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Abstract

In this work the numerical modelling of the annular gap grouting process in the
field of mechanized tunnelling is investigated. The occurrence of the annular gap is a
result of an overcut and the conicity of the tunnel boring machine. Hence, the outer
diameter of the tunnel boring machine is larger than the diameter of the actual tunnel
lining.

The aim of the annular gap grouting is a complete filling of the annular gap in
order to achieve a stable and secure bedding of the tunnel lining. This is realized by
prescribing a defined stress-state of the annular gap grouting mortar and the surround-
ing soil in the shortest possible time period, in order to minimize surface settlements.
Based on the framework in the field of continuum mechanics, the Theory of Porous
Media is used to describe the physics of this process. In detail, the infiltration process
is investigated by the evaluation of the governing partial local balance equations.

Special attention is paid to the constitutive assumptions for the infiltration process
and for the description of solid deformations. Infiltration is defined as the phase
transition of suspended particles in the pore fluid to particles, which are attached to
the solid skeleton. Due to the continuum mechanical approach, the micro structure
of the considered volume is reduced to a finite number of constituents, which are
described by their volume fractions with respect to the total volume. In order to
represent the ongoing physics of the volume within the homogenized framework of
the Theory of Porous Media on the micro scale, the field equations are coupled with
a statistical analysis of the micro structure.

Furthermore, the consolidation of a porous medium (e.g. gap grouting mortar)
in the backfilled volume is investigated. From the evaluation of the consolidation
process the evolution of the material stiffness within the grouting process is char-
acterized. The numerical approaches presented in this thesis, are applicable for the
simulation of interface phenomena, e.g. the formation of a filter cake. Analysis and
numerical investigation of the phenomena, which occur during the grouting process
of the annular gap in granular soil, lead to a deeper understanding of the ongoing
physics. Therefore, the presented numerical approaches establish the basis for a more
accurate grouting process in the field of mechanized tunnelling.





Kurzfassung

In dieser Dissertation wird die numerische Modellierung des Verfüllvorgangs eines
Ringspaltes mit Ringspaltmörtel im Bereich des maschinellen Tunnelbaus untersucht.
Die Entstehung des Ringspalts ist auf einen Überschnitt sowie auf die Konizität der
Tunnelbohrmaschine zurückzuführen. Demnach ist der Außendurchmesser der Tun-
nelbohrmaschine stets wenige Zentimeter größer als der tatsächliche Durchmesser des
folgenden Tunnelausbaus.

Ziel der Ringspaltverpressung ist eine vollständige Verfüllung des Ringspaltes und
eine sichere und stabile Bettung der Tunnelröhre. Dies wird durch die Einstel-
lung eines definierten Spannungszustandes im Ringspalt sowie im daran anstehen-
den Boden in einer möglichst kurzen Zeitspanne erreicht, wodurch Oberflächenset-
zungen minimiert werden können. Ausgehend von dem Arbeitsbereich der Kon-
tinuumsmechanik, wird zur Beschreibung der vorherrschenden Prozesse die Theorie
Poröser Medien verwendet. Hierbei kann der Infiltrationsprozess durch die Auswer-
tung partieller lokaler Bilanzgleichungen beschrieben werden. Besondere Aufmerk-
samkeit wird dabei auf die Konstitutivannahmen für den Infiltrationsprozess sowie
die Beschreibung der Festkörperdeformationen gelegt. Als Infiltration versteht man
dabei die Phasentransformation von dem fluidisierten Feinkorn der liquiden Phase
zu einem Feinkorn, welches an dem Porenskelett anhaftet. Aufgrund der kontinu-
umsmechanischen Betrachtungsweise, wird die Mikrostruktur auf eine endliche Anzahl
einzelner Konstituierenden reduziert, welche durch ihren Anteil am Gesamtvolumen
beschrieben werden. Damit, trotz des Homogenisierungsvorgangs, das Verhalten des
betrachteten Volumenelementes auf der Mikroskala dargestellt werden kann, werden
die Feldgleichungen mit einer statistischen Auswertung der Mikrostruktur gekoppelt.

Darüber hinaus wird die Konsolidierung des porösen Mediums (z.B. Ringspalt-
mörtel) in dem verfüllten Volumen betrachtet. Aus der Auswertung des Konsol-
idationsprozesses kann die Evolution der Steifigkeit des Materials im Verlauf des
Verfüllprozesses gewonnen werden. Die hier präsentierten Berechnungsmodelle sind
damit für die Beschreibung von Grenzschichtphänomenen, wie die Entstehung eines
Filterkuchens, geeignet. Die Erfassung und numerische Abbildung der natürlichen
Prozesse, welche bei der Verfüllung von Ringspaltmörtel im Lockergestein auftreten,
führt zu einem tiefergehenden Verständnis der ablaufenden physikalischen Phänomene.
Dies kann für eine präzisere Steuerung des Verfüllvorgangs von Ringspaltmörtel im
maschinellen Tunnelbau genutzt werden.
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Chapter 1

Introduction and Motivation

The modern society is characterized by the trend of an increasing population around
the world. Additionally, the growth is overrepresented in some few chief cities around
the world, the so-called metropolises, that are attracting inhabitants from the whole
region by the advantages of the infrastructure of a modern city. However, this ex-
pansion leads to a high demand in extending the existing infrastructure to ensure a
smooth everyday life of the population. One of the most elegant, because minimally
invasive, ways to manage this is represented by the technique of mechanized tun-
nelling. The idea of the mechanized tunnelling technique is that the tunnel is created
with a Tunnel Boring Machine (TBM), used to excavate a tunnel and to create the
lining simultaneously. Theoretically, only two sites are demanded at the surface, one
at the entrance of the TBM and one at the exit. Practically, the distance of the
TBM is limited due to the supply of the TBM with resources like grouting material,
tubbings, and the transport of the excavated soil at the surface. However, the surface
above the tunnel route does not have to be opened completely, which results in ad-
vantages for the every days life of the inhabitants in populated areas and additionally
leads to the possibility for tunnelling projects in areas with an existing infrastructure
at the ground surface. During the tunnelling process using the mechanized tunnelling
technique in soft soil (e.g. sand, clay) an annular gap between the tunnel lining and
the surrounding soil is created, which has to be instantaneously filled. For this, dif-
ferent types of grouting materials were developed. In literature many synonyms for
the filling process are used. Without the claim to completeness those are: backfilling
of the annular gap [65], tail void grouting [77], annular gap grouting [96], grouting of
the shield tail gap [2].

It will be shown that many phenomena which occur during the grouting process,
are not fully understood. Despite many successful tunnelling projects have been
carried out in the past, some of which under very challenging conditions, a lot of
potential within the grouting process is unused.

