with
the viscous drag force, for which, according to Jackson [44], Ishii & Zuber [42] have
proposed "perhaps the best known attempt [...], valid over the whole range of [particle]
Reynolds numbers and particle concentrations". The relation can be derived from the
drag force on a single sphere immersed in an infinite fluid:

F

D

(w) = C
D

(Re
d

)
1

2
A ⇢fRw |w| . (3.63)

Here, A = ⇡ (d/2)2 is the particle’s cross section with d the diameter of the sphere;
w = vf � vs is the difference between fluid velocity and particle velocity, and C

D

is
the drag coefficient that depends on the local grain Reynolds number Re

d

,

Re
d

=
|w| d⇢fR

µf
. (3.64)

In (3.63), the modulus of the term 1/2A ⇢fRw |w| corresponds to the kinetic energy
of the fluid which is displaced by the particle. In general, the viscous drag is due
to form drag and skin friction. For Reynolds numbers Re < 1 however, drag is only
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due to skin friction, the drag coefficient is given by Stokes’ law C
D

= 24/Re, and F

D

reduces to Stokes’ drag F

D

= 3µf⇡dw. For higher Reynolds numbers, many empirical
expressions have been proposed to fit the experimentally observed dependence of C

D

on Re. Ishii & Zuber [42] chose

C
D

=
24

Re
d

�

1 + 0.1Re0.75
d

�

. (3.65)

It is well-known since the famous experiments of Richardson & Zaki [70] that the
settling velocity of a particle is reduced in the presence of other particles. Ishii &
Zuber [42] propose to handle this effect by simply replacing the fluid viscosity in Re

d

by an expression for the mixture viscosity:

Re
d

=
|w| d⇢fR

µm
. (3.66)

Here, µm is given by equation (3.47). It is clear, as Jackson [44] notes, that this
procedure cannot yield correct results if the value ns

max,µ

is set equal to the physically
correct value ns

max

because in that case,

lim
n

s!n

s
max

|F
D

| = 1. (3.67)

The above relation cannot be correct because even at close packing, an assembly
of grains retains a finite permeability and hence, a finite drag force. Moreover, the
sedimentation velocity would tend to zero in the vicinity of the bed front, which is not
in agreement with experimental observations. Consequently, as noted earlier, ns

max,µ

is seen here as a modeling parameter that can be adjusted to fit e.g. experimental
results. The specific momentum exchange term is finally calculated from the drag
force as

ŝ

s
neq

=
ns

F

D

V
(3.68)

with V = 1/6⇡d3 the volume of a particle.

3.6 Summary and discussion of the hybrid model
The main feature of the hybrid model is its ability to capture physical effects (e.g.
acoustic wave propagation, cf. Chapter 5) associated with the compressibility of the
fluid and the bulk flow behavior of the mixture within a single framework. The model
allows for a relatively simple extension to a specific type of flow by adjusting the
constitutive laws. For example, the flow described in Chapter 2 could be described
by using constitutive relations commonly used in landslide and debris flow modeling,
see e.g. [67, 68]. An extension to n solid phases with slightly different physical
properties (e.g. different grain sizes) is also straightforward by adding mass and
momentum balances for each additional solid phase. In incompressible models, the
pressure does not appear as a free variable, but rather as a Lagrange multiplier,
requiring more sophisticated implicit pressure projection methods for numerical
solution. For the hybrid model, the pressure is defined constitutively, permitting the
use of simple explicit time integration schemes. However, explicit integration leads
to the necessity of choosing small time steps in the numerical integration. This issue
is further discussed in Section 4.5.
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Chapter 4

Numerical implementation -
discontinuous Galerkin method

The equations derived in Chapter 3 are numerically implemented using a nodal dis-
continuous Galerkin (nodal dG) method, based on the ideas outlined in [35]. In this
thesis, the aim is to understand and explain physical effects in flows of fluid-solid mix-
tures, and the numerical method is understood as a tool. Consequently, the theory,
notations and illustrations in this chapter are and largely inspired by [35]. However,
the chapter thoroughly introduces the dG method in 1-D using simple examples,
so that it might serve a reader who is unfamiliar with numerical methods at large
and with discontinuous Galerkin methods in particular as a good introduction to the
method, and an aid in understanding the derivations and example codes presented in
[35].
The structure of the chapter is as follows: First, the focus will be on the implemen-
tation of a simple advection problem in 1-D. Next, the treatment of second spatial
derivatives in partial differential equations is covered, using advection-diffusion as an
example. Then, the ideas and principles presented so far are transferred to a 2-D
geometry. Two examples are shown implementing the weakly compressible Navier-
Stokes equations. Two physical effects acting at very different timescales are described
by these equations: mass transport is described on a long timescale; yet, the propaga-
tion of acoustic waves, which usually acts on very short timescales, is also captured.
One problem emerging from the existence of acoustic waves in the model is the treat-
ment of in- and outflow boundaries, where it is desirable to avoid reflections. Hence
the treatment of open, non-reflecting in- and outflow boundaries is studied in the
context of compressible Navier-Stokes equations. Next, the implementation of the
mixture model equations presented in Chapter 3 is explained, before turning to the
time marching scheme, which must assure that both the short and long timescales are
properly captured.

41
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4.1 Introduction to the discontinuous Galerkin
method

4.1.1 Idea
The idea behind discontinuous Galerkin methods is to combine the advantages of the
Finite-Volume (FVM) and the Finite-Element (FEM) methods. In short, this aim
is achieved by using spaces of basis and test functions that mimic the FE method,
but - and this is important - only at the element level. At this stage, the single
elements are disconnected from each other. The global solution, i.e. the solution
in the computational domain, is then recovered by connecting the elements via
numerical fluxes over the element boundaries, similarly as in FV methods (cf. Figure
4.1). This way, FEM’s advantages of high-order approximations, flexible geometries
and relatively straight-forward p-adaptivity (i.e., variation of polynomial degree) is
combined with FVM’s advantages of h-adaptivity (i.e., variation of mesh cell size),
and stability and robustness for conservation laws.
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Figure 4.1: Illustration of element connectivity in 1-D. Example is for polynomial order N = 2,
so that each element contains N

p

= 3 vertices (black points in upper panel). The single
elements D(k) are not connected, so that at faces which are not a domain boundary, two
vertices share a single coordinate. The single elements are only connected via the numerical
flux, which is a linear combination of the solution value u

int

of one face of element k and the
solution value u

ext

of the adjacent face of element k+ 1 or k� 1. The adjacent face shares
the same physical coordinate but belongs to a neighboring element. The indices l, r relate
to the left and right face of an element and in 1-D, have the same meaning as the indices
1, N

p

. Hence, the numerical flux can be seen as a "boundary condition for an element".

4.1.2 The nodal basis
Before we can start with the actual derivations of the advection problem from its par-
tial differential equation to numerical implementation, some preliminaries are needed.
Namely, a solution u that is continuous in physical space somehow has to be repre-
sented by a discrete approximation u

h

on the computer. In particular, a polynomial
expansion, consisting of a polynomial basis and expansion coefficients is used for this
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approximation. To understand the principles behind the dG method, it is sufficient
to have a very basic understanding of how the basis is computed; however, some no-
tation will be introduced in this section that is used in the remainder of the chapter.
For all numerical computations shown in this thesis, the computation of the basis was
achieved using algorithms from the open-source code Pydgeon by Andreas Klöckner
[49].
In many dG methods, a so-called modal expansion is used:

u(x, t) ' u
(k)
h

(x, t) =

N

p

X

n=1

û(k)
n

(t) 
n

(x), x 2 D(k). (4.1)

Here, u(k)
h

(x, t) is the discrete approximation of u(x, t) on the element D(k),  
n

is a
basis of the polynomial space, and û

(k)
n

(t) are the expansion coefficients that we need
to calculate to recover the solution. N

p

is the number of expansion coefficients, which
is related to the polynomial order N by N

p

= N +1 in 1-D. Note that the coefficients
are functions of t only.
If in (4.1) the polynomial basis consists of the Lagrange polynomials

`
(k)
i

(x) ⌘
Np

Y

j = 1
j 6= i

x� x
(k)
j

x
(k)
i

� x
(k)
j

(4.2)

for some points x
(k)
1 , ..., x

(k)
Np

in element D(k), that is, u(x, t) is approximated by

u(x, t) ' u
(k)
h

(x, t) =

N

p

X

i=1

u
(k)
h

(x
i

, t) `(k)
i

(x), x 2 D(k), (4.3)

we refer to the approximation (4.3) as the nodal representation of u(k)
h

. The expansion
coefficients are exactly the values of the approximate solution u

(k)
h

at the nodal points
x
(k)
i

in D(k). Hence, the nodal approach directly mimics the behavior of the solution
within one element, which is useful in the graphical analysis of the solutions of applied
problems. The nodal representation (4.3)was used for computations throughout this
thesis. Let us now discuss how to choose the nodal points. We introduce a mapping
from from a reference element,

I = [r = �1, r = 1], (4.4)

to the element
D(k) = [x = x

(k)
l

, x = x(k)
r

] (4.5)

by

x(k)(r) = x
(k)
l

+
1 + r

2

⇣

x(k)
r

� x
(k)
l

⌘

(4.6)

= x
(k)
l

+
1 + r

2
h(k), h(k) = x(k)

r

� x
(k)
l

, (4.7)

so that
x
(k)
1 = x(k)(r1), ... x

(k)
Np

= x(k)(r
Np

) (4.8)
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for all elements k. The Lagrange polynomials (4.2) are related to the Lagrange poly-
nomials on the reference element

`
i

(r) ⌘
Np

Y

j = 1
j 6= i

r � r
j

r
i

� r
j

, r 2 I, i = 1, ..., Np (4.9)

by the formula
`
(k)
i

(x)
�

�

�

x=x

(k)(r)
= `

i

(r). (4.10)

Consequently, in computations, derivatives and integrals on each element D(k) can
be expressed in terms of quantities defined on the reference element I, independent
of k, and the basis needs to be computed just once (for the reference element). The
Lagrange polynomials imply orthogonality,

`
i

(r
j

) = �
ij

, (4.11)

which will be useful in the further derivations.
For the nodal points r1, ... rNp

2 I, we choose the so-called Legendre-Gauss-Lobatto
quadrature points. This choice assures that u

h

given in (4.3) is the interpolant poly-
nomial of order N that is (in a precise mathematical sense) closest to the best ap-
proximating polynomial of order N (see [35, Sec. 3.1]).

4.1.3 Deriving the weak form in a dG framework

Let us consider the 1-D pure advection problem to demonstrate the steps that are
necessary to derive a weak formulation in the dG framework:

@u

@t
+ a

@u

@x
= 0 on⌦ = (L,R) , t > 0 (4.12)

u (x, 0) = u0 (x) on⌦
u (L, t) = g(t) for t � 0

We assume a = const, a > 0, and u0(x) and g(t) denote initial and Dirichlet
boundary conditions, respectively. To understand the physical meaning of equation
(4.12), let us say that the solution variable u denotes a particle concentration.
Imagine a single neutrally buoyant particle that is released into a flow of pure water,
for example in a pipe, at coordinate x = L. The particle concentration at t = 0 is
denoted by c0. Experience tells us that the particle would be transported through
the domain at the velocity a of the fluid towards the other end of the domain, x = R;
and with it, a peak in particle concentration is advectively transported through the
domain.

4.1.4 Step 1: Weak formulation

Equation (4.12) holds in each material point of the domain. For computational pur-
poses, (4.12) is usually restated in an equivalent weak formulation that relaxes the
requirement of pointwise validity. To derive the weak formulation, we first multiply
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equation (4.12) with an arbitrary test function '. We require the resulting equation
to be zero in an average sense, i.e. when multiplied by ' and then integrated over
each element:

Z

D

(k)

@u

@t
' dx+

Z

D

(k)

a
@u

@x
' dx = 0, k = 1, ...K. (4.13)

Note that the above formulation applies to each single element; there is no formalism
so far connecting the elements to each other. We now integrate the second integral
in (4.13) by parts using the product rule:

Z

D

(k)

@u

@t
' dx� a

Z

D

(k)

u
@'

@x
dx+ a

Z

D

(k)

@u'

@x
dx = 0. (4.14)

Next, Gauss’ theorem
Z

D

(k)

@
x

(•) =
Z

@D

(k)

(•)n̂
x

, (4.15)

is exploited to obtain a surface integral from the last term. Here, n̂
x

is the outward
facing normal of the element boundary (in 1 D, n̂

x

has the value -1 on the left and 1
on the right boundary of an element). We obtain:

Z

D

(k)

@u

@t
' dx� a

Z

D

(k)

u
@'

@x
dx = �a

Z

@D

(k)

(u') n̂
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dx, (4.16)

and equivalently,
Z

D

(k)

@u

@t
' dx� a

Z

D

(k)

u
@'

@x
dx = � [a u']

x

(k)
r

x

(k)
l

. (4.17)

and x
(k)
l

and x
(k)
r

are the coordinates of the right and left element boundaries, respec-
tively, cf. Figure 4.1. The term on the right hand side

� [a u']
x

(k)
r

x

(k)
l

= �a
⇣

u(x(k)
l

)'(x(k)
l

)� u(x(k)
r

)'(x(k)
r

)
⌘

(4.18)

is defined only on the boundary of the element. Hence, as the elements of the compu-
tational domain are formally disconnected, this term establishes a connection between
the elements.
In a Finite Element framework, the derivation of the weak form is similar, but the
integration is not over one element,

R

D

(k) , but over the whole domain,
R

⌦. In FEM,
the connection between the elements is established by requiring the basis functions to
be continuous at element boundaries. In that case, the right-hand side term of (4.17)
would be related to the boundary of the computational domain, and can be used e.g.
to apply a Neumann boundary condition. In the dG context, the right-hand side term
is related to the boundary of a single element, and can be used to apply "boundary
conditions" to the single elements. These "element boundary conditions" are termed
numerical flux, and connect the single elements to each other, cf. Section 4.1.8.