In order to gain insight in the ongoing physics of the grouting process of the
annular gap in mechanized tunnelling, the dominating processes are identified and

– 1 –



2 Chapter 1 Introduction and Motivation

simulated using newly developed numerical models. The development of a sophisti-
cated multi-field formulation to describe the backfilling process will allow to study
micro-scale phenomena. The dominating process, which leads to an evolution of the
physical properties of a cement-free annular gap grouting mortar, is the infiltration of
particles of the suspension into the solid skeleton of the mortar in the annular gap or
the surrounding soil. An adequate numerical treatment of this phenomenon is crucial
for the overall process. For this, the Theory of Porous Media will be used, which is
a continuum modelling approach capturing multi-physical problems. The considered
simulation domain is divided into volume fractions and the partial balance equations
of individual constituents or combinations of constituents are used to derive field
equations, which are solved numerically using the Finite Element Method (FEM).
Hence, the field equations are transformed from their strong forms into weak forms,
the simulation domain is discretized with respect to space and time and the resulting
equations are solved using iterative tools like the Newton-Raphson algorithm. Due to
the fact that microscopic effects are dominating the physics of the ongoing processes,
the TPM is combined with a micro-structural investigation of the morphology of the
granular porous medium. From standard geotechnical characterization methods, the
so-called Grain Size Distributions (GSDs) of the considered soil and mortar are well-
defined physical properties. Thus, the evolution of the morphology of the granular
media is based on the GSD of the surrounding soil of the tunnel lining and the GSD
of the backfilled annular gap grouting mortar. The physical quantity determining
the physics with respect to morphology is the Constriction Size Distribution (CSD),
which is calculated using statistical methods. The implementation of the statistical
analysis of the micro structure within a multi-field continuum approach derived from
the TPM allows an in-depth simulation of the hydraulic properties. For the evolu-
tion of mechanical properties the backfilling of annular gap will be interpreted as a
consolidation process where additional localized stiffening may occur.

Note, that the term infiltration has a particular meaning in this thesis. If a volume
which consists of a granular porous medium and is fully saturated with a pore fluid
(e.g. a mixture of sandy-type soil and water) is considered, then infiltration describes
the attachment of fine suspended particles which are penetrating with the pore fluid
to the granular porous skeleton. In different scientific fields similar terms are denoting
similar, but different processes. In hydrology the term filtration is used to describe
the transport of a fluid (water) into soil, developing a partly-saturated vadose zone
[64]. Therefore, in this work those processes are differentiated by the terms infiltration
for the first, and penetration or transport for the latter case.

1.1 Scope and outline

This work is dedicated to create a deeper understanding of the grouting process in
order to be able to simplify the grouting procedure and to ensure the fulfilment
of all requirements of the backfilling process. The aim of this work is to develop
numerical approaches for infiltration and transport phenomena applicable to geo-
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technical problems, in particular capturing the ongoing processes of the backfilling of
the annular gap during mechanized tunnelling operations.

For this, numerical modelling approaches are presented with different complex-
ities. The main framework of the modelling approaches is given by the Theory of
Porous Media (TPM), allowing to simulate the ongoing process with a multi-field and
multi-phase continuum-based formulation. This different hierarchies of numerical ap-
proaches, presented in the following, allow to gain a better insight in the grouting
process. This work is structured as follows:

• In Chapter 2 the mechanized tunnelling technique is introduced in general.
After the discussion of necessities and the advantages and disadvantages of
the mechanized tunnelling techniques, the chapter focusses on the annular gap
backfilling process. The process itself as also the required technical facilities are
described. Additionally, a literature overview about the grouting process and
its numerical simulation is presented.

• Chapter 3 describes the TPM as the numerical framework of the modelling
approach. First, general assumptions are given, which are used in this thesis.
After this, the kinematics of a multi-phase material are discussed. Following,
the global partial balance relations balancing mass, momentum, moment of
momentum, energy, and entropy are introduced axiomatically. The partial local
balance relations of multi-phase material are derived from the global relations.

• The equations obtained from the TPM are used to create a multi-field approach
capturing infiltration and transport phenomena in Chapter 4. A constitutive as-
sumption for the mass exchange is presented and 1-dim numerical examples are
studied. The findings gain a better insight in infiltration phenomena, especially
on the formation of the filter cake.

• The introduction of the concept of species within the multi-field formulation
is presented in Chapter 5. This extension leads to the possibility of capturing
the evolution of the microstructure of the porous domain within the continuum-
based formulation. Furthermore, an analytical solution is presented for a special
case of infiltration problems. Numerical examples are conducted in order to
describe the evolution of hydraulic properties of a heterogeneous 2-dim domain.

• In Chapter 6 a hydro-mechanical coupling is established to simulate the evolu-
tion of deformations of the solid skeleton in addition to the hydraulic properties.
Thus, stiffening of the porous skeleton and plastic deformations are considered.
The mechanical extension of the infiltration modelling approach allows a more
detailed simulation of settlements induced by the annular gap filling process.
Furthermore, the phenomena of individual simulation features of the proposed
model are discussed with respect to their importance for the backfilling process
in mechanized tunnelling.



4 Chapter 1 Introduction and Motivation

• Chapter 7 summarizes the results of this work. The different modelling ap-
proaches which are used in this thesis are linked and compared to each other.
The impact of the created modelling approaches on the backfilling process is
discussed and further possible working fields are highlighted.

Note that parts of this contribution are already published or will be published
soon in international peer-reviewed journals. The results of Chapter 4 are published
in the Journal of Applied Mathematics and Mechanics [71]. Chapter 5 is the basis
of a publication that has been submitted to the International Journal for Numerical
and Analytical Methods in Geomechanics and the results of Chapter 6 will be soon
submitted to the international journal Computers and Geotechnics.



Chapter 2

Mechanized tunnelling

In this chapter the mechanized tunnelling technique is discussed. The gen-
eral processes during tunnelling are presented, with a focus on the annular
gap grouting procedure. The necessity of gap grouting is discussed. After
that the technical facilities for the grouting procedure are described. In the
last part of the chapter an literature overview about numerical methods for
annular gap grouting in mechanized tunnelling is given.

2.1 Development of mechanized tunnelling techniques

There are several types of methods to create a tunnel. Conventional methods are
summarized by the cut-and-cover method, in which a tunnel is created by opening
the surface, creating the tunnel lining and closing the surface in a way that the load of
the scheduled projects at the surface does not impair the created tunnel. Conventional
tunnelling techniques therefore come along with a high disturbance of everyday life
at the surface.

To prevent this, the mechanized tunnelling technique was developed. Here, the
tunnel is created by a Tunnel Boring Machine (TBM). Several types of TBMs exist
but the basic process is, however, similar for all TBMs. In case of Mix-shield machines
(Figure 2.1) the structure is as follows: in the front of the machine the cutter head
with a circular cross section is situated, which creates the tunnel by excavation of the
soil. Therefore, the part directly behind the cutter head is divided into two chambers.
The excavated soil enters the excavation chamber which is fully filled with a mixture
of water and bentonite as support fluid in order to balance the earth pressure to
prevent a collapse of the working face. The pressure in the excavation chamber has
to be well controlled to compensate the pressure loss resulting from material flux of
the excavated soil out of the chamber by a screw conveyor, and to be able to react
on different stress conditions of the soil at any time. Thus, the excavation chamber
is directly connected to the pressure chamber at the bottom of the TBM. Only half
of the pressure chamber is filled with the support fluid, while the upper part is filled

– 5 –
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Figure 2.1: Longitudinal section of a Mix-shield TBM, with: 1○: cutter head, 2○:
excavation chamber, 3○: pressure chamber, 4○: hydraulic jacks, 5○: tail skin, 6○:
shield, 7○: tubbing erector, 8○: brush sealing, 9○: tunnel lining. (Copyright:
www.herrenknecht.com)

with gas, to adjust the pressure. The compressibility of the pressurized gas ensures a
continuous face support without unwanted rapid changes in the supporting pressure.
The excavated soil is continuously transported out of the excavation chamber, while
the loss of the support fluid is replaced in order to keep a constant support pressure
acting on the soil. The shield of the TBM covers the machine and supports the
surrounding soil to prevent a collapse of it. In the back part of the machine the
tunnel lining is created under the protection of the shield of the TBM. For this, single
tubbing elements are placed by the erector in their final position and fixed to each
other. Directly after the ring build the gap has to be filled completely with annular
gap mortar from grout supply lines in the tail skin or through grout holes in the
tubbings. The TBM-shield is sealed with wire brushes to prevent pore fluid of the
soil or mortar from penetrating into the TBM. The advance of the TBM is driven by
the hydraulic jacks which are supported by the last ring of the tunnel lining.

In Figure 2.2 a so-called Earth Pressure Balance (EPB) shield machine is shown.
This is an especially economical way of mechanized tunnelling which can be applied
in sandy-type granular sub-soil. The face support is realized using the excavated soil
itself, which is preconditioned by mixing with a tenside foam [7].

In general advantages and disadvantages of mechanized tunnelling were summa-
rized by Maindl et al. [58] as follows.
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Advantages:

• high speed of excavation,

• profile accuracy,

• smallest possible disturbance of existing buildings at the surface,

• high security for staff,

• environmental friendly construction, low noise,

• high quality and economically tunnel lining.

Disadvantages:

• long planing phase, development and production of the TBM,

• long training periods for staff,

• consuming and costly site equipment, economic depriciation only for longer
tunnels possible,

• risks resulting from variety in soil properties,

• restriction to a circular cross section of the lining,

• high effort in case of change of a cross section,

• forces of the jacks have to be encountered during design of the tunnel lining.

Despite the negative aspects, the mechanized tunnelling technology is often the
key to extend an already existing infrastructure. The application of tunnelling of man-
made tunnels is situated in all kind of transport system, i.e., roads, rail transport,
transport of drinking water and sewage through pipes, etc.

As mentioned above, the main advantages of the mechanized tunnelling technique
are obtained for projects in densely populated areas. There, one crucial fact for the
realization of tunnelling projects is its acceptance among the affected population.
Therefore, the visible impact of the tunnelling project has to be minimized. Apart
from the visible site equipment outside the tunnel those are mainly the surface settle-
ments induced by the tunnelling process above the tunnel lining. There are a plenty
of reasons for tunnelling induced surface settlements, which sometimes even result in
heaving. The main causes for surface displacements can be traced back to a poor
pressure balance at the working face (e.g. too fast tunnel advance, wrong type of face
support), which causes displacements of the surface directly in front of the TBM or
a poor filling of the annular gap, which causes displacements directly above of the
back part of the machine. This work is focussed on the numerical description of the
annular gap grouting process.
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Figure 2.2: Earth Pressure Balance (EPB) shield TBM used in London. The diameter
of the cutter head is 4.7 m. (Copyright: www.herrenknecht.com)

2.2 Annular gap grouting

Due to technical restrictions, the cutting wheel of a TBM has to be a few cm larger
than the tunnel lining, which is created directly after the excavation process. During
the excavation procedure and the ring build, the surrounding soil is supported by
the TBM to prevent settlements of the ground surface above the tunnel. The over-
cut results in a gap between the tunnel lining and the surrounding soil, the so-called
annular gap. The annular gap has to be filled directly after finishing a lining segment,
usually with a complex fluid, i.e. an annular gap grouting mortar. The aim of
the grouting procedure is to recover the primary stress state of the surrounding soil
and to establish a non-positive connection of the tunnel lining, in order to minimize
settlements. Furthermore, a buoyancy of the tunnel lining has to be prevented.

During the grouting process two different cases can occur, which demand different
numerical treatment to simulate the ongoing physical processes, namely a continuous
and a discontinuous grouting. For a continuous grouting, the annular gap is already
fully filled with grouting mortar. The continuous grouting can be used to de-water
the grout mortar. In this case the de-watering process of the annular grouting mortar
ensures the evolution of mechanical and hydraulic properties to fulfil the aims for-
mulated above. This ensures a direct fully filled annular gap. The second strategy
of gap grouting is using a discontinuous filling method. In this case the injection
and the filling of the annular gap can not be neglected and thus, this process has to
be modelled using a free surface to describe the boundary between the gas and the
mortar phase. However, state of the art is the continuous grouting. Therefore, the
following numerical approach is focussed on this case.

An important criterion to evaluate the quality of the annular gap grouting is
the pressure distribution around the tunnel lining during and after the excavation
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procedure. For this, pressure sensors have been applied to single tubbing segments
on some reference tunnelling projects, thus the evolution of the pressure distribution
during excavation and grouting can be analysed [35, 39, 54].

In general, a grouting mortar has to fulfil contrary requirements during different
phases of the process. Before the actual grouting has started, the grouting mortar
has to be transported using pipes. Therefore, a good flowability and pumpability of
the mortar, coming along with a low shear-viscosity, are crucial properties. Directly
after the filling process, stable bedding of the tunnel lining is necessary. For this, a
fast increase in stiffness of the mortar is needed. As a requirement, a shear stiffness of
the mortar, which corresponds at least to the shear stiffness of the surrounding soil,
has to be achieved [91]. In this case, recovering of the primary stress state of the soil
around tunnel lining can be achieved [2].

From a technical point of view, several possibilities of annular gap grouting tech-
niques are possible. After the development of TBM’s, mostly cement-contained grout-
ing mortars have been used. This class of grouting mortar has certain advantages in
stiffness evolution, which can be traced back to the hydration process. The disad-
vantage of cement-contained grouting mortars is obvious in case of a standstill of the
TBM. The pipes of the grouting mortar can be clogged by the hydrated mortar itself.
Therefore, costly maintenance of the system is required. Having this issue in mind,
cement-free mortars were developed for the grouting process,which are characterized
by the missing hydration of the material. This leads to a good workability and es-
pecially pump-ability for a larger duration of those materials [96, 97]. Due to the
missing hydration, the evolution of shear stiffness of the grouting mortar is achieved
by de-watering of the mortar, which can be interpreted as a consolidation process. To
this purpose, the grouting takes place at a constant grouting pressure. After filling
the annular gap completely, the grouting pressure is kept constant for a certain time.
The pressure gradient, caused by the grouting process, induces a convective transport
of the pore fluid of the mortar into the surrounding soil (de-watering). Hence, the
pore space of the mortar is reduced and the particle contacts and the coordination
number of each particle is increased. This leads to an increase of the shear stiffness
of the grouting mortar. Therefore, a proper composition of the mortar leads to the
desired shear stress after consolidation.

2.2.1 Discontinuous annular gap grouting

In case of discontinuous annular gap grouting, the ring is constructed at first, cf.
Figure 2.3 (top). After one segment of the lining is fully built, the annular gap mortar
is injected through tubes via grout holes in the tubbings of the lining. These holes
contain a valve to retain the gap grouting material in the annular gap. The shield is
sealed in the direction of the lining and also in the direction of the surrounding soil to
keep the grouting material in the annular gap [96]. Due to the discontinuous process
the surrounding soil of the tunnel lining remains without support for a short time.
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Figure 2.3: Longitudinal section of the tail skin and the segmental lining. Illustra-
tion of the grouting process using a discontinuous (top) and a continuous (bottom)
technique (adapted from [96]).