4.1.5 Step 2: Weak form in discrete setting
The weak form of (4.12), equation (4.17), will now be discretized as follows:
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• The numerical approximation of the value of u on element k will be called u
(k)
h

and approximated using a nodal expansion, equation (4.3).

• The Lagrange polynomials `(k)
i

are used for the test function '.

• The value of u on the element boundary is approximated by a numerical flux u?.

We obtain the following discrete weak form:

Z

D

(k)

du(k)
h

dt
`
(k)
i

dx� a

Z

D

(k)

u
(k)
h

d`(k)
i

dx
dx = �

h

a u? `
(k)
i

i

x

(k)
r

x

(k)
l

(4.19)

The introduction of the numerical flux is the crucial step in the dG approach. Re-
call that we have an element-wise defined formulation, where the elements are only
connected via the right-hand side term. The introduction of the numerical flux im-
plies the assumption that a global solution can be recovered by correctly choosing the
inter-element flux. The question is of course how to formulate this numerical flux in
a way that a meaningful global solution is recovered. Although there are guidelines
for the choice of the flux, we have considerable freedom in this regard [35].
By integrating equation (4.19) by parts again, we obtain a formulation that Hesthaven
[35] calls "strong form", but should not be confused with the strong form used in a
Finite Element context. We will refer to this formulation as "discrete strong form":
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. (4.20)

4.1.6 Useful relations in 1D

At this stage, it makes sense to introduce the following definitions and relations that
will be necessary for a compact notation of the further derivations. First, integrals
over the physical elements D(k) and the unit element I of products of Lagrange
polynomials are expressed as so-called mass matrices M

(k), M,

M
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ij

=
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(r) dr, M =
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, (4.22)

related by

M
(k)
ij

=
h(k)

2
M

ij

, M

(k) =
h(k)

2
M. (4.23)
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Integrals of products of a Lagrange polynomial and its derivative define the stiffness
matrices S

(k), S,

S
(k)
ij

=
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(k)

`
(k)
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S
ij

=

Z

I

`
i

(r)
@

@r

�

`
j

(r)
�

dr, S =
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, (4.25)

related by

S
(k)
ij

= S
ij

, S

(k) = S. (4.26)

Numerical derivatives are computed using the matrix
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which is related to the Vandermonde matrix V and the matrix V

r

given by

V
ij

= P̃
j�1(ri), V = (V

ij

) , (4.28)
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see (4.31) below. Here, P̃0, ... P̃N

are the (orthonormal) Legendre polynomials 1 of
order N . Finally, the connections between the above definitions are given by the
relations

M =
�

VV

T

��1
, (4.30)

D

r

= V

r

V

�1, (4.31)
S = MD

r

. (4.32)

For the derivations of (4.30) and (4.31) see [35, Ch. 3]. Note that the two matrices V
and V

r

are sufficient to express all the matrices, that is, M, D
r

, S, that are necessary
to compute the approximate solution.

4.1.7 From weak form and basis to computer implementation

We shall now see how the above strong form can be transferred into a formulation
that is suitable for computer implementation. The following derivations may appear
a bit tedious; however they will lead to a final formulation that illustrates some
of the advantages of the nodal dG method and can directly be implemented in a
computer code. Moreover, the derivations should facilitate the understanding of the
example codes in the book by Hesthaven & Warburton [35]. The general strategy
outlined in this section is the same for most conservation laws. Some additional
complications arise when second derivatives must be approximated (cf. 4.1.9) or

1
The Legendre polynomials of order n are obtained by the Gram-Schmidt orthonormalization

preocess with respect to the inner product < f, g >=
R 1
�1 f(x)g(x) dx, and starting from the linearly

independent polynomials 1, x, x2
, ..., x

n

.
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when solutions are discontinuous, but those complications will just add some details,
while the basic approach is the same. In that sense, this section may serve as a
cookbook on the derivation of a spatially discretized version of a conservation law for
numerical implementation.
The polynomial expansion introduced in (4.3) is used for the approximation of u(k)

h

and repeated here for clarity:

u(x, t) ' u
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Plugging into the strong form (4.20), on the left hand side we have
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Recalling the definitons (4.21) and (4.24) and introducing the vector
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one can easily see that (4.34) is the ith component of the vector
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Next, we refer to the right-hand side of (4.20) and introduce the vector
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so that the right-hand side of (4.20) is the ith component of the vector
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Using the property `(k)
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of the Lagrange polynomials, we have
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Defining the new matrix
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and the vector

d

u

(k)(t) =

0

@

�a
⇣

u
(k)
l

� u?(x(k)
l

)
⌘

a
⇣

u
(k)
r

� u?(x(k)
r

)
⌘

1

A , (4.41)

expression (4.38) can be compactly written as

⇠ d(k)
u

. (4.42)

Now that we have (4.36) and (4.42), the N
p

equations in (4.20) can be written in
matrix form as
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Our goal is to derive a spatial semidiscretization, that is, to have an expression on the
right-hand side that is discretized in space and can be calculated on the computer;
and to have the time derivative on the left hand side, whose discretization is left for
later. So let us rearrange (4.43) using some of the relations in Section 4.1.6. We
obtain:
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Here, the so-called lift matrix

⌥ = M

�1⇠ (4.45)

was introduced. The superscript (k) indicates that this expression is valid for each
single element. We could easily calculate the right-hand side on the computer by
simply looping over all elements. However, by introducing a few more matrices, a
compact notation can be obtained for (4.44) that allows the calculation of the right-
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hand side for the complete domain in one single step. The required matrices are:
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J = x

r

=

0

B

B

@

h

(1)

2 . . . h

(K)

2
...

. . .
...

h

(1)

2 . . . h

(K)

2

1

C

C

A

, r

x

=

0

B

@

2
h

(1) . . . 2
h

(K)

...
. . .

...
2

h

(1) . . . 2
h

(K)

1

C

A

, (4.47)

d

u

=
⇣

d

(1)
u

. . . d

(K)
u

⌘

=

0

@

�a
⇣

u
(1)
l

� u?(x(1)
l

)
⌘

. . . �a
⇣

u
(K)
l

� u?(x(K)
l

)
⌘

a
⇣

u
(1)
r

� u?(x(1)
r

)
⌘

. . . a
⇣

u
(K)
r

� u?(x(K)
r

)
⌘

1

A , and (4.48)

F

sc

=

 

h

(1)

2 . . . h

(K)

2
h

(1)

2 . . . h

(K)

2

!

(4.49)

Now, the semi-discretized equation can be formulated as
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It is important to note that in this expression, the symbols � and ⌦ were used
to clearly discriminate between component-wise matrix multiplication (A � B)

ij

=
A

ij

B
ij

and the usual matrix product (A⌦B)
ij

=
P

k

A
ik

B
kj

(i.e., ⌦ does not relate
to a dyadic product here).
Let us now note some properties of the formulation (4.50). First, we refer to the first
term on the right-hand side of (4.50), �a r

x

�(D
r

⌦ u

h

). Here, the variable a and the
matrices r

x

and D

r

are constants and have to be defined or calculated just once at
the beginning of a computation. The values of the solution variable u

h

are stored in a
matrix where each column contains only the information from one single element, cf.
(4.46). The first right-hand side term of (4.50) can easily be computed on n parallel
processors by splitting the matrices r

x

and u

h

column-wise into n submatrices
and letting each processor calculate the term �a ri

x

�
�

D

r

⌦ u

i

h

�

, i = 1, ..., n. No
communication between the processors is necessary, there is no information exchange
between the elements here. For the term ⌥ ⌦ (F

sc

� d

u

) in (4.50), the situation is
slightly different: ⌥ and F

sc

are constant matrices that are calculated only once, and
d

u

can be subdivided column-wise. However, to assemble the matrix d

u

, information
from each adjacent element is necessary, cf. equation (4.48). These facts reveals
one of the major strengths of the nodal dG method: Apart from the flux term,
all operations are element-local, which makes them extremely suitable for parallel
computation.
In particular, decades of research have been devoted to efficient parallel implementa-
tions of matrix multiplications, and hence, sophisticated libraries exist that can be
used off-the-shelf to compute these products. The algorithms written for this thesis
were implemented in Python. The Python package for numerical computing, NumPy,
was used. The NumPy package can be custom-compiled to use optimized BLAS
libraries (Basic Linear Algebra Subprograms), for example OpenBLAS (cf. [85] and
references therein) or ATLAS (Automatically Tuned Linear Algebra Subsystems, cf.
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[86]). In the numerical tests carried out for this thesis, OpenBLAS turned out to
deliver the better overall performance. Yet, the problem sizes investigated were so
small that enhanced parallelism (more than two processors) yielded no advantages in
computation times.

4.1.8 The numerical flux
Thus far, no assumptions or choices were made regarding the numerical flux u?. As
the flux is the only connection between the adjacent elements, it is now time to make
this choice. We recall that a dG scheme is identical to an FE scheme as long as we pick
out just a single element, and ignore the other elements. The role of the numerical
flux is to provide "boundary conditions" for the otherwise disconnected elements (here
the term boundary refers to the boundary of an element, hence the quotation marks.
Element boundaries are called faces for a clear distinction, and the intersection of two
faces is called vertex ). Taking the simple advection example, the first and simplest
idea would be to just consider a central flux u? = {{u}}, which is the average of the
values at each side of the vertex. However, if we know from our knowledge of the
equation in which way the information is traveling, it would intuitively be advisable
to have a stronger weighting of the upstream information, because any downstream
information will anyway "flow out of the element" in the next timestep. That is
exactly the idea behind upwind numerical fluxes, which are suitable for all convection
dominated problems because they involve information flowing in a preferred direction.
We introduce the upwind Lax-Friedrichs flux

u? = {{u}}+ 1� ↵

2
[[u]] =

u
int

+ u
ext

2
+

1� ↵

2
(n̂

int

u
int

+ n̂
ext

u
ext

) . (4.51)

Here, u
int

denotes the interior value of u
h

at the left or right face of element k;
while u

ext

denotes the exterior value of u
h

at the left or right face of element k, cf.
Figure 4.1. The parameter ↵ specifies the amount of upwinding. In case of ↵ = 1, a
purely central flux is recovered, while ↵ = 0 involves a stronger weighting of upstream
information, which is termed upwinding. In (4.51), we have used the average value
of the interior and exterior solution values,

{{u}} =
u
int

+ u
ext

2
, (4.52)

and the jump of the interior and exterior solution values,

[[u]] = n̂
int

u
int

+ n̂
ext

u
ext

. (4.53)

With the flux (4.51), we obtain in the first line of (4.48) the connection between the
left face of element k and the right face of element k � 1:
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(4.54)
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and in the second line the connection between the right face of element k and the left
face of element k + 1

u
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N

p

) =

u
(k)
Np

�
"

u
(k)
Np

+ u
(k+1)
1

2
+

1� ↵

2

⇣

(+1)u(k)
Np

+ (�1)u(k+1)
1

⌘

#

=

1

2

⇣

u
(k)
Np

� u
(k+1)
1

⌘

(1� (1� ↵)) .

(4.55)

The importance of the choice of the flux - in particular, the importance of using an
upwind flux for convective problems - is nicely illustrated by Figures 4.2 and 4.3. A
multitude of other choices for the flux are available (cf. [35, p.32]), originating from
FV methods. The simple Lax-Friedrichs flux, in general form given by

fLF (u
int

, u
ext

) = {{u}}+ C

2
n̂ · [[u]] = f(u

int

) + f(u
ext

)

2
+

C

2
n̂ · (u

int

� u
ext

) (4.56)

is efficient for most problems, but not very accurate, as it is somewhat dissipative, cf.
[35]. In case of the flux function f(u) = au, the simple upwind flux (4.51) is recovered,
i.e. C = a. The significance of C is that it is a maximum linearized acoustic wave
speed for a given system. In case of a system of conservation laws, e.g. the Euler or
compressible Navier-Stokes equations, C is determined by the maximum eigenvalue
� of the flux Jacobian,

C = max
u

�

�

�

�

�

✓

n̂ · @f
@u

◆

�

�

�

�

, (4.57)

where f denotes the vector of flux functions and u the vector of unknown fields.