2.2.2 Continuous annular gap grouting

To overcome the drawback of a temporary non-supported surrounding soil, the grout-
ing can be realized continuously, cf. Figure 2.3 (bottom). This means that the ring
build takes place protected by the TBM-shield. Directly after the completion of a
lining segment, the grouting process is realized during the advance of the TBM. The
grouting takes place through a grout supply line in the tail skin.

2.2.3 Further technical facilities for annular gap grouting

In addition to the grouting process itself, different technical facilities have to be de-
scribed to reach an understanding of the overall process of the annular gap grouting.
In order to prevent a fluid from entering the TBM, the tail skin of the TBM-shield is
equipped with special sealings. Two different types of sealings are required. The main
purpose of the sealing inside the tail skin is to retain the annular gap grouting mor-
tar from entering the TBM-shield. In the beginning phase of mechanized tunnelling,
different types of tissues, e.g. cleaning cloth, have been used. Recently, polymer and
wire brush sealings were applied [58]. In case of polymer sealings, a polymer foam
is used, which is fixed by a metal spring. For security reasons a further emergency
sealing consisting of an inflatable material can be placed in front to avoid damages of
the whole TBM in case of failure of the polymer sealing.
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The safest way of sealing the gap between the lining and the tail skin is the wire
brush. Thereby, up to four packages of wire brushes are fixed at the tail skin. The
volume between single wire brush packages is filled with a grease-type high viscosity
fluid. Through special supply channels for the fluid, the pressure in the volume
between the wire brush packages is adjusted and the consumption of the fluid is
equilibrated. By application of a fluid pressure on the grease, which is higher than the
grouting pressure, the sealing is ensured. A failure of a part of the wire brush sealing
can be registered by a higher grease consumption. As long as the grease pressure
is reached, sealing even in case of a partial damage can be guaranteed, because the
pressure gradient induces a flux of the grease and prevents mortar from entering the
TBM. Additionally, a wear of the wire brushes is reduced by the use of grease. For
an environmental friendly tunnelling process, the type of sealing fluid (grease) has to
be chosen properly with focus on the environmental sustainability.

A second type of sealing is situated outside the tail skin, pointing towards the
surrounding soil. If a fluid-based face support is used (cf. section 2.1), the outer
sealing ensures a decoupling of support fluid and the annular gap grouting mortar.
In case of tunnelling techniques without using a fluid for the face support (e.g. single
and double shield TBM) the outer sealing prevents the annular gap grouting mortar
from filling the steering gap. The outer sealing often consists of shingled spring sheet
packages. However, ensuring a proper functionality is more challenging, compared
to the sealing inside the tail skin. Depending on the geological situation, hollow
spaces, larger than the actual annular gap might occur. Additional, the porosity of
the surrounding soil might lead to unwanted penetration of the grouting material in
the direction of the excavation. However, the potential for damage and safety risk
is much smaller in case of failure of the outer sealing, because the inner part of the
TBM is not affected by the outer sealing.

For the injection of the annular gap grouting mortar in the annular gap, it is
necessary to apply a pressure that depends on the mortar system and other settings
but being always higher then the pore pressure of the surrounding soil. Mostly double
piston pumps are used for this application. In case of 2-component mortars the use of
progressive cavity pumps is also documented and for mortars containing only very fine
particles peristaltic pumps were applied [96]. Injection is achieved using a separate
pump for each grout supply line. A different pressure might be applied to each single
grout supply line in order to take into account different geological properties or a
varying pore pressure due to gravity. The pumping can be realized in a pressure based
or volume based procedure. In case of a volume based grouting process, the theoretical
volume which has to be filled is calculated. Then, the piston stroke is linked to the
advance speed of the TBM. Following this procedure, hollow spaces in the surrounding
soil are not considered. This might lead to a necessity of a secondary grouting, because
a complete filling was not achieved by the first grouting. For the pressure driven
grouting process, a minimum and maximum value for each piston pump is adjusted.
The grouting process is evoked if the current pressure is smaller than the adjusted
value and stopped if it reaches the maximum value. This process leads to a more
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accurate grouting, if the pressure is adjusted properly. This is explained by the fact
that the consumption of mortar is the result of the applied pressure gradient and not
an a priori given value determined by theoretical calculations

Due to the large amount of mortar needed during the gap grouting process, the
grout is prepared outside the tunnel. This means that the mortar needs to be trans-
ported after mixing and before grouting. For larger tunnel diameter, a continuous
supply of annular gap grouting mortar via pipelines is used. This ensures permanent
availability of annular gap grouting mortar at the TBM. During the advance of the
tunnelling project the properties of freshly injected annular gap grouting mortar may
change in time because the length of the pipeline and the resulting residence time of
the annular gap grouting mortar within the pipeline increases. During disturbances,
which might occur during the tunnelling progress, the annular gap grouting mortar
remains in the supply lines. Depending on the type of used annular gap grouting
mortar, this might lead to clogging of the supply pipe. This means that the clogged
material has to be pressed out and the pipeline needs to be maintained, which is very
costly.

For small tunnelling diameter, the required portion of annular gap grouting mortar
can be transported to the TBM in discrete portions using special containers. The
process has to be managed logistically, but clogging during disturbances even with
cement-based annular gap grouting mortar is less of a problem.

2.2.4 Grouting material

As previously described, the grouting material has to satisfy contrary requirements
during the overall process. A proper choice of the grouting material is crucial for a
stable bedding and the workability during the backfilling process. For mechanized
tunnelling projects in granular soil, as described here, the following mortar systems
are available: cement-based mortar, cement-free mortar, and two-component mortar.
The cement-based grouting mortars are further subdivided in active and semi-active
mortars, depending on the water to cement ratio, where the differentiation is not
clearly defined. The basis formula of annular gap grouting mortar consist of different
types of granular media like gravel, sand, and fly ash. Furthermore, a bentonite-slurry
and additional water are used.

Cement-based mortars are widely used in the field of mechanized tunnelling. The
idea is to fulfil the contrary requirements during the grouting process and the follow-
ing life-time with the hydration process. For the construction phase the material has
a very good workability. After a certain time, hydration ensures the required shear
strength and therefore a stable bedding of the tunnel lining. Problems can occur due
to buoyancy of the tunnel lining which might cause severe damages during the con-
struction phase. This has to be accounted for by the formulation of the cement-based
material. Furthermore, unwanted hydration, i.e. hydration during disturbances, leads
to clogging of the supply pipes.
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To overcome this issue, cement-free mortar systems were developed. Apart from
the missing cement portion the composition is similar to the conventional cement-
based mortar. The lack of cement has obvious advantages during the construction
process. Even in case of long disturbances there is no clogging in the supply system
of the TBM. Sedimentation occurs for very long disturbances, but cleaning of the
system is much easier than in case of using cement-based mortars. The required
shear strength of the material is achieved by dewatering of the cement-free mortar
and not by hydration. The dewatering process requires a deep understanding of the
physical phenomena and can not be established for very small permeabilities of the
surrounding soil.

Two-component mortar systems do not require a certain permeability and are
therefore a good choice for clay-type surrounding material. Two-component mortars
consist of a similar composition as the active-mortar materials, but a liquid retarding
agent is added in order to slow down the hydration. Therefore, the mixture is stable
for 72 h [88]. Just before the grouting process, this mortar is mixed with sodium
silicate, which leads to an immediate gelling of the material and later to hydration.

The present work is focussed on cement-free mortar and especially on the hydraulic
and mechanical properties of the grouting mortar and the surrounding soil during and
after the grouting process. Further application on active-mortar and two-component
mortar is discussed in the last chapter.

2.2.5 State of the art

The practical aspects of the backfilling process of the annular gap were discussed
in the previous part. This section is focussed on a literature review of publications
related to the backfilling process.

Hashimoto et al. [39] describe the historical development of the grouting process,
with a special focus on two-component grouting mortars. Thus, it is pointed out
that continuous grouting reduces the settlements significantly. An overview about
different grouting mortars which have been used in practical applications around the
world is presented by Shirlaw et al. [77]. The authors highlight the importance
of gap grouting in general and the opportunities of using locally sourced materials,
instead of developing a fixed formula, for the grouting material. For this, a deep
understanding of the rheological phenomena is crucial. General information about
technical facilities, composition of grouting mortars, and process information in the
framework of the backfilling process is summarized in a contribution of Thewes and
Budach [96].

Talman and Bezuijen [90] conclude in their contribution about the grouting process
at the Groene Hart Tunnel in the Netherlands, that the face support with a bentonite-
slurry has an impact on the interface between the annular gap and the surrounding
soil. The bentonite-slurry leads to clogging of the interface and therefore slows down
the consolidation process of the annular gap grouting mortar. Furthermore, Bezuijen
and Talmon [9] instrumented several tubbings of the segmental lining with pressure
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sensors and conducted field measurements of the pressure of the annular gap grouting
mortar during the grouting process itself and some time after it. The authors describe
that the composition of the grouting material is crucial for the loading conditions of
the tunnel lining directly behind the TBM. In a different work [8] pressure sensors
were placed in a distance of 0.75 m radial to the tunnel lining before the tunnelling
process. From this data, the derivation of the pressure gradient during tunnelling was
observed.

The work of Thienert [97] is focussed on cement-free grouting materials. Driven
by macroscopic experimental investigations it was found out, that in case of a correct
formulation of the mortar, cement-free mortars are comparable to active mortars
in terms of long-term stability and have even better physical properties regarding
short-term stability. This finding was also supported by Wittke [106]. Laboratory
experiments with the focus of the water desorption behaviour of mortars in general
have been published by Carter et al. [20].

Numerical simulations of the overall tunnelling advance, considering the annular
gap grouting, are proposed by Kasper and Meschke in [48]. For the simulation of the
fully-saturated subsoil and the grouting material, a two-field finite element approach
was used, with the result that a rapid evolution of the shear strength of the material
leads to reduction of surface settlements. The grouting process is evaluated by a
time-dependent mechanical parameter of the grouting material, which simulates the
hydration process. This idea is traced back to investigations applied on shotcrete by
Meschke [60] and Meschke et al. [61]. A numerical approach allowing real-time steer-
ing of the TBM, where also the grouting process is evaluated as described previously
is presented by Ninić and Meschke [62]. A macroscopic numerical model focussing on
the pressure evolution due to the grouting process was developed by Swoboda and
Abu-Krisha [89]. Considering the grouting pressure, it is stated that the short time
evolution of the settlements is mainly driven by the grouting pressure, whereas the
long-term settlements are defined by the excess pore water pressure.

Concluding, many phenomena are experimentally and numerically well investi-
gated in the broad field of mechanized tunnelling. However, most scientific research
was performed on the macro scale, even though it is well known that the smallest par-
ticles are dominating transport properties of a granular mixture [69]. Those effects can
only by understood by performing investigations on the micro scale. Therefore, micro
scale and continuum models are derived and adapted in this work using an extended
approach of the TPM. The field equations capturing ongoing physical processes are
derived from balance equations for mass and momentum of individual constituents
and their combinations. Additional micro-scale effects are simulated by consideration
of statistical methods to describe the physics of granular porous media in combination
with the TPM.



Chapter 3

Theoretical background of
modelling hydro-mechanical
coupled processes

After the last chapter, which was focussed on relevant applications in the
field of mechanized tunnelling, in this chapter, the theoretical framework
for the simulation of infiltration phenomena is presented. First, a brief in-
troduction about concepts of the Mixture Theory and the Theory of Porous
Media is given. Subsequently, the kinematics within the Theory of Porous
Media are discussed. In the last part of the chapter, the balance equations
for a continuum description of a multi-phase material are presented.

3.1 Mixture Theory

For the description of motion of multiple superimposed continua the Mixture Theory
(MT) proposed by Truesdell is used [98, 99]. It is applied to describe motion of mis-
cible mixtures. The basic idea of the MT is summarized by Truesdell’s metaphysical
principles:

• All properties of the mixture must be mathematical consequences of properties
of the constituents.

• So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture, provided we allow properly for the actions of the
other constituents upon it.

• The motion of the mixture is governed by the same equations as is a single body.

Note, that there are a plenty of Mixture Theories, which are independent of the one
referred to in this contribution.

– 15 –
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3.2 Theory of Porous Media

In order to obtain a description of the motion of immiscible mixtures, e.g. mixtures
of fluids and solid constituents, or the mixture of a wetting and a non-wetting fluid,
like water and oil, the TPM was invented. The idea of the TPM can be traced back
to the MT. The TPM can be understood as an extension of the MT. In the TPM the
concept of volume fractions is introduced. Despite the continuum-based homogenized
formulation, a differentiation between single constituents is realized by accounting
for the occupied volume of the constituents in the Representative Volume Element
(RVE).

The TPM is developed to describe multi-phase problems on the continuum scale.
In this part of the contribution the TPM is presented in order to develop a multi-
phase model for infiltration processes of fully-saturated granular porous media. An
overview about the historical development of the TPM is given by de Boer [24]. For
further reading, literature of de Boer [13], Bowen [16, 17], Ehlers [28–30], and Steeb
[82] are recommended.

3.2.1 Introductory definitions

Considering a continuum, which is a mixture of different constituents or phases, it
is assumed that the constituents are perfectly homogeneously distributed within the
volume. In other words, an averaging technique is applied on the volume leading to a
model, which represents the physical mixture for simulation of certain processes. The
mixture ϕ of the averaged phases in the volume is described as

ϕ =
⋃

α

ϕα, (3.1)

with the phase ϕα of a single constituent α. The TPM evolves from the concept of
volume fractions. Thereby, the definition

nα =
dvα

dv
(3.2)

is used, with the volume fraction nα. The volume of the considered phase ϕα is
described by dvα and the total volume of the RVE as dv. The RVE is fully-saturated
with different phases which might be present in any state of matter (solid, liquid, or
gas). Therefore, the saturation condition is formulated as

∑

α

nα = 1. (3.3)

The main objective of this contribution is to analyse phase transition processes.
In the following parts of the work, different subdivisions of the RVE into phases are
carried out. Nevertheless, for geotechnical applications of the TPM, often the soil is
considered as a solid skeleton. It is very familiar, that the soil does not fill the RVE
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completely, but consists of hollow spaces, i.e. the pores, which are filled with other
constituents, e.g. pore liquids or pore gases. Hence, for a physical interpretation of
such problems the porosity φ of an RVE is defined as

φ =
dvf

dv
, (3.4)

with dvf describing the volume of the sum of volumes of phases occupying the pore-
space. In multi-phase approaches different densities can be used, depending on the
current application. The partial density ρα reads

ρα =
dmα

dv
, (3.5)

where the mass of an individual constituent ϕα of a local volume element dv is denoted
as dmα. The effective (or true) density ραR is expressed via

ραR =
dmα

dvα
. (3.6)

The density of the mixture ρ is a special case of Eq. (3.5) if the volume and the mass
dm of the mixture within the RVE is considered

ρ =
dm

dv
. (3.7)

The partial and the effective densities are linked with each other by the volume
fraction, with the relation

ρα = nα ραR. (3.8)

As it will be shown later, the derivation of multi-field models using the TPM often
demand exchange of mass between individual constituents of the mixture. There-
fore, production terms are defined. Thus, a similar link is also applied for the mass
production ρ̂α and the volume production n̂α

ρ̂α = n̂α ραR, (3.9)

which allows to describe exchanges between single constituents of the mixture.