Applying boundary conditions - advection

As outlined above, on the element level, the dG-formulation corresponds to a FEM
formulation, and we use the numerical flux to apply boundary conditions for each
element. The application of outer boundary conditions is now straightforward: if
we encounter a value of u in the expression for d

u

that lies outside the domain, we
just insert the value of the boundary condition. For this 1D case, the expression for
element D(1) at the left end of the domain would be

d

(1)
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2
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(2)
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⌘

(1� (1� ↵))
o

1

A (4.58)

with g(t) being the boundary condition. We recall that the flow direction is assumed
from left to right, a > 0, and the boundary condition is given at the left domain
boundary, x = L. In this case, where we only have a first derivative, it suffices to
have just one boundary condition on u. Physical intuition tells us that the boundary
condition must be applied at the inflow, i.e. on the left end of the domain if a > 0
and on the right end if a < 0, because we know from the physics behind the equation
that the information is flowing downstream. Thus, a boundary condition applied
upstream results in the boundary information being transported advectively through
the domain at velocity a, while applying a boundary condition on the downstream end
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Figure 4.2: Element-wise results (black) and analytic solution (red) for the simple advection
problem (4.12) at time t = 2⇡ with initial condition u0 = sin(x), boundary condition
u
L

= sin(t) at the left boundary, advection speed a = 1 and K = 6 elements. The upper
two panels show the results for approximation order N = 1 (cf. Section 4.1.2), the lower
panels for N = 2. The left two panels illustrate the results using a central flux, that is,
↵ = 1 in (4.51), and right two panels for an upwind flux, ↵ = 0 in (4.51). If the upwind
flux is used, i.e., when the numerical flux is adjusted to the propagation direction of the
advective information transport, the numerical solution is closer to the analytical solution
and the jumps between the element endpoints are diminished. If the approximation order is
increased, the straight black lines representing the elementwise solution are allowed to have
a kink in the middle. The solution within one element is continuous, while at the element
boundaries, the solution is allowed to be discontinuous.
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Figure 4.3: Element-wise results for the simple advection problem (4.12) at time t = 5 with
initial condition u0 = 0, boundary condition u

L

= 1 at the left boundary, advection speed
a = 1 and K = 50 elements. The upper two panels show results for approximation order
N = 1 (cf. Section 4.1.2), the lower panels for N = 4. The left two panels illustrate results
using a central flux, that is, ↵ = 1 in (4.51), and right two panels for an upwind flux, that
is, ↵ = 1 in (4.51). The oscillations of the solution near the jump are due to the well-known
Gibb’s phenomenon. In case of a central flux, the oscillations propagate into both directions,
while the upwind flux keeps the oscillations localized. Higher approximation order leads to
more oscillations due to the Gibbs’ phenomenon.
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of the domain would result in the boundary information never entering the domain.
It remains the question which value to prescribe for u on the downstream boundary.
According to the considerations above, an arbitrary value can be prescribed, because
the information never enters the domain. Hence zero is prescribed for the whole
second line of d(K)

u

, resulting in

d

(K)
u

=
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2

n⇣

u
(K)
1 � u

(K�1)
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⌘

(�1� (1� ↵))
o

0

!

. (4.59)

Here, we have focused on the application of Dirichlet boundary conditions. Neumann
boundary conditions are discussed in Section 4.1.9.

4.1.9 Treatment of second spatial derivatives - the mixed
method

So far, we have been concerned with the spatial discretization of a first spatial deriva-
tive @u

@x

. When it comes to the discretization of derivatives of higher order, there are
two possible ways to go: one can either construct operators calculating those deriva-
tives directly (analogously to the operator S, which calculates first derivatives); or
one can write the original equation as a system of equations where each equation
contains only first derivatives. It turns out that the second path is computationally
more convenient [35]. It will be described here.
The 1-D advection-diffusion equation is taken as a sample problem:

@u

@t
+ a

@u

@x
� ✏

@2u

@x2
= 0 on⌦ = (L,R) , t > 0 (4.60)

u (x, 0) = c0 (x) on⌦
u (L, t) = g(t), u (R, t) = h(t) for t � 0

We assume a > 0, ✏ > 0 and Dirichlet boundary conditions. Physically, equation
(4.60) describes a process similar to that described in equation (4.12), just as an
additional feature, the variable u is also transported diffusively through the domain.
Readopting the example of water and a single neutrally buoyant grain flowing through
a pipe at velocity a, imagine that the grain is replaced by a droplet of ink. As ink and
water are miscible, the droplet is advectively transported at velocity a, but it also
changes its shape and "smears out" due to the fact that miscible mixtures always try
to achieve uniform distribution of the constituents within the domain. Hence when
we observe how the concentration of paint within the domain evolves, we see a sharp
concentration peak starting at the left end of the domain, and while that peak is
translated, it also gets wider due to diffusion.
Introducing the auxiliary variable

q =
p
✏
@u

@x
, (4.61)

equation (4.60) can be written as a system of first-order equations (cf. [5]),

@u
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+ a

@u
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+

@

@x

�

�
p
✏ q
�

= 0, (4.62)

q +
@
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�

�
p
✏u
�

= 0. (4.63)
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Equations (4.62) and (4.63) are both discretized using the ’cookbook’ method outlined
above. The steps necessary are repeated here in short for clarity:

• Multiply with a test function and require the resulting equation to be orthogonal
to all test functions.

• Integrate by parts using product rule and Gauss’ theorem to obtain the weak
form.

• Go to the discrete setting:

– Replace all solution variables (•) inside the volume by their discrete coun-
terparts (•

h

).
– Replace all solution variables on the boundary [•]xl

x

r

by a numerical flux
[•?]xl

x

r

. In this case, as the numerical flux of u occurs in two different
equations, and hence we will differentiate between u?

u

and u?

q

.
– Replace the test functions with their discrete counterparts, the Lagrange

polynomials, to arrive at the "discrete weak form".

• Integrate by parts again to obtain the "discrete strong form":
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• Express the solution variables as polynomial expansions using the Lagrange
polynomials as a basis.

• Express all integrals over products of Lagrange polynomials in terms of the local
operators M

(k) and S

(k) and obtain
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with the definition of d

(k)
u

u

, d

(k)
q

and d

(k)
u

q

analogous to the definition of d

(k)
u

(4.48) in the pure advection case.

• Introduce the mapping from the physical elements D(k) to the unit element I(k)

• Rearrange, putting all spatial derivatives to the RHS and using the relations in
Section 4.1.6:
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• Use the matrices r

x

and F

sc

to come from the element-local to a global formu-
lation:
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It turns out that we have obtained an explicit algebraic relation for q

h

which can
be computed first and then used in the equation for u

h

. What remains is to choose
the fluxes u?

u

, u?

q

and q?. Intuitively, one would probably choose the upwind flux
from the pure advection case for u?

u

because it has proven to work well and because
we have a preferred propagation direction, which is reflected by the upwinding; and
a central flux for u?

q

and q?, because the diffusion term has no preferred direction
of propagation. Another possibility is to choose only upwind fluxes, which leads to
a more stable scheme, known as local discontinuous Galerkin (LDG) method in the
literature, first proposed by Cockburn & Shu [16].
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Note that u?

u

is different from u?

q

in that the upwinding terms have opposite signs
and hence upwinding of u and q is done in opposite directions, which is essential for
stability. We obtain the following expressions for d
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and d
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Applying boundary conditions - advection-diffusion

The technical principle of applying the boundary conditions is as before, i.e. boundary
conditions are put into the d• terms whenever a value outside the domain is encoun-
tered in one of the expressions. In case of the d

u

u

term, this is straight forward, as
there is no difference to the advection case. But as we have written the equation as
a system, the question remains what to impose in d

q

and d

u

q

.
If homogeneous Dirichlet boundary conditions are applied, that is, no external forc-
ing exists and the solution is allowed to evolve naturally, exterior values u

(0)
Np

, q
(0)
Np
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at the left boundary and u
(K+1)
1 , q(K+1)

1 at the right boundary are not prescribed as
fixed values, but are instead coupled to the values at the inner side of the boundary.
Specifically, u

ext

= �u
int

, q
ext

= q
int

, in which case the average of u would be zero
and the jump would be twice the interior value, while the average of q would be the
interior value and the jump zero:

{{u}} = 0 [[u]] = 2n̂
int

u
int

(4.78)
{{q}} = q

int

[[q]] = 0 (4.79)

For Neumann BC’s, the coupling will be the other way around, i.e. u
ext

= u
int

, q
ext

=
�q

int

. In case of inhomogeneous Dirichlet boundary conditions, u
ext

= �u
int

+2f(t),
q
ext

= q
int

is proposed with f(t) the external forcing, see [35].

4.2 2-D problems
Although some complexity is added by changing the perspective to 2-D, the main
principles are very similar to the 1-D case. Hence we restrict ourselves to a relatively
short explanation of the necessary two-dimensional operators, and otherwise focus
on a computational benchmark. For a full derivation of the operators, the reader is
referred to the book by Hesthaven & Warburton [35].

4.2.1 Useful relations in 2-D
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Figure 4.4: Illustration of the mapping between reference triangle I (left) and physical triangle
D(k) (right)

In 2-D, the 1-D geometric variables x and r will be replaced by the vectors x = (x y)T

and r = (r s)T , cf. Figure 4.4. The mapping function, now from the reference triangle
I to the element D(k) is given by
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with x

(k)
1 , x

(k)
2 and x

(k)
3 denoting the vertex coordinates of the triangle D(k). The

Jacobian of the mapping  is
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The discrete approximation of a variable u(x, t) is exactly analogous to the 1-D case:
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Here we have introduced the two-dimensional Lagrange polynomials `(k)
i

(x) corre-
sponding to some grid points x

i

in D(k). The nodal points r

i

are first selected in the
reference triangle, and the points x
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are then computed via
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In the 2-D case, the order N of the polynomial and the number N
p

of grid points on
the triangle, which is equal to the number of terms in the polynomial expansion, are
connected by the relation

N
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2
. (4.84)

The 2-D Vandermonde matrix is introduced as in the 1-D case,
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with P̃
j�1(ri) the normalized Legendre polynomial of order j � 1 and the matrices

analogous to the 1-D matrix V
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are necessary to express the matrices
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see (4.100), (4.101) below. Now, integrals of products of the Lagrange polynomials
are collected in so-called mass matrices on the physical and the reference triangles:
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related by

M
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ij

= J (k)M
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, M

(k) = J (k)
M. (4.92)

Integrals of products of a Lagrange polynomial and a derivative of a Lagrange poly-
nomial are collected in so-called stiffness matrices, on both the physical and reference
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triangles:
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which are related by
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The connections between the matrices referring to the reference triangle are given via
the following relations:
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We will also need the definitions
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D

y

=
@r

@y
D

r

+
@s

@y
D

s

. (4.105)

The definitions and relations shown above are sufficient to implement a partial dif-
ferential equation in 2-D. This is exemplified in the following section for the weakly
compressible Navier-Stokes equations.