3.2.2 Kinematics in the Theory of Porous Media

For the formulation of the kinematics within the framework of the TPM the current
and the initial configurations of the observed body are differentiated. Kinematical
quantities describing the initial configuration are denoted with capital letters, whereas
quantities of the current configuration are described with small letters.

Following the metaphysical principles of Truesdell, cf. section 3.1, the motion of
a superimposed mixture can be described by the single motions of the constituents.
The motion of each constituent follows an individual motion function, with the conse-
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Figure 3.1: Kinematics of a two-phase mixture α = {s, l}, with time t0 < t1 < t2.
The motion of each constituent ϕα is described by an individual motion function χα,
with Pα depicting the spatial position of the constituent ϕα within the body of the
mixture B.

quence that at a current configuration for the time t, a spatial point x can be occupied
by all constituents ϕα simultaneously whereas each constituent ϕα occupies an indi-
vidual material point X in the reference configuration for the time t0, cf. Figure 3.1.
Using the Lagrangian description, the motion function χα of a certain constituent ϕα

reads
x = χα(Xα, t). (3.10)

It is postulated that the motion function is unique and uniquely invertible [13], which
leads directly to the Eulerian description of the motion of a single phase

Xα = χ−1
α (x, t), (3.11)

where the inverse of the motion function of the constituent ϕα is denoted as χ−1
α .

As a consequence, also the velocity vα and the acceleration aα are unique for each
constituent ϕα and can be formulated using an Eulerian and a Lagrangian description.
In the Eulerian case it can be written

vα = x′α(x, t) and aα = x′′α(x, t), (3.12)



3.2. Theory of Porous Media 19

where the superscript is denoting the order of the material derivative. In the La-
grangian case the velocity and the acceleration field are formulated as

vα = x′α(Xα, t) =
∂χα(Xα, t)

∂t
and aα = x′′α(Xα, t) =

∂2χα(Xα, t)

∂t2
. (3.13)

The barycentric velocity, which describes the velocity of the mixture of the multi-
phase material, can be written

ẋ =
1

ρ

∑

α

ραx′α. (3.14)

From a mathematical point of view Eq. (3.11) has a unique solution, i.e. the
inverse of the motion function χα exists, if the necessary and sufficient condition for
the Jacobian

Jα = det Fα > 0 (3.15)

is fulfilled. The deformation gradient is depicted as Fα with

Fα =
∂x

∂Xα
= Gradαχα(Xα, t) = Gradαx. (3.16)

Within Eq. (3.16) the abbreviation Gradα, which describes the partial derivative of a
quantity with respect to the position vector Xα in the reference configuration of the
constituent ϕα. For the inverse of the deformation gradient F−1

α it can be stated

F−1
α =

∂Xα

∂x
= gradχ−1

α (x, t) = grad Xα. (3.17)

The material time derivative [Υ]′α of an arbitrary field quantity Υ describes the
rate at which the field quantity Υ changes with respect to time as observed from the
spatial position along a trajectory of a constituent ϕα

[Υ]′α =
∂Υ

∂t
+ grad Υ · x′α. (3.18)

Physically, the first part of the equation describes the time derivative of the field
quantity Υ, observed locally at one spatial position. The second part is the convective
term, taking into account the change in position of a constituent ϕα which moves with
the velocity vα. The convective part of the material time derivative is non-linear. For
a linear description this part is neglected [82].

Hence, the material time derivative of a field quantity Υ with respect to the motion
of the mixture is given as

Υ̇ =
∂Υ

∂t
+ grad Υ · ẋ. (3.19)

In general, the definition of constituents is arbitrary, but obviously linked to the
state of matter of a certain constituent. Since the TPM is often used for geotechnical
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applications, it is convenient to differentiate between fluid phases, which in combi-
nation are denoted as the liquid phase ϕl. On the other hand, the solid phases are
described by ϕs. Later it will be shown that for some applications the combination of
solid and fluid phases is appropriate, e.g. to capture the behaviour of a suspension.
However, with respect to numerical implementation, the solid phase is described with
a Lagrangian formulation by the definition of the solid displacement

us = x−Xs, (3.20)

whereas for the liquid constituent an Eulerian approach is used, describing the motion
of the liquid with the velocity vl relative to the velocity of the solid vs. Therefore,
the seepage velocity w is introduced as

w = vl − vs. (3.21)

Furthermore, the filter velocity or Darcy velocity is formulated as

q = φ (vl − vs), (3.22)

with vs being the velocity of the solid, vl the velocity of the liquid, and φ the porosity
of the solid skeleton.

The spatial velocity gradient

Lα = grad vα = (Fα)
′
α · F−1

α , (3.23)

does not depend on the classification of the constituents in fluid or solid phases. The
additive decomposition of the spatial velocity gradient Lα into a symmetric part Dα

and a skew-symmetric part Wα reads

Lα = Dα + Wα, with





Dα = 1
2

(
Lα + LTα

)
,

Wα = 1
2

(
Lα − LTα

)
.

(3.24)

For constitutive modelling, the local deformations Fα are not appropriate, because
they contain not only deformation of the material but rigid body motions, as well.
This means a measure of deformations that is invariant with respect to rigid body
motion is required. For this, the mapping of line elements within the body between
the reference and the actual configuration is defined as

dx = Fα · dXα. (3.25)

Following, the lengths of the line elements l and Lα are obtained from the absolute
value of the line elements

l = |dx| and Lα = |dXα| , (3.26)
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with the corresponding normalized line elements dx̃ and dX̃α. Using these relations
the stretch λα is defined as

λαdx̃ = Fα · dX̃α, (3.27)

where λα is expressed as λα = l/Lα with the restriction λα > 0. Measures for the
partial deformations are obtained by introducing the left Cauchy-Green deformation
tensor Bα and the right Cauchy-Green deformation tensor Cα

Bα = Fα · FTα and Cα = FTα · Fα. (3.28)

Exploiting Eq. (3.25) the following relation can be obtained [82]

dx · dx− dXα · dXα = dXα · (2Eα) · dXα = dx · (2Aα) · dx, (3.29)

defining the Green-Lagrange strain tensor Eα and the Almansi strain tensor Aα.
Alternatively, both tensors can be also obtained by

Eα =
1

2
(Cα − I) and Aα =

1

2

(
I−B−1

α

)
, (3.30)

with the second order identity tensor I.

3.3 Balance equations

In order to use the TPM for certain multi-physical applications, field equations have
to be derived. In general, balance relations for single constituents or a combination
of constituents are employed for this. The continuum-based balance relations, which
are presented here, are traced back to the classical continuum formulation, taking
only one constituent into account. Considering Truesdell’s metaphysical principles,
cf. section 3.1, it can be stated that an analogy between the balance relations of
single constituents or the whole mixture of the multi-physical TPM and the classical
one-field formulation of continuum theory exists, if coupling of single fields within
the multi-phase approach is taken into account. This means, in order to describe the
behaviour of a (multi-field) continuum, balance equations in the global or the local
form are used. The global form characterizes an arbitrary body B, whereas the local
form specifies the behaviour of the material point P, cf. Figure 3.1.