4.2.2 Weakly compressible Navier-Stokes equations assuming
isothermal conditions

The compressible Navier-Stokes equations for a single, weakly compressible fluid under
isothermal conditions are a perfect test case for the numerical implementation of the
model outlined in Chapter 3, because they are structurally very similar to the mixture
equations. Moreover, numerous numerical benchmarks exist for the incompressible
Navier-Stokes equations, which can be used as a validation of the approach followed
in this thesis, as long as only weak compressibility is assumed. The compressible
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Navier-Stokes equations in conservation form read:

@⇢

@t
= � div (⇢u) (4.106)

@⇢u

@t
= � div (⇢u⌦ u�T) + ⇢b,

where ⇢, u, T and b denote the fluid density, the velocity vector u = [u v]T , the vis-
cous stress tensor and gravity, respectively. The mixture model equations presented in
Chapter 3 differ from the above only in that the number of the equations is doubled,
in the strong coupling which is introduced via the solid volume fraction occurring in
all equations, and, less severely, the momentum interaction.
The stress tensor is decomposed into a hydrostatic pressure and an extra stress con-
tribution,

T = �pI+T

E

, (4.107)

where
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and in two dimensions of a Cartesian system,
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is the rate of deformation tensor (cf. Section 3.3). Hence,
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The viscosity µ is assumed constant. For the pressure p, the Tait’s law (3.50) or
the linear pressure law (3.53) are suitable candidates. Both laws are tested in the
numerical example described in Section 4.2.3. Writing the equations (4.106) in scalar
form, we obtain the system
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All three equations (4.111) to (4.113) can be combined in a single generic equation

@U

@t
=
@ (�F(U) + t1(U,rU))

@x
+
@ (�G(U) + t2(U,rU))

@y
(4.114)
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by defining the vectors
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For numerical implementation, we follow the aproach outlined in [35] for the com-
pressible Navier-Stokes equations of gas dynamics, with modifications to account for
the assumption of constant temperature and weak compressibility. The information
contained in the convective terms F and G have a preferred propagation direction
given by the local speed of sound, while the viscous terms t1 and t2 are dissipative
in nature and have no preferred propagation direction. Physically speaking, the con-
vective terms correspond to an advection problem, where the solution is known along
lines of characteristics (cf. Section 4.3), and hence it is straight forward to use an
upwind flux for these terms. The viscous terms, however, are similar to the heat in
a heat diffusion problem, and so they are discretized using a central flux. To avoid
confusion, note that we do not solve for the primitive variables ⇢, u and v, but for
the conserved variables ⇢, ⇢u, ⇢v instead, from which the primitive variables can be
calculated.
For the discretization of equation (4.114), the mixed method outlined in Section 4.1.9
for the convection-diffusion equation is used, i.e. the spatial derivatives @u

@x

, @u

@y

, @v

@x

and @v

@y

arising in t1 and t2 are discretized first by using the standard dG and a cen-
tral flux. The solutions are then used in the discretization of equation (4.114). The
derivatives of the velocity components are however not discretized directly; instead,
the derivatives of the conserved variables are discretized and the derivatives of the
velocity components are calculated using the chain rule
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with u1 = u and u2 = v. The equations to be discretized for the auxiliary variables
q

x

, q
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For readability, let us go through the process for only one component of U and drop
the index. Then, the generic equations to be discretized are

q
x

=
@U

@x
and q

y

=
@U

@y
. (4.118)
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Using the approach outlined in Section 4.1 (integration by parts, use of Gauss’ theorem
and discretization), we arrive at the following discrete weak formulations:
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Note that here, we do not integrate by parts twice, but instead, we implement the
weak form directly. Using a central flux
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in terms of the Lagrange polynomials,
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and expressing integrals of the Lagrange polynomials in terms of the mass and stiffness
matrices M

(k), S(k)
x

and S
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, we obtain
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Here, n̂(k)
x

and n̂

(k)
y

are the x- and y-components of the outward facing normal vector
on an element face, and ⇠ and d

(k)
U

were constructed in exact analogy to the 1-D case,
see (4.40) and (4.41):
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where the indices f1, f2 and f3 relate to the three faces of the triangular element.
Now, multiplying by M

�1 and mapping from the physical to the reference triangle,
we obtain
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where the definition of the lift matrix ⌥ is identical to the 1-D case, see equation
(4.45). At this point, the discretization of the expressions arising in t1 and t2 is
known, and we can return to the discretization of (4.114). For better readability,



64 CHAPTER 4. NUMERICAL IMPLEMENTATION - DG METHOD

the discretization procedure will again be shown for one element U
i

of (4.114), and
without index. Defining the vector
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equation (4.114) can be conceived as a divergence operation:
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The weak form of the above equation reads
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For the flux, we use the upwinding expression
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Here, � is a local maximum linearized acoustic wave speed. Physically, it is the
maximum velocity that the information of the convective part of the equation can
travel with. It corresponds to the advection speed a in the simple 1-D advection
problem. In simple terms, � is calculated as follows: Consider an element face.
Calculate the expression in parentheses at that face and at the adjacent face of the
neighboring element. Then, take the maximum of the two values. Do this for each
face in the computational domain. In mathematical terms:
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(4.133) results from applying the two-dimensional version of (4.57) to the system
(4.114). The second term in (4.133) represents the speed of sound in the fluid, c,
which in case of the linear pressure law (3.53) is a constant. Proceeding as usual
by expressing (F1)
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h

, (F2)
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h

and U
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in terms of the Lagrange polynomials and
expressing integrals of products of Lagrange polynomials and derivatives thereof in
terms of the mass and stiffness matrices, we obtain
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and finally

dU(k)
h

dt
= � 1

J (k)
D

(k)
x

(F
1

)(k)
h

� 1

J (k)
D

(k)
y

(F
2

)(k)
h

+
1

J (k)
⌥
⇣

n̂

(k)
x

d

(k)
F1

+ n̂

(k)
y

d

(k)
F2

⌘

.
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Although the number of dimensions is two, and the number of unknowns is three and
the flux functions are nonlinear, the expression (4.135) is still very similar to equation
(4.70) in the advection case. The matrices F

1

and F
2

contain the flux functions and
are element-local, while the connection between the elements is established by the
matrices dF1 and dF2 .
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4.2.3 Example: Driven Cavity

The so-called Lid-Driven Cavity problem has become a standard problem in Com-
putational Fluid Dynamics and is widely used to benchmark results and efficiency of
codes for the solution of the incompressible Navier-Stokes equations, see e.g [27, 32].
The test case consists of a two-dimensional, square domain with no-slip boundary
conditions on all four sidewalls. Three sidewalls have zero velocity, while the top
boundary (the "lid") has non-zero velocity. The boundary conditions are sketched in
Figure 4.5, which also shows the mesh that was used in our simulations. Due to the
lid being moved in tangential direction, one main vortex develops in the middle of the
cavity, and two smaller vortices in the lower left and right corners. At small Reynolds
numbers (Re < 1), the flow is fully symmetric and dominated by viscous forces. At
higher Reynolds numbers, convective forces become more important, and the center
of the main vortex moves up and to the right, while the two corner vortices grow
in size. Streamlines are now asymmetric. At moderate to high Reynolds numbers
(Re > 1000), additional vortices develop in the lower two corners, and in the upper
left corner.
The standard benchmark paper for Driven Cavity flow is by Ghia et al. [32]. Erturk
et al. [27] collected and compared data from numerous contributions on this flow con-
figuration. Both papers provide streamline plots of the cavity flow, and tabulated
values for vertical velocities along a horizontal line and for horizontal velocities along
a vertical line through the center of the cavity.

u = 1
u
=

v
=

0

u = v = 0

u
=

v
=

0

v = 0

e

x

e

y

Figure 4.5: Mesh and boundary conditions for Driven Cavity problem. The mesh consists of
K = 165 elements, and the order of approximation is N = 6.

Here, the Driven Cavity problem is simulated employing a weakly compressible fluid
as described in section 4.2.2. In the limit of infinite fluid bulk modulus (i.e. zero
compressibility), however, the solution of the compressible Navier-Stokes equations for
the Driven Cavity flow converges to the incompressible solution. It is concluded that
as long as the density perturbations are relatively low, the Driven Cavity problem is
a suitable benchmark for the dG numerical approximation of the weakly compressible
Navier-Stokes equations outlined in this chapter. Moreover, the test case can be used
to assess the performance of the different pressure laws for problems with relatively
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small pressure perturbations; i.e. to answer the question if the simple linear law
(3.53) can be used instead of the more complex expression (3.50). Here, the Driven
Cavity flow is simulated for a Reynolds number of Re = 1000, a Mach number Ma =
u
lid

/c = 0.032 with u
lid

the velocity of the upper wall and c = 31.6 m/s the speed of
sound in the fluid.
The two streamline plots in Figure 4.6, showing the streamlines computed with the 2-
D code presented in Section 4.2 using the linear pressure law (3.53) and the Tait’s law
(3.50) for the computation of the fluid pressure, are virtually indistinguishable, and
are in excellent qualitative agreement with the results presented by Ghia et al. [32]
and Erturk et al. [27]. Figure 4.7 shows the x- and y- velocity profiles along a vertical
and a horizontal line through the cavity center, respectively. The data using both
pressure laws coincide exactly, and hence are not shown separately. The agreement
with the benchmark solution [32] is excellent.
We conclude that the present code performs well in reproducing benchmark results,
and that for low Mach numbers and density perturbations, a simple linear law for the
fluid pressure is sufficient.

Figure 4.6: Streamline plots for Lid-Driven Cavity flow of a weakly compressible fluid for Re =
1000, computed using the dG method. Left: Results obtained using the linear pressure law
(3.53); right: using the Tait’s law (3.50) for the fluid pressure.

4.3 Open boundary conditions for the compressible
Navier-Stokes equations

In numerical problems involving compressible media, and hence acoustic wave
propagation, a classical problem is the treatment of boundaries where the flow field
can freely enter or leave the domain. Conventional Dirichlet or Neumann boundary
conditions lead to reflections of acoustic waves at the domain boundary. The problem
emerges when a domain of interest is cut out from a larger physical domain for
numerical computation, when the complete domain is too large to be simulated. A
simple example is water flow in a pipe: To numerically investigate some subdomain
of interest, the flow field at the inlet and at the outlet of that subdomain must be
prescribed as boundary conditions. A whole scientific field has emerged around this
problem; and depending on the author and approach, the boundary condition is
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Figure 4.7: Left: Horizontal velocity profile along a vertical line through the center of the cavity.
Right: Vertical velocity profile along a horizontal line through the center of the cavity. Solid
line shows results computed with the present code; red crosses are benchmark results from
[32]. The results obtained using the linear law (3.53) and the Tait’s law (3.50) coincide
exactly.

called non-reflecting, artificial, absorbing, natural, open or transparent. Hereinafter,
we will use to the term open boundary condition.
The necessity of open boundary conditions is obvious for flows involving in- or
outlets, e.g. the flow presented in Chapter 2, where a vessel is emptied at the bottom,
and the discharged volume is replaced by air from the top boundary. But also for
apparently simpler conditions like the batch sedimentation problem presented in
Chapter 5, such boundary conditions are necessary to acoustic waves to leave the
domain via some boundary instead of being reflected.
One apparently widely used way of treatment for such boundaries is the technique
of Perfectly Matched Layers (see e.g. [37]). The method amounts to an addition
of a layer to the domain boundary in question, in which the physical equations are
tweaked in such a way that oscillations arising from acoustic waves are damped out,
while the overall flow field is affected only to a minimum. Another, somewhat similar
idea is to add a layer in which artificial viscosity is added to the equations wherever
sharp gradients in the solution variables occur - which is the case in the vicinity
of acoustic wavefronts (see [48] for a very nice implementation of viscous shock
capturing in a nodal dG framework). Both approaches have the disadvantage that
additional computational cells must be created at the open domain boundary which
are not necessary for the computation of the solution, but increase the computational
cost.
In the present thesis we followed the approach proposed by Feistauer et al. [28],
which relies on a characteristic based method. The principal idea is to prescribe a set
of conditions just outside the domain boundary that match the physical conditions
arising from the simulation just inside the boundary in such a way that acoustic
waves are canceled out when the solution from the computation interacts with the
boundary condition.
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Figure 4.8: Illustration of the characteristic lines for equation (4.136) with a > 0. Once a
solution is known for a specific space-time point (x1, t1), the solution is also known for all
other points along the characteristic line.

To understand the idea behind the open boundary condition proposed by [28], let us
consider the simple 1-D advection equation

@u

@t
+ a

@u

@x
= 0 (4.136)

with a = const. The general solution of this equation is u(x, t) = f(x�at). It follows
that u = const along the straight lines x � at = const in the x, t-plane, see Figure
4.8. Once a solution is known for a specific time t1 and a specific point x1, then the
solution is known for all (x, t) pairs along the characteristic line that passes through
that point, with a determining the slope of the line. This behavior is easily understood
from the physics of the advection equation: if u(x1, t1) denotes a concentration, then
this concentration value is advectively transported through the domain at velocity a.
Now, let us assume that equation (4.136) holds in a domain stretching from x = L
on the left to x = R on the right, and that a > 0. Clearly, if the initial values
u(x, 0) within the domain [L,R] are known and a boundary condition u(L, t) at the
left boundary is prescribed for t > 0, the solution u is completely determined at
any x 2 [L,R] and t > 0. (If, on the other hand, a < 0, the advective transport
is from right to left, so that boundary condition must be given at the right domain
boundary x = R.) Next, let us assume that (4.136) holds for x 2 R, that is, in an
infinite domain, and we want to solve (4.136) numerically. Of course, for a numerical
calculation, we must specify some computational spatial domain x 2 [l, r]. Then, we
prescribe the initial data

u(x, 0) = u0(x), x 2 [l, r]. (4.137)

We recall that (4.136) holds in an infinite domain, while the computational domain
is necessarily bounded. For a > 0, We prescribe the boundary condition on the left
boundary

u(0, t) = u?(t), (4.138)

with u? a "guessed" value for the solution u at x < l, x ⇡ l. The value u? is called
far-field solution, and (4.138) is a so-called open boundary condition.
Generalizing the simple advection example, consider the linear system of equations:
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@u

@t
+ A

@u

@x
= 0 (4.139)

with u the vector of unknowns and a constant coefficient matrix A containing the
information on the characteristics of the problem. If A is diagonalizable, which we
assume here, such a system is called hyperbolic. We write A as

A = CDC�1, (4.140)

where the columns of matrix C? contain the eigenvectors of A and the diagonal matrix
D contains the eigenvalues �?1...�?n of A:
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We insert (4.140) into (4.139) and muliply by C�1 from the left:

C�1 @u

@t
+ DC�1 @u

@x
= 0. (4.142)

C�1 contains only constant values and can be written inside the spatial and temporal
derivatives. Defining v = C�1

u, (4.142) can finally be written as
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corresponding to a decoupled system of equations,
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= 0.