It has to be pointed out that balance equations are introduced in an axiomatic
way. This chapter can not be understood as a complete description of the balance
equations of the TPM, but as a basic overview of the balance equations, with a
focus on the equations which are required for the modelling approach of infiltration
phenomena presented later. Furthermore, the balance equations are introduced in the
classical order balancing the following physical quantities: mass, momentum, moment
of momentum, energy, and entropy.
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3.3.1 Balance of mass

The mass balance of a single constituent in local form is derived balancing the change
of the mass Mα =

∫
B ρ

αdv of a constituent ϕα with the mass exchange rate M̂α =∫
B ρ̂

αdv, which describes the interaction of individual constituents

[Mα]
′
α = M̂α, (3.31)

with the algebraic restriction ∑

α

M̂α = 0. (3.32)

The local form of the mass balance of a single constituent reads

(ρα)′α + ραdiv vα = ρ̂α, (3.33)

or, using the product rule and the definition of the material time derivative, cf.
Eq.(3.18), and the abbrevation ∂t = ∂

∂t it can be rewritten to read

∂t(ρ
α) + div(ραvα) = ρ̂α. (3.34)

For practical applications it is convenient to include the concept of volume fractions
within the local mass balance equation. For this, the definition of the partial density
ρα given in Eq. (3.8) and the definition of the mass production ρ̂α, cf. Eq. (3.9), are
used, obtaining

(nαραR)′α + nαραR div vα = n̂αραR, (3.35)

or analogue to Eq. (3.34)

∂t(n
αραR) + div(nαραRvα) = n̂αραR. (3.36)

In case of the mass balance of the mixture, interaction terms are not required. On
the other hand the mass balance of the mixture can also be formulated with respect
to the density and velocity of the mixture. Therefore, the mass balance consists of
the rate of mass of the mixture d

dt [M] = 0. Thus, the local form of the mass balance
of the mixture is formulated as

ρ̇+ ρ div v = 0 or ∂t(ρ) + div(ρv) = 0. (3.37)

For the development of a multi-phase model it is often convenient to sum up different
local partial mass balances for individual constituents, according to Eq. (3.34). If a
formulation with respect to phase velocities is desired, the local mass balance of the
mixture can also be obtained by summing up all constituents of the mixture.
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3.3.2 Balance of momentum

For the definition of the balance of momentum of a single constituent ϕα, first the
momentum Lα, the external and body forces Fα and the total momentum production
Ŝα are given as

Lα =

∫

B

ραvαdv, (3.38)

Fα =

∫

∂B

tαda+

∫

B

ραbαdv, (3.39)

Ŝα =

∫

B

ŝαdv, (3.40)

with the traction forces tα, the body force of a constituent bα, and the interaction
forces ŝα. The global balance of momentum of a single constituent ϕα reads

[Lα]
′
α = Fα + Ŝα, with

∑

α

Ŝα = 0. (3.41)

To derive the local form of the balance of momentum of a constituent, the following
theorems are introduced

Cauchy-theorem : tα =Tα · n, (3.42)

divergence-theorem :

∫

B

div(Υ) dv =

∫

∂B

Υ · n da, (3.43)

Reynolds transport-theorem :
d

dt

∫

B

Υα(x, t) dv =

∫

B

∂Υα

∂t
dv +

∫

∂B

Υα vα · n da,

(3.44)

with the Cauchy-stress tensor Tα, the outer normal vector n, a continuously differ-
entiable vector field Υ, and the field quantity of a constituent Υα.

Furthermore, the local balance of the mass, cf. Eq. (3.34) and the relations in
Eqs. (3.38 - 3.40) are inserted in Eq. (3.41). Thereby, the local form of the balance
of momentum of a constituent is obtained as

ραaα − div Tα = ραbα + p̂α, (3.45)

with the direct momentum production

p̂α = ŝα − ρ̂αvα. (3.46)
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For the local balance of momentum the algebraic constraint of vanishing interaction
terms for the mixture ∑

α

ŝα =
∑

α

p̂α +
∑

α

ρ̂αvα = 0 (3.47)

is also valid. Thus, the local balance of the mixture is given as

ρa − div T = ρb. (3.48)

As it will be shown later, the choice, for which constituents or mixture the local
balance of momentum is evaluated in a particular multi-phase model, determines the
physical interpretation of the required boundary conditions.

3.3.3 Balance of moment of momentum

The partial balance of the moment of momentum of one constituent ϕα balances
change of the moment of momentum J α with the moment of external forcesMα and
the production of moment of momentum Ĥα. Following, the global partial balance
of moment of momentum reads

[J α]
′
α =Mα + Ĥα, (3.49)

where the single terms can be denoted as

J α =

∫

B

(x− x0)× (ραvα) dv, (3.50)

Mα =

∫

∂B

(x− x0)× (tα) da+

∫

B

(x− x0)× (ραbα) dv, (3.51)

Ĥα =

∫

B

ĥα dv, (3.52)

with the interaction moments between individual constituents ĥα. Corresponding to
the balances presented before, the balance of moment of momentum is subject to the
algebraic constraint ∑

α

Ĥα = 0, (3.53)

which is used to equilibrate the production of moment of momentum within the
mixture.

The local form of the balance of moment of momentum of one constituent ϕα can
be obtained considering the global form Eq. (3.49) by inserting the partial balance
of mass Eq. (3.33) and the partial balance of momentum Eq. (3.45), and using the
theorems given in Eqs. (3.42) - (3.44). Thus, it is written as

I×Tα = −m̂α, (3.54)
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where the direct moment of momentum production is depicted as m̂α, with the con-
straint for the mixture ∑

α

m̂α = 0. (3.55)

Assuming, m̂α = 0, i.e. no interaction of moment of momentum within single con-
stituents, Eq. (3.54) leads to the statement of a symmetric partial Cauchy-stress
tensor Tα

I×Tα = 0, ⇒ Tα = (Tα)T . (3.56)

In general, the symmetry of the Cauchy-stress tensor Tα is a broadly used re-
striction, which is often not derived from the balance of moment of momentum, but
introduced as the so-called Boltzmann axiom [55]. In the remainder of this contribu-
tion, symmetry of the Cauchy-stress tensor Tα is always assumed.

3.3.4 Balance of energy

The balances of mass, momentum and moment of momentum are sufficient for the
description of mechanical processes. However, for the coupling of temperature fields
of single constituents the energy balance has to be employed. The balance of energy
corresponds to the first law of thermodynamics, describing whether an energy driven
process will take place. Thus, the global partial energy balance of a single constituent
ϕα balances the change in the internal energy Eα and the kinetic energy Kα with
the external mechanical power Pαext, the thermal power Qα, and the total energy
production Êα. The global partial energy balance reads

[Eα +Kα]
′
α = Pαext +Qα + Êα. (3.57)

The individual terms are defined as

Eα =

∫

B

ραεα dv, (3.58)

Kα =

∫

B

1

2
ραvα · vα dv, (3.59)

Pαext =

∫

∂B

tα · vα da+

∫

B

ραbα · vα dv, (3.60)

Qα =

∫

∂B

qα da+

∫

B

ραrα dv (3.61)

Êα =

∫

B

êα dv, (3.62)

with the specific internal energy εα, the partial heat flux qα, the partial energy source
rα, and the energy supply êα caused by the other constituents. For the definition of
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the heat flux qα, Stokes’ heat flux theorem

qα = qα · n, (3.63)

is used with the heat flux vector qα. The sign convention of the scalar heat flux qα is
determined by the outward unit vector n. Note, that different conventions are used
for the same framework throughout the literature.