Each of the equations (4.144) has the form (4.136), for which the general solution
is known to be constant along the characteristics (cf. Figure 4.8), with the slopes
determined by the eigenvalues.
To this point, equation (4.143) is not restricted to any computational domain, i.e. the
domain is infinite, and no boundary and initial conditions are imposed. Now, as in
case of the advection equation (4.136), let us say that (4.139) holds for x 2 R, t > 0,
and the computational spatial domain is [l, r]. From the discussion related to (4.136),
it is clear that the solutions v1, ..., vi, ..., vn of the equations displayed in (4.144) are
uniquely determined (and consequently, the solution u of (4.139)), if the initial data

v1(x, 0), ..., vi(x, 0), ..., vn(x, 0), x 2 [l, r] (4.145)
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and the open boundary conditions
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are prescribed. Since v = C
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u, (4.146) are conditions on u at x = l and/or x = r,

expressed in terms of a far-field solution u
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characteristics enter (�

i

> 0) or leave (�
i

< 0) the computational domain. In order
to allow acoustic waves to travel out of the domain without reflection, the boundary
conditions v

i

= v?
i

must be enforced for all i for which the characteristic lines point
into the domain. Remember the slope of the characteristic lines is given by �

i

, so
that the direction of the characteristics for a given boundary is known.
We shall now apply the approach outlined above to the 2-D weakly compressible
Navier-Stokes equations, following Feistauer et al. [28]. First, equation (4.114) is
rewritten as

@U

@t
+
@F(U)

@x
+
@G(U)

@y
= R(U,rU,r2

U), (4.147)

where the hyperbolic part of the equations was put on the left-hand side, and the
viscous terms were lumped to the right-hand side using the definition

R(U,rU,r2
U) =

@t1(U,rU)

@x
+
@t2(U,rU)

@y
. (4.148)

Furthermore, equation (4.147) can be rewritten as

@U

@t
+ grad

U

F(U)
@U

@x
+ grad

U

G(U)
@U

@y
= R(U,rU,r2

U). (4.149)

Defining the matrices

A1(U) = grad
U

F(U), A2(U) = grad
U

G(U), (4.150)

(4.149) takes the form

@U

@t
+ A1(U)

@U

@x
+ A2(U)

@U

@y
= R(U,rU,r2

U). (4.151)

The information on the characteristic waves is contained in the matrix A = n
x

A
x

+
n
y

A
y

with n̂ = [n
x

n
y

]T the normal vector on a boundary. The convective part of
the the system (4.151), i.e. the left-hand side of (4.149) is of hyperbolic type if A is
diagonalizable. The eigenvalues are obtained by solving detA � �I for �. The result
is

�1 = v · n̂� c, �2 = v · n̂, �3 = v · n̂+ c, (4.152)

where c is the speed of sound in the fluid, showing that the convective part of (4.151)
is indeed hyperbolic. This result is useful in the formulation of the open boundary
conditions. In the following, we need the eigenvectors of A, which are obtained by
solving the system

Ac = �1c, Ac = �2c, Ac = �3c (4.153)
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for c 6= 0. Three non-zero c’s, say c1, c2, c3, solutions of (4.153), are written as the
columns of a matrix denoted by C(U, n̂):

C(U, n̂) = [ c1(U, n̂), c2(U, n̂), c3(U, n̂) ] . (4.154)

We recall that A depends on both U and n̂, which explains the dependence of the
matrix C on U and n̂. We have

C =

0

@

1 0 1
un

x

+ vn
y

� c 0 un
x

+ vn
y

+ c
vn

x

+ un
y

1 vn
x

+ un
y

1

A , (4.155)

and inverting,

C�1 =

0

B

@

un

x

+vn

y

+c

2c � 1
2c 0

�vn
x

� un
y

0 1

�un

x

+vn

y

�c

2c
1
2c 0

1

C

A

. (4.156)

All necessary ingredients for the application of open boundary conditions have now
been derived. To see how the boundary conditions are applied, let us assume that
we want to simulate a horizontal pipe flow, i.e. the domain stretches from x = L to
x = R, and open boundary conditions will be applied at both boundaries x = L to
x = R, see Figure 4.9. To do this, we linearize the convective part

@U

@t
+ A1(U)

@U

@x
(4.157)

in equation (4.151) around a state U

?,

@U

@t
+ A1(U

?)
@U

@x
(4.158)

where U

? is a far-field solution (one for the inlet and one for the outlet). Neglecting
all but the linearized convective part (4.158), (4.151) becomes

@U

@t
+ A1(U

?)
@U

@x
= 0, (4.159)

which is a linear hyperbolic system analogous to (4.139). The eigenvalues �?1, �?2 and
�?3 of A1(U?) and the matrix C(U?, n̂) containing the eigenvectors c

?

1, c?2 and c

?

3 of
A(U?) can directly be obtained from (4.152) and (4.155) by taking n̂

x

= 1 and n̂
y

= 0
for a unit vector in x-direction, so that

�?1 = u? � c?, �?2 = u?, �?3 = u? + c?. (4.160)

From (4.156), we obtain

C?

�1 =

0

B

@

u

?+c

?

2c? � 1
2c? 0

�v? 0 1

�u

?�c

?

2c?
1

2c? 0

1

C

A

. (4.161)

For subsonic flow conditions, the characteristics corresponding to �?2 and �?3 point
into the domain at x = L and the characteristic corresponding to �?1 points into the
domain at x = R, see Figure 4.9.
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Figure 4.9: Illustration of characteristics entering a horizontal channel. We assume �?

2 = u? > 0
and subsonic flow conditions, so that u? < c? and �?

1 = u? � c? < 0 and �?

3 = u? + c? > 0.

According to the discussion referring to (4.139), the boundary conditions at x = L

and x = R must be given in terms of the variable V = C?

�1
U, and they are

V2 = V ?

2 , V3 = V ?

3 at x = L,

V1 = V ?

1 at x = R. (4.162)

Using V = C?

�1
U and expression (4.161) of C?

�1, this leads to

v = v? (4.163)
⇢u = ⇢?c? + (u? + c?)⇢ (4.164)

at the left boundary, x = L and

⇢u = �⇢?c? + (u? � c?)⇢ (4.165)

at the right boundary, x = R. The next section is concerned with a numerical example
where these boundary conditions are applied.

4.3.1 Example: Flow of a weakly compressible fluid past a
triangular cylinder

A widely-used 2-D CFD benchmark for unsteady flow is the channel flow past one or
several objects placed in the mean flow slightly off the centerline. At low Reynolds
numbers Re < Re

c

, two stationary vortices evolve behind the obstacle. At higher
Reynolds numbers, Re > Re

c

, an instability known as the Bénard- von Kármán
instability develops, and the vortices on either side are periodically detached from the
rear of the obstacle. Here, Re

c

is a critical Reynolds number that depends on the
actual configuration of the channel and the obstacle. The flow has been investigated
for a multitude of objects (e.g. circles, triangles, squares, see [31, 35, 60]) and pressure
drop, lift and drag coefficients were computed for comparison. Here, however, the
pattern of the fully developed flow is only of secondary importance. Our main interest
concerns the question if the acoustic waves emerging from the impulsively started
inlet boundary condition can freely leave the domain via the outlet, and, after being
scattered by the obstacle, also via the inlet; and the vortex flow configuration appears
to be a good test case.
The flow was simulated using the weakly compressible Navier-Stokes equations under
isothermal conditions, as described in Section 4.2.2, with a fluid viscosity of µ = 0.001
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Pas. For the computation of the fluid pressure, the linear pressure law 3.53 was used
assuming a sound velocity c = 31.6 m/s and fluid reference density ⇢

ref

= 1kg/m3.
The boundary conditions are given by equations (4.163) to (4.165), and the prescribed
far-field states are

u? =
6y(y

max

� y)

y2
max

, v? = 0, ⇢? = ⇢
ref

(4.166)

at the inlet boundary, and

u? = 0, ⇢? = ⇢
ref

(4.167)

at the outlet boundary, respectively (cf. Figure 4.10). Here, y
max

= 0.41 m is
the height of the geometry. The unknown fields ⇢, u, v are initialized by prescribing
u = v = 0 and ⇢0 = ⇢

ref

. The far-field velocity at the outlet was assumed to be zero
because the exact velocity distribution at the outlet is not known a priori, and some
value must be prescribed. Another possibility is to give u? at the outlet such that the
mass flows at inlet and outlet coincide exactly.
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Figure 4.10: Mesh and boundary conditions for the flow past a triangular cylinder. The domain
length and height are 1.5 and 0.41 m, respectively. The triangle tip is aligned at 0.2 m from
the left and bottom boundaries; and the length in both x� and y- direction is 0.1 m. The
mesh consists of K = 330 elements, and the order of approximation is N = 4.

Let us now come to the results of the computations. Shortly after the onset of flow, the
acoustic wave is reflected at the triangle back towards the inlet and the side walls (cf.
Figure 4.11). At the side walls, the wave is reflected again and travels back towards
the middle of the domain, while the wave going back to the inlet can leave the channel.
The measured velocity of the wavefront, as expected, is identical to the speed of sound
prescribed by the constitutive relation for the fluid pressure. The acoustic wave leaves
the domain through the outlet (cf. Figure 4.12). Note that wavefronts do not only
leave the domain if they are aligned with the outlet, but also if they are tilted. Yet,
the fraction of the waves traveling in y- direction is further reflected at the side walls
and is retained in the channel for a considerable amount of time, until it is damped
out by viscosity. Later, when the flow is fully developed, the famous pattern of the
Karman vortex street is clearly visible (cf. Figures 4.13 and 4.14). The vortical flow
structures are smeared out near the outlet as a consequence of the far-field velocity at
the outlet being prescribed as zero along the whole boundary. The prescribed far-field
states do not assure that mass flow at inlet and outlet coincide. Nevertheless, there
is no density increase throughout the computation; instead, the maximum velocity at
the inlet, which is prescribed as u?

max,in

= 1.5 m/s, adjusts to ⇡ 1 m/s, while at the
outlet, a velocity of u

out

⇡ 0.5 m/s everywhere along the outlet boundary is observed.
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The resulting Reynolds number of the flow is Re ⇡ 100. This behavior reveals a
feature of the used boundary condition that can be an advantage or a disadvantage,
depending on the initial boundary value problem to be investigated: On the one
hand, it is advantageous that the boundary condition is very indulgent to changes in
the flow evolving inside the domain. On the other hand, it is disadvantageous that
pressure and/or velocity at the boundary cannot be given precisely, but only as far-
field conditions. Moreover, it is not possible to let the solution values on the boundary
at each time step evolve freely, which would correspond to a free outflow. Some
approximate, "guessed" values for both the far-field velocity and pressure must be
prescribed. Regarding the flow in Chapter 2, this requirement might pose problems,
because the flow and hence the velocity and pressure at the boundary are driven
by gravity, and not known a priori. In case of the Karman vortex flow presented
here, the situation is slightly better, because the mass flow at the outlet can be
prescribed to match the mass flow at the inlet; however, as we are only prescribing
far-field values, the actual solution values at the boundary may not coincide at all
times with the prescribed far-field values. Both mentioned flow processes are mainly
transport processes, but due to the compressible nature of the fluid, also include
acoustic phenomena. Summarizing, the open boundary conditions introduced by [28]
have been proven to handle acoustic wave phenomena extremely well; however, the
precise prescription of mass flow rates in transport problems is somewhat difficult due
to the prescription of far-field states instead of precise boundary conditions.

4.4 Numerical implementation of the hybrid model

The numerical implementation of the hybrid model presented in Chapter 3 is described
in this section. The approach presented in Section 4.2.2 for the compressible Navier-
Stokes equations is relatively generic, and only few adjustments must be made.
The hybrid model can be written as follows:

@U

@t
=
@ (�F(U) + t1(U,rU))

@x
+
@ (�G(U,rU) + t2(U,rU))

@y
+ Z(U,rU),

(4.168)
where
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Equation (4.168) is identical to equation (4.114), except that the number of compo-
nents is doubled, and except for the term Z(U,rU), which contains the momentum
exchange term and gravity. The terms in Z(U,rU) are known explicitly, and hence
do not have to be discretized. The remaining part of the equations is discretized ex-
actly as equation (4.114), i.e. the velocity gradients in t1(U,rU) and t2(U,rU) are
calculated via a generic weak gradient operation applied to the conserved variables
using a central flux and applying the chain rule; and after that the remaining terms
are discretized using a dG generic weak gradient operation and a local Lax-Friedrichs
upwind flux, cf. Section 4.2.2.
One point deserving special attention when implementing the hybrid model is the
application of open boundary conditions. The complication arising here is related to
the equilibrium part of the momentum exchange term ŝ

↵

eq

, equation (3.60), because
it contains a first spatial derivative of a solution variable, and must be considered
in the derivation of the eigenvalues and eigenvectors of the system (4.168); i.e. ŝ

↵

eq

would have to be attributed to F(U) and G(U) rather than Z(U,rU) before diago-
nalizing grad

U

F(U) and grad
U

G(U). In this case, the diagonalization of the system
matrix is not only difficult to calculate; it is even unclear if the convective part of
the system is still hyperbolic, which is a prerequisite for the application of the open
boundary conditions according to [28]. The hyperbolicity then depends very much
on the chosen pressure laws. The application of open boundary conditions is a major
issue when using of the hybrid model to flows similar to the granular-water mixture
flow described in Chapter 2, because that example involves mass flow across domain
boundaries, and moreover, acoustic waves being reflected at the domain boundaries
could potentially destroy the solution. For the batch sedimentation simulations de-
scribed in the following chapter, the open boundary conditions are only needed at
the top boundary. To circumvent the problems described above, it was assumed that
gradns is only different from zero at a sufficient distance from the top boundary. For
batch sedimentation, this assumption is realistic, because the solid volume fraction
at the top boundary tends to zero very shortly after the beginning of the simulation.
This way, the equilibrium exchange term does not have to be considered in the di-
agonalization; i.e . ŝ

↵

eq

can be treated as a right-hand side as in equation (4.168).
Note, however, that for more general problems, in which the solid volume fraction
near an open boundary is different from zero, the use of open boundary conditions
as described in Section 4.3 may be problematic or even impossible. In case of batch
sedimentation, the eigenvalues are given by

�1 = vf · n̂� cf, (4.170)
�2 = vf · n̂,
�3 = vf · n̂+ cf,

�4 = vs · n̂� cs,

�5 = vs · n̂,
�6 = vs · n̂+ cs,

and the resulting boundary conditions are exactly the same for both solid and fluid
as they are for the fluid in the single-fluid case.
The other point deserving special interest is the linearized acoustic wave speed �
used in the expression (4.133) for the upwind flux. In principle, (4.133) translates
seamlessly to the mixture case as:
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However, note that ps consists of a contribution from the true fluid pressure and the
configuration pressure, cf. (3.55). The expression (3.56) of the configuration pressure
makes it relatively difficult to evaluate the derivative @ps/@⇢s; moreover, the result is
singular for ns ! ns

max

. As a pragmatic solution, the following expression was used
in the numerical calculations:
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. (4.172)

4.5 Time integration

Up to this point, all equations that were presented in this chapter have only been
discretized in space; in space-time, they are semi-discrete. For time integration, the
explicit Runge-Kutta methods presented in [35] proved to be simple and robust for
the problems discussed here, and hence were used without any modification. An
advantage of the hybrid model is the fact that simple, explicit time integration schemes
can be used instead of more expensive implicit time stepping procedures that are
necessary for incompressible models. The main disadvantage of a model involving a
compressible fluid with high bulk modulus is the existence of fast acoustic waves that
must be resolved by the numerical scheme. In particular, the time step is calculated
by

�t = 0.5



N2

h

✓

�+
N2

h
µ

◆��1

, (4.173)

see [35], where h is the inscribed circle of the smallest mesh element and � is the
maximum linearized acoustic wave speed (4.133). (4.173) represents the requirement
that no quantity may flow further than the distance between two vertices within one
timestep. The term �N

2

h

in (4.173) represents this requirement for the convective
part of the equations and is known as the Courant-Friedrichs-Lewy (CFL) condition;
while the term �+ N

4

h

2 µ represents a similar requirement for the parabolic part of the
equations. In the practical numerical simulations presented here, it turned out that
the CFL condition was more restrictive.
The hybrid model allows the investigation of both acoustic wave propagation and
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mass transport. For the types of flow investigated in this thesis, however, the acous-
tic wave velocity is much larger than the bulk flow velocity, thereby dramatically
decreasing the time step size compared to incompressible models and hence, increas-
ing the computational cost. As long as the propagation of acoustic waves is of interest,
this may not be a restriction; however, if the focus is on the bulk flow, the restriction
is immense. Yet, there are several ways to alleviate the problem. One possibility
is to use implicit time integration. Luo et al. [60] have shown that the benefit of
an implicit time integration scheme can reduce the computation times by a factor of
⇡ 10 compared to an explicit Runge-Kutta method using a staggered grid in a discon-
tinuous Galerkin framework, but the programming effort and knowledge required for
implementation is relatively high. Another alternative concerns the type of hardware
used for numerical solution of the model equations. The computational cost of the
nodal discontinuous Galerkin method used in this thesis, as discussed in this chapter,
results mainly from matrix-matrix multiplications. This type of operation is known
to be extremely well parallelizable, and during the recent years, the use of graphics
processing units (GPUs) has emerged in scientific computing that handle this task -
parallel calculation of floating point operations - extremely well. Klöckner et al. [47]
report speedups of a factor of up to 60 on a single, moderately-priced GPU compared
to a single CPU for a nodal discontinuous Galerkin scheme. Full three-dimensional
simulations of weakly compressible mixture flows might be feasible at least for flows
on the laboratory scale and on time scales of several seconds using a dG implementa-
tion of the hybrid model on GPUs. A third way to reduce the problem of small time
steps lies in the fluid’s bulk modulus. Depending on the type of flow, the influence of
fluid compressibility on the overall flow process might only be significant in specific,
rather dynamic flow situations (cf. Chapter 5). On the other hand, in situations
when the flow is rather stationary, the flow pattern is not dramatically influenced
by the fact that the fluid is compressible. This observation immediately suggests to
increase time step size by decreasing the fluid bulk modulus and consequently, the
acoustic wave velocity. This method that is quite common in the Smoothed Particle
Hydrodynamics (SPH) numerical frameworks, cf. [7, 63, 76]. However, the fluid bulk
modulus should be adjusted such that the Mach number Ma = |u|

max

/c < 0.1, see
[63].
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Figure 4.11: Results from the simulation of the flow of a weakly compressible fluid around
a triangular obstacle. Colours indicate pressure distribution at five equidistant times from
t = 1.8 ms to t = 23.5 ms after start of the simulation. Note how the acoustic wave is
scattered by the obstacle and partly reflected back towards and leaving the domain at the
inlet.
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Figure 4.12: Results from the simulation of the flow of a weakly compressible fluid around
a triangular obstacle. Colours indicate pressure distribution at five equidistant times from
t = 32.6 ms to t = 54.4 ms after start of the simulation. Acoustic waves can freely leave the
domain at the outlet, but are reflected at the upper and lower side walls.
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Figure 4.13: Results from the simulation of the flow of a weakly compressible fluid around
a triangular obstacle. Colours indicate velocity magnitude at five equidistant times from
t = 6.0 s to t = 6.4 s. The Karman vortex street is now fully developed. Even complex flow
structures can leave the domain at the outlet.
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Figure 4.14: Results from the simulation of the flow of a weakly compressible fluid around
a triangular obstacle. Colours indicate vorticity magnitude at five equidistant times from
t = 6.0 s to t = 6.4 s.
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Chapter 5

Simulations of batch
sedimentation

5.1 Initial boundary value problem

We simulate the batch sedimentation of a monodisperse suspension of spheres in a
vertical column. Our two-dimensional mesh consists of K = 128 triangular elements
in z-direction and only one element in x-direction, so that the simulations are quasi-
one-dimensional, cf. Figure 5.1. However, the use of a two-dimensional mesh and
triangualar elements guarantee straightforward extensibility to more complex geome-
tries. No flux boundary conditions are used at the side walls, that is, the horizontal
velocities uf, us are put to zero, while a Neumann boundary condition @wf

@x

= @ws
@x

= 0
for the vertical velocities assures that wf, ws are allowed to evolve freely near the wall.
Physically, this condition corresponds to sedimentation in a horizontally infinitely ex-
tended domain. At the bottom, zero velocity is prescribed for both phases. At the
top, open boundary conditions (cf. Sections 4.3, 4.4) are used, i.e. the fluid domain
is cut off at the top, but acoustic waves and material transport over the boundary are
possible. The computations to obtain the open boundary conditions are analogous to
those in Section 4.3 starting after equation (4.156) for two boundaries in x-direction.
The only difference is that here, the boundary in question is in z-direction. The
boundary conditions are the same for both solid and fluid phase, cf. the discussion in
Section 4.4:

⇢fwf = �⇢f?c? + (w?

f + c?)⇢f (5.1)
⇢sws = �⇢s?c? + (w?

s + c?)⇢s (5.2)

We prescribe zero far-field velocity w?

f , w?

s for both phases and far-field densities ⇢f? =

nf⇢f
ref

, where ⇢f
ref

= 1000 kg/m3 is a reference density for the weakly compressible
fluid phase, and ⇢s? = ns⇢sR, where ⇢sR = 2600 kg/m3 is the constant true density of
the incompressible solid. In terms of the true fluid pressure, these boundary conditions
correspond to prescribing pfR? equal to the initial pressure pfR0 at the top boundary.
At t = 0 the volume fraction of grains is distributed homogeneously throughout the
domain, and the true fluid pressure pfR(t0) = ⇢fR(t0)gz corresponds to the pressure
in a quiescent fluid under the influence of gravity. We are interested in
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Figure 5.1: Mesh and boundary conditions for batch sedimentation simulations. Dimensions are
H = 0.5m and W = 0.005m.

(a) the additional physical effects that can be observed in the simulation due to the
weak compressibility of the fluid, which are not captured by fully incompressible
models;

(b) validating our results quantitatively by comparing the settling velocities within
the homogeneous suspension layer at steady state sedimentation obtained in the
simulation with the settling velocities calculated using the theory of Ishii & Zuber
[42];

(c) a better understanding of the sedimentation process by analyzing the role of single
terms in the balance equations in the different layers and at different times; and

(d) the influence of varying the model parameters given in Table 5.1, in order to
understand their impact on the sedimentation process.

parameter ns
max,µ

[-] ⇥s [-] Kf
0 [Pa] d [m] ns

0 [-]

basic setting 0.68 0.02 105 0.001 0.3

variation 0.64
0.72

0.012
0.016

106

107
0.0002 0.58

0.1

Table 5.1: Values used for parameter study in batch sedimentation simulations

Table 5.1 contains a basic setting box and a variation box. This means that the
following analyses are related to the basic setting parameters. Then, to study the
influence of a change in one of the listed parameters, all parameters were kept as in
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the basic setting, except the parameter of interest. The parameters ns
max,µ

and ⇥s

are parameters that emerge in the constitutive modeling process from the necessity to
obtain a specific desired behavior of the model. They may be changed to accomodate
a specific behavior e.g. observed in an experiment, but have no physical significance.
The parameters d and ns

0 are real, physical parameters of the sedimentation process,
and are varied simply in order to validate the model not only for one, but several
different parameter sets. The bulk modulus of the fluid, Kf

0, can be attributed to
both groups, because it can be a non-physical parameter in cases where the true
compressibility of the fluid is not important for the solution of the boundary value
problem - in that case, one would set Kf

0 to a lower than the physical value in order to
increase the time step size. For problems where the fluid compressibility is important,
and compressibility effects and the velocity of acoustic waves are to be captured
correctly, Kf

0 can be seen as a physical parameter. The values of Kf
0 in Table 5.1 are

far below the bulk modulus of water, for which Kf
0 = 2.2 · 109 Pa. Nevertheless, in a

real-world application, a value of Kf
0 = 107 Pa might not be unrealistic for the fluid

compressibility, because water - except if evacuated - usually contains entrained air
bubbles. The bulk modulus of a liquid-air mixture is given as

Kf
0 =

Kliquid

0

1 + nair

⇣

K

liquid

0

K

air

0
� 1
⌘ , (5.3)

see [52, equation 8.38]. Realizing that Kwater

0 /Kair

0 � 1 and assuming an air content
of 1%, a fluid bulk modulus of Kf

0 = 107 Pa is obtained. Hence, for the results
evaluation, it must be kept in mind that the basic setting of the fluid bulk modulus
was set to a physically too low value in order to achieve a more efficient computation.

5.2 Results and discussion

5.2.1 Overview and phenomenology of a batch sedimentation
process

Let us first analyze the different intrinsic time scales of the problem, using the basic
settings in Table 5.1. To do this, it is illustrative to investigate the time rate of change
in the volume fraction of solid, integrated over the domain, versus time (see Figure 5.2,
left panel). Four different time scales can be identified, each of them reflecting unique
processes. During the first period, �t1, the initially homogeneously distributed grains
start to sink and the three typical batch sedimentation layers develop (see Figure 5.2,
right panel): clear fluid at the top (Zone I), homogeneous suspension with ns = ns

0

in the middle (Zone II), and a sedimented bed (Zone III) at the bottom. During the
development of the three layers, the time rate of change in solid volume fraction is
necessarily instationary. At the beginning of the second period �t2, the layers are
fully developed, and the flow is stationary in the sense that the two interfaces (clear
fluid / suspension; and suspension / sedimented bed, identified by the horizontal
portions of the curves in Figure 5.2, right panel) approach each other at constant
velocities. The time rate of change of solid volume fraction is almost zero at each
nodal point within each of the three layers and non-zero at the nodal points near the
interfaces. As the shape of the interfaces does not change (stationary flow), the time
rate of change of solid volume fraction is constant. This period is described by the
phenomenological theory of Kynch [51]. In the third period �t3 of the simulation,
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Figure 5.2: Left: Temporal evolution of the volume integral of the time rate of change of
solid volume fraction. Note the four different time scales, reflecting dynamic onset of flow,
stationary sedimentation, merging of the two interfaces and full sedimentation. Right: Solid
volume fraction vs. column height. Each curve depicts one point in time within of the time
periods depicted in the left panel.

the two interfaces merge, and the time rate of change of solid volume fraction decays
and reaches zero when all particles are fully settled at the beginning of �t4.

5.2.2 Dynamic effects during batch sedimentation

Even in a relatively simple problem setup as batch sedimentation, the hybrid model
reveals dynamic processes on a short timescale (�t1 ⇡ 0.1 s) and non-dynamic
processes on longer timescales (�t2,3 ⇡ 1...10 s). In Figure 5.2, oscillations in the
time rate of change of solid volume fraction are observed during �t1.
To interpret the oscillations, we analyze Figure 5.3, showing the evolution of solid and
fluid phase velocities, and the fluid excess pore pressure �pfR = pfR � ⇢fRgz � p

atm

.
The excess pore pressure is the part of the true fluid pressure that emerges solely due
to the sedimentation process, that is, without considering the hydrostatic portion
of the fluid pressure and the atmospheric pressure. Equal line colors belong to
one specific time for all three plots, so that the instantaneous interactions between
the three variables can be analyzed. At the beginning of the simulation, the solid
grains start to sink down due to gravity (orange, yellow and light green colors, 0
to 16.6 ms); the solid phase velocity increases. In a fully incompressible setting,
mass conservation would yield the necessity of an immediate upward flux of fluid
compensating for the downward flux of solid. Here, however, the fluid compressibility
leads to a delay in this upward fluid flux; instantaneously, the fluid flux is even
directed downwards. To understand this, imagine what happens when the simulation
starts: Instantaneously, the fluid is dragged downwards by the solid phase due to
momentum interaction (drag), leading to an excess pore pressure decrease at the
top and increase at the bottom of the domain (lower left plot in Figure 5.3); and
hence to an increased pressure gradient. The increase in pressure gradient is more
notable in the lower part of the domain, due to the wf = ws = 0 bottom boundary
condition. As the simulation goes on, the pressure gradient increases further, and
with it, the fluid phase velocity reaches its minimum (turquoise, 23.4 ms) and then
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Figure 5.3: Solid velocity (upper left), fluid velocity (upper right) and excess pore pressure
�pfR = pfR � ⇢fRgz � p

atm

during the dynamic part of the simulation. Colorbar indicates
the time for all three plots. Note that the times are non-equidistant.

starts to increase (light blue, 45.6 ms). The excess pore pressure gradient is now high
enough to serve as a driving force for upward fluid flow. The solid phase velocity
reaches its minimum when the fluid phase velocity has already started to increase
again. Due to drag, the solid phase velocity now starts to increase along with the
fluid velocity (blue, 67.1 ms) and both velocities reach a steady state within Zone II
(the homogeneous suspension area, pink, 247.1 s). The excess pore pressure gradient
is almost constant from 45.6 s onwards; only the position of the excess pressure curve
shifts to the right to accommodate for the open boundary condition pfR? = pfR0 .

In a fully incompressible setting, the upward mass flow of fluid would instanta-
neously compensate for downward solid flux because due to the incompressibility
constraint, a fluid density increase is not allowed. In a compressible setting, however,
downward mass flow of solid leads to downward mass flow of fluid, in turn leading
to a fluid pressure gradient, which then serves as a driving force for upward fluid



88 CHAPTER 5. SIMULATIONS OF BATCH SEDIMENTATION

|ws � wf| [m/s]

z
/H

[-]

0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

n

s

n

s
max

[-]
0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.090 0.094
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mass flow. The dynamic processes described here have not yet been reported in the
literature, probably because they act on a very short timescale, and may not be of
great significance for real-world applications. Here, the discussion was conducted to
prove the ability of the hybrid model to capture both mass transport and acoustic
effects in conjunction with boundary conditions that allow acoustic waves to leave
the computational domain. However, in a real sedimentation process, the fluid is
also necessarily compressible, so we can assume that these processes are realistic.
Note that in the above analysis we have assumed a very high fluid compressibility. If
realistic compressibilities are assumed for the fluid, the effects shown here are less
notable, but still visible. The description of these effects is made possible by using a
hybrid model.
When the typical three layers of clear fluid, sedimenting grains and sediment bed
are fully developed, the temporal changes in solid volume fraction become stationary
at the end of �t1. The new, higher pressure gradient is then the driving force for a
constant upward fluid flow during �t2.

5.2.3 Quantitative validation of simulation results

At the beginning of �t2, the system has adjusted to a stationary state, where the
driving force of gravity is in equilibrium with drag and pressure gradient and dynamic
effects are negligible. Note that �t1 ⌧ �t2, cf. Figure 5.2, left panel. During �t2,
the three typical layers of clear fluid, sedimenting grains and sediment bed are fully
developed, and the interfaces between the layers approach each other as kinematic
waves, as the theory of Kynch [51] predicts.
So far, we have seen effects due to the fluid compressibility during the first period
�t1, but of course the model must be able to also correctly capture the physics during
the stationary period �t2. Ishii & Zuber [42] have derived an analytic solution for the
settling velocity of spherical particles on the basis of their theory, and have verified
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Figure 5.5: Left: Settling velocity vs. column height at t = 2 s for d = 0.002 mm, compared
to analytic solution (5.7) (dashed black line). Right: Solid volume fraction versus column
height.

their results against a range of experiments with relative success. Their equation
can be used to verify the performance of the hybrid model. Let us now go through
the derivation of their analytical solution. We start from the assumption that during
�t2, the flow in Zone II is essentially one-dimensional in z-direction with only gravity,
pressure gradients and momentum interaction as driving forces. The momentum
balance for solid can then be written as

0 = �ns @p
m

@z
� ns⇢sRg + ŝs. (5.4)

Here it was assumed that the mixture pressure pm = pfR = psR. In the framework of
the hybrid model presented in Chapter 3, the same assumption is made within Zone
II, where ps

conf

= 0 due to relatively large distances between particles, cf. equations
(3.49) and (3.55). Adding the two momentum equations, and using equation (3.32),
we obtain for the mixture pressure gradient:

ns @p
m

@z
= �⇢g, (5.5)

so that, exploiting (3.68) and (3.63), equation (5.4) becomes

0 = ns⇢g � ns⇢sRg +
3

4

C
D

⇢fR |ws � wf|2

d
, (5.6)

which, using ⇢ = ⇢f + ⇢s and ns = 1� nf, can be solved for the settling velocity:

|ws � wf|2 = (1� ns)
4

3

⇢fR � ⇢sRd

C
D

⇢fR
g. (5.7)

We may now compare the simulation results for a range of physical parameters to the
analytical result (5.7).
Figures 5.4 to 5.7 show a comparison between simulated settling velocities and the
analytic solution (5.7) at time t = 2 s using different fluid compressibilities, grain sizes
and initial solid volume fractions as listed in Table 5.1. Interestingly, plots of settling
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Figure 5.6: Left: Settling velocity vs. column height at t = 2 s for ns
0 = 0.58, compared

to analytic solution (5.7) (dashed black line). Right: Solid volume fraction versus column
height.

velocity versus height of column are rarely found in the literature, apparently due
to the fact that simulations of batch sedimentation are commonly based on variants
of Kynch’s theory [51], and the information on the individual phase velocities at
any location within the geometry is lost in that framework. We start with Figure
5.4, showing the settling velocities for a range of fluid bulk moduli. Of course, the
numerical solution is expected to agree with the analytical solution only within Zone
II. At the bottom, in Zone III, the velocities decrease because of two effects: First,
the solid volume fraction increases and hence, also the drag. Second, as the volume
fraction approaches maximum packing, the solid configuration pressure sets in and
stops further compaction of the grains. In Zone I, the settling velocity increases
because the solid volume fraction decreases. At the top boundary, the settling velocity
tends to zero due to the boundary condition. The local minimum in settling velocity
between Zones I and II is most probably a numerical artifact and will be discussed
later.
For the lowest bulk modulus (Kf

0 = 105 Pa, blue curve), the observed settling velocity
in Zone II is lower than the analytically expected settling velocity, while for the higher
bulk moduli (Kf

0 = 106 and 107 Pa, green and red curves), the agreement between
simulations and the analytical solution is very good and the two latter curves are
almost indistinguishable. The deviation in the first case can be explained by observ-
ing the high variation in fluid true pressure ⇢fR ⇡ 1000...1070 kg/m3 throughout the
domain. Clearly, these densities are unphysical, but as noted before, low fluid bulk
muduli may be assumed to increase the time step size, as long as the results are not
negatively affected. Here, however, ⇢fR is also a parameter for the calculation of the
drag term, cf. equations (3.65) and (3.66). For the calculation of the analytic solution
via (5.7), ⇢fR = 1000, kg/m3 was assumed. In case of the higher bulk moduli, the
range of fluid true densities is orders of magnitude lower, and is hence negligible. This
observation shows that the solution at steady state, when dynamic effects are negli-
gible, is indifferent to a change in fluid compressibility only if the density variation
throughout the domain is low enough, i.e. high enough bulk moduli are prescribed.
Consequently, low bulk moduli should be prescribed in order to increase overall nu-



5.2. RESULTS AND DISCUSSION 91

|ws � wf| [m/s]

z
/H

[-]

0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

n

s

n

s
max

[-]
0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.7: Left: Settling velocity vs. column height at t = 2 s for ns
0 = 0.1, compared to analytic

solution (5.7) (dashed black line). Right: Solid volume fraction versus column height.

merical efficiency, yet assuring that the bulk moduli are high enough to keep density
variations below a limit of desired accuracy. An alternative way to obtain a closer
match with the analytic solution is to use the reference density ⇢f

ref

rather than the
true fluid density ⇢fR in the calculation of the drag term, (3.63). The true density
⇢fR does not correspond to the physical density in an experiment if the bulk modulus
was chosen so low, so that using the physically more relevant reference density ⇢f

ref

for the calculation of the drag term seems admissible.
Let us compare simulation result and analytic solution for a range of the parameters
d and ns

0 in Table 5.1 (cf. Figures 5.5, 5.6 and 5.7). Note that all plots depict the
physical time t = 2 s, and due to the different settling velocities resulting from the
variation in physical parameters, the current state of the sedimentation process is
quite different in each of the plots. In each figure, the right plot depicts the current
solid volume fraction versus column height for orientation. Altogether, the results
match quite well with the analytic solution (5.7), although a considerable deviation
is visible in the lower part of the domain. This deviation is due to the unrealistically
high fluid density in the lower part of the domain, as already noted. The simulation
result approaches the analytic solution in the upper part of the domain, where the
fluid density approaches its reference value. It is obvious from the results in Figure 5.4
that the deviation between simulation and analytic solution could easily be remedied
by choosing a higher fluid bulk modulus, or, as noted earlier, by using the reference
density ⇢f

ref

rather than the true fluid density ⇢fR in the calculation of the drag term,
(3.63).
The implementation of the full mixture equations allows to dissect and analyze ex-
actly the different forces occurring in the momentum balances and their respective
contribution to the overall flow in the different layers of the sedimentation column.
This dissection of the momentum balance is shown in Figures 5.8 for the mixture and
in Figure 5.10 for the solid. Before going into detail, let us define as positive driving
forces those forces which point into the flow direction of a phase or, in case of the
mixture, in the direction of the barycentric velocity at steady state sedimentation.
The forces opposing these flow directions are denoted negative driving forces. Hence
gravity is the positive driving force for both solid and mixture, while negative driving
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forces for both solid and mixture are the gradients of fluid and solid configuration
pressure, and for the solid, an additional negative driving force is momentum ex-
change.
Figure 5.8 depicts the driving forces of the mixture at four different times during
�t2�4. Development of solid volume fraction and excess pore pressure are shown in
the first two panels for orientation. Note that a gradient in excess pore pressure only
exists within Zone II, where both phases are in motion. The positive driving force
for the mixture is gravity (middle left panel), while the negative driving forces are
the fluid pressure gradient (middle right panel) and the solid configuration pressure
(lower left panel). Within Zone II, we expect the gravity to be fully opposed by the
fluid pressure gradient and the configuration pressure gradient to be zero; while within
Zone III, the fluid pressure gradient should only support the fluid’s weight, and the
extra stresses should be counteracted by the configuration pressure. This is exactly
what is observed in the results. Note that at the interface between Zones II and
III, gravity is opposed by the combined action of solid configuration and fluid pres-
sure gradient; and that there is a minimum in fluid pressure gradient within the zone
boundary. For the configuration pressure gradient, a small local maximum is observed
at the interface between Zones I and II, which is due to the fact that ps

conf

= f(ns),
cf. equation (3.56) and (3.57). This local minimum in solid configuration pressure
is also the explanation for the local minimum in settling velocity observed in Figure
5.4. Hence, the local minimum in settling velocity is an undesired artifact. Further-
more, we observe oscillations in the solid configuration pressure gradient within Zone
III when the sediment has fully settled. These oscillations are due to the fact that
ps
conf

is singular for ns ! ns
max

and could for example be remedied by bounding the
expression (3.57) such that a maximum value of ps

conf

is never exceeded.
Figure 5.9 depicts positive and negative driving forces for t = 2.0 s in one plot. It
can be seen that the relevant forces during steady state sedimentation are gravity as
positive driving force and solid configuration and fluid pressure gradients as negative
driving forces. Hence during this steady state condition, the momentum balance for
the mixture can be written as

�

⇢f + ⇢s
�

g = �@p
fR

@z
�
@ps

conf

@z
. (5.8)

Convective and viscous contributions to the momentum balance are negligible, as
assumed in the theory of Kynch [51] and derived using dimensional analysis in [14].
At steady state conditions, the mixture model approaches these solutions, which is a
validation of the above theories, and for the present model.
The evolution of positive and negative driving forces for the solid phase are depicted in
Figure 5.10. Again, the upper left panel gives the solid volume fraction for orientation.
The positive driving force is again gravity (middle left panel), and the negative driving
forces are momentum exchange (middle right), the solid contribution to the fluid
pressure gradient (lower left), and the configuration pressure gradient (lower right).
In Zone II, the negative driving forces are the momentum exchange term and the solid
part of the fluid pressure gradient, while in the sedimented bed, gravity is opposed by
the solid configuration pressure. Figure 5.11 collects all positive and negative driving
forces for t = 2 s in one plot. Again, equilibrium is obtained by combining all positive
and negative driving forces, and convective and viscous forces could be omitted in the
partial momentum balance for the solid phase:
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Figure 5.8: Time evolution of different quantities of the mixture vs. column height. All plots
have the same x-axis scaling.
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conf

@z
� ŝs. (5.9)

What is left to investigate is the influence of the model parameters Kf
0, ns

max,µ

and
⇥s on the model behavior. In case of Kf

0, differences are observed during the dynamic
phase �t1 of the simulation (Figure 5.12). During this phase, the amplitudes of the
oscillations in the integral time rate of change of solid volume fraction increase with
decreasing fluid bulk modulus. This behavior is expected since in the limit of an
incompressible fluid, we expect no oscillations at all.
Figure 5.13 depicts the influence of the parameters ns

max,µ

and ⇥s on the solid volume
fraction profile. Variations in ns

max,µ

have almost no influence on the shape of the
interface between Zone I and Zone II. The lower interface, however, is sharper for
high values of ns

max,µ

, and becomes less sharp as ns
max,µ

! ns
max

. This behavior
is expected since the drag law given by equations (3.65) to (3.68) prescribes infinite
drag for ns

max,µ

! ns
max

, cf. the discussion in Chapter 3. This effect could possibly
be used as a simple means to model sedimentation-consolidation. A small granular
temperature ⇥s leads to small configuration pressures ps

conf

for small values of ns and
a sharp increase in ps

conf

as ns ! ns
max

; while larger granular temperatures lead to a
more moderate increase in ps

conf

for all values of ns. Consequently, the effect of lower
granular temperatures is to make the two interfaces sharper, because high gradients
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Figure 5.10: Time evolution of different quantities of the solid vs. column height. All plots have
the same x-axis scaling.
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in ps
conf

are only seen where ns ! ns
max

. In the framework of this study, it would
be desirable to have sharp interfaces and hence small granular temperatures; however
too small values have proven to be numerically unstable. The instability occurs at
the interface between Zones II and III, and is probably due to the fact that ps

conf

is
singular for ns ! ns

max

, as discussed earlier in this section.

5.3 Conclusions

Discontinuous Galerkin-Finite Element calculations of batch sedimentation were pre-
sented. At the onset of flow, effects were observed due to the compressibility of the
fluid that are not captured in conventional incompressible models. These effects may
be unimportant for practical applications in the field of sedimentation, but are nec-
essary for the description of other types of flow processes of fluid-saturated mixtures,
cf. Chapter 2.
Here, the batch sedimentation case served as a simple benchmark to verify whether
compressibility effects are visible. During steady state sedimentation, the results for
settling velocity are in very good agreement with the analytical results of Ishii & Zuber
[42] for a range of different fluid bulk moduli, initial solid volume fractions, and grain
sizes. Deviations are due to variations in fluid density along the vertical column,
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range of fluid bulk moduli. Blue: Kf

0 = 105 Pa, black: Kf
0 = 106 Pa, green: Kf

0 = 107 Pa.

which are higher when the prescribed fluid bulk modulus is low. The deviations can
be reduced by prescribing higher fluid bulk moduli Kf

0, resulting in lower vertical
density variations, or by using the reference fluid density ⇢f

ref

instead of the true fluid
density ⇢fR in the calculation of the drag force (3.65). Other than via the drag term,
the results are not affected by unphysical, numerically more advantageous values
of Kf

0, so that low values of Kf
0 can be used to increase numerical efficiency when

dynamic effects due to fluid compressibility are not of interest, e.g. during stationary
sedimentation.
At the upper boundary, the velocity of both phases is zero. This behavior is not
desired and is due to the open boundary condition, which prescribes zero far-field
velocity for both phases. An improved boundary condition would prescribe a no-flux
boundary condition at the top boundary for the mixture instead of separate boundary
conditions for each single phase. However, the results away from the upper boundary
appear not to be affected by this.
The contribution of the single terms of the momentum balances of solid and mixture
to the overall force equilibrium were analyzed. It was found that during steady state
sedimentation, equilibrium is attained by equating gravity with solid configuration
and fluid pressure gradients in case of the mixture, and gravity with solid configuration
and fluid pressure gradients and momentum exchange in case of the solid. Within
the zone of homogeneous concentration (Zone II), the solid configuration pressure
gradient does not contribute to the force equilibrium. Therefore, the hybrid model
converges to the theories of Ishii & Zuber [42] and Kynch [51] at steady state. In
these theories, it is a basic assumption that the only forces are gravity, fluid pressure
gradient and drag.
In the simulations, the two boundaries separating the three zones from each other
are not sharp, but distributed over a length of few centimeters. It was shown that a
smaller granular temperature ⇥s leads to a sharper representation of the interfaces.
However, in the current numerical implementation, stability is affected by too small
values of ⇥s. In the future, this could be remedied by bounding ps

conf

to a finite
value for ns ! ns

max

. Smaller values of ⇥s would also avoid the local minimum in
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at the boundary between Zones I and II, which currently leads to a local
decrease in settling velocity.
Summing up, the hybrid model performs well in capturing fluid compressibility effects
in a batch sedimentation example, and converges to earlier sedimentation models at
steady state. Further work concerns the extension and adjustment of the constitutive
laws and the open boundary conditions to the type of flow described in Chapter 2.



Conclusions and Outlook

Experimental results were presented that reveal the outstanding role of the coupling
between the evolution in porosity and the pore fluid pressure in granular-water mix-
ture flow processes. The pore fluid pressure measurements cannot be explained with-
out taking into account the compressibility of the pore fluid. The connection between
fluid compressibility and porosity is established by the observation that the fluidiza-
tion of an unconsolidated assembly of grains necessarily leads to a porosity increase,
resulting in a volume increase of the fluid. If the pore fluid is assumed to be com-
pressible and the conditions are not fully drained, this volume increase leads to a
pressure drop. Here, the drainage is inhibited by the finite permeability of the porous
skeleton, which prevents instantaneous water influx into the pore space. This inter-
pretation is supported by the fact that the measured pressures compared to those
from single-phase experiments are lower when the permeability of the porous medium
is decreased. The exact amount of porosity increase could however not be determined,
so that the degree of drainage could not be quantified. Future work could focus on
improving the Particle Image Velocimetry (PIV) measurements to quantify exactly
the porosity production. Moreover, PIV measurements in a larger image section could
potentially detect the porosity wave that presumably propagates through the porous
medium shortly after the simulation starts. A further experimental result is the ob-
servation that the flow process shown here is self-inhibiting: Fluidization of the grains
causes a porosity increase, which leads to a fluid pressure drop, and consequently to a
slight consolidation of the porous skeleton and retardation of the fluidization process.
Based on the experimental results, mass and momentum balance laws were chosen for
the development of a mixture model of a weakly compressible barotropic pore fluid and
an incompressible solid phase. Due to the complexity of the experimentally observed
flow pattern, the balance equations were used to develop a model for the simpler case
of batch sedimentation; but assuring for straightforward future extensibility to more
complex types of flow. As the fluid is assumed compressible, it is possible to capture
not only mass transport, but also acoustic wave propagation within this framework.
The hybrid model consists of a set of four strongly coupled partial differential equa-
tions. The discontinuous Galerkin method was found to be suitable for the solution
of such a system of conservation laws. The numerical method allows for high-order
approximation and relatively simple parallelization, at the same time being extremely
robust for conservation laws. These findings were verified by a number of standard
Computational Fluid Dynamics benchmarks, using a modified set of compressible
Navier-Stokes equations that is similar to the hybrid model system of equations.
Acoustic waves, being a central part of the model, afforded the use of special open
boundary conditions to avoid unrealistic reflections that would negatively affect the
calculations. The boundary conditions require the prescription of a far-field state at
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the boundary. Moreover, the boundary conditions require the system of equations to
be hyperbolic. To adjust these boundary conditions to flows where the flow field is
not known a priori and to a system of equations where hyperbolicity is difficult to
assure is a major challenge.
An important feature of the model is its ability to capture mass transport and acous-
tic waves within the same framework. However, the explicit numerical representation
introduces the need of very small time steps if acoustic wave speeds are to be realisti-
cally captured. Very efficient codes, possibly on Graphical Processing Units (GPUs)
are necessary to obtain solutions within reasonable time frames. In case that the focus
is on mass transport, however, the fluid compressibility can be increased, resulting in
larger time steps. As a consequence, the actual wave speeds are not precisely captured,
but the principal physical processes that can be attributed to the fluid compressibility
are still visible.
Finally, numerical simulations of batch sedimentation were shown and the results at
steady state were found to be in very good agreement with an analytical solution.
Moreover, dynamic effects were observed at the beginning of the simulations that
must be attributed to the compressible nature of the pore fluid. The acoustic waves
emerging in the computational domain left the domain via the top boundary, where
open boundary conditions were used. The observations indicate that the combination
of the hybrid model and a numerical implementation in a discontinuous Galerkin
framework is suitable for the description of the type of fluid-granular mixture flows
presented in Chapter 2. The extension of the hybrid model to this more complex
case, the adjustment of the open boundary conditions to the case of a free outflow
with unknown far-field states and the improvement of the numerical implementation
in terms of speed and robustness are left for further work.
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Nr. 163

ISBN 978-3-935892-41-4


	Introduction
	Mechanical models for solid-fluid mixture flows
	Motivation and outline
	Numerical implementation

	Experiment
	Introduction and motivation
	Experimental setup
	Results
	Discussion
	Conclusions

	Two-phase hybrid continuum mixture model
	Introduction and motivation
	Framework
	Kinematical assumptions
	Balance equations
	Constitutive relations for batch sedimentation
	Summary and discussion of the hybrid model

	Numerical implementation - dG method
	Introduction to the discontinuous Galerkin method
	2-D problems
	Open boundary conditions
	Numerical implementation of the hybrid model
	Time integration

	Simulations of batch sedimentation
	Initial boundary value problem
	Results and discussion
	Conclusions

	Conclusions and Outlook
	Bibliography
	buchdeckel-A4