In order to obtain the local partial balance of energy, Eqs. (3.58 - 3.62) are inserted
in Eq. (3.57). With the local partial balance of momentum, cf. Eq. (3.45), it can be
written

ρα(εα)′α = Tα : Dα − div qα + ραrα + êα + p̂α · vα + ρ̂α(εα +
1

2
vα · vα). (3.64)

3.3.5 Balance of entropy

In contrast to all other balances presented so far, the balance of entropy is not a
conservation law. It is also called the second law of thermodynamics and describes
whether a reaction which is consistent to the other balances takes place in nature.
The partial balance of entropy of an individual constituent ϕα balances the change
of entropy Sα with the rate of entropy Hα and the total entropy production R̂α.
Following the same structure as used so far, the global partial balance of entropy
reads

[Sα]
′
α = Hα + R̂α. (3.65)

The individual terms are given as

Sα =

∫

B

ραηα dv, (3.66)

Hα =

∫

∂B

ϕαη · n da+

∫

B

ραsαη dv, (3.67)

R̂α =

∫

B

η̂α dv, (3.68)

with the specific entropy ηα, the Cauchy entropy flux ϕαη , the influx of entropy sαη , and
the total entropy production η̂α describing the entropy exchange between individual
constituents.

The local form of the partial balance of entropy reads

ρα(ηα)′α + divϕαη − ραsαη = ζ̂α. (3.69)

Denoting ζ̂α as the direct entropy production, which can be related to the total
entropy production η̂α

η̂α = ζ̂α + ηαρ̂α. (3.70)
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Following de Boer [13] the fulfilment of the local form of the partial balance of
entropy leads to sufficient, but too restricted, results. Therefore, the condition for the
entropy production for the mixture is introduced as

∑

α

η̂α ≥ 0. (3.71)

This definition is achieved, in similar manner to the balance equations, axiomatically
[82].

3.4 Linearisation

In general, Initial Boundary Value Problems (IBVP’s) developed with the TPM that
consider a multi-field formulation result in non-linear system of equations. For the
numerical solution of the IBVP, the field equations are linearised, to achieve a linear
system of equations. Therefore, the Gateaux or directional derivative is used, e.g.
Ehlers and Bluhm [30], Steeb [82]. For a vectorial quantity Υ the Gateaux derivative
D, with respect to a perturbation ∆X is given as

DΥ(X)[∆X] =
d

dβ
(Υ(X0 + β∆X))

∣∣∣∣
β=0

. (3.72)

In this case, X0 is the position vector of the reference configuration. Therewith, a
linearised vectorial quantity is defined as

lin(Υ) = Υ0 +DΥ. (3.73)

As an example the Green-Lagrange strain tensor Es of a solid constituent ϕs is
linearised, using the concept of linearisation, to obtain the strain measurement εs
valid for small deformations. Thus, it is written

lin(Es) = Es,0 +DEs. (3.74)

With the deformation of the solid us = x−Xs, the deformation gradient of the solid
Fs and it’s inverse F−1

s can be rewritten to

Fs =
x

Xs
= I + Grads us, (3.75)

F−1
s =

Xs

x
= I− grad us. (3.76)
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Thus, the Green-Lagrange strain tensor reads

Es =
1

2

(
FTs · Fs − I

)
(3.77)

=
1

2

(
Grads us + GradTs us + GradTs us Grads us

)
.

Applying the definition of the directional derivative in Eq. (3.72) to Eq. (3.77), it is
obtained

lin(Es) =
1

2

(
Grads us,0 + GradTs us,0 + GradTs us,0 Grads us,0 (3.78)

+
d

dβ

[
Grads (us,0 + β∆us) + GradTs (us,0 + β∆us)

+ GradTs (us,0 + β∆us) Grads (us,0 + β∆us)
]
β=0

)
.

Assuming small deformations, ∆us = us, and an undeformed reference configuration,
us,0 = 0, the linearised solid strain εs is obtained as

εs := lin(Es(us,0 = 0)) =
1

2

(
Grads us + GradTs us

)
. (3.79)

Following Steeb et al. [87], it is pointed out that the linearised material time
derivative of a quantity Υ is identical to the partial derivative

lin([Υ]′α) =
∂Υ

∂t
= ∂t(Υ). (3.80)

Thus, the non-linear convection part of the material time derivative, cf. Eq. (3.18),
is neglected after the linearisation.

3.5 Constitutive modelling

In the last section the balance equations in the framework of the TPM were pre-
sented. The partial local equations balancing mass, moment, moment of momentum,
and energy for individual constituents are used to obtain the field equations for the
description of the behaviour of a body. However, the balance of entropy is used to
evaluate whether a process, which is in accordance with the aforementioned balance
equations, will take place in nature or not. For a numerical realization of a particu-
lar process constitutive equations are required that describe the material properties,
which are not captured by the balance equations. Making use of the balance of en-
tropy we can find a priori restrictions for the constitutive equations in order to achieve
a thermodynamically-consistent numerical model.
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3.5.1 Concept of effective stress

Considering a fully saturated biphasic porous medium consisting of a porous skeleton,
represented by the constituent ϕs, and a pore fluid with the constituent ϕf and fol-
lowing de Boer [13], the Cauchy stress of the mixture can be additively decomposed
to

T = Ts + Tf, (3.81)

with the Cauchy stress of the solid skeleton Ts and the Cauchy stress of the fluid
constituent Tf. Furthermore, the stress of the solid skeleton Ts is the result of the
weighted liquid pressure and the extra stress. The extra stress has to be formulated as
a constitutive equation, relating the extra stresses to the strain of the solid skeleton. In
particular for geotechnical applications the extra stress is depicted as effective stress.
According to a history review about the development of effective stresses by de Boer
and Ehlers [25], the concept of effective stresses can be traced back to Fillunger and
Terzaghi [93]. The Cauchy stress of the solid constituent can be written as

Ts = Ts
E − nspI , (3.82)

where p represents the fluid pressure and Ts
E is the solid extra stress. The Cauchy

stress of the fluid constituent reads

Tf = −(1− ns)pI . (3.83)

As mentioned earlier the extra stress of the solid is prescribed by a constitutive rela-
tion. Using an elastic material behaviour the extra stress of the solid constituent is
given as

Ts
E = T̃s

E + (1− αBW)pI , (3.84)

with T̃s
E depicting the stress of the solid skeleton and the latter part describing the

deformation of the grains of the granular porous skeleton. The parameter αBW =

1− K
Ks is the so-called Biot-Willis parameter [11], accounting for the stress resulting

from the deformation of the solid grains, where Kand Ks are the bulk modulus of the
dry solid skeleton and the bulk modulus of the solid grains, respectively. Combining
Eqs.(3.81-3.84) it is obtained

T = T̃s
E − αBW p I. (3.85)

The Cauchy stress of the mixture is further simplified to

T = Ts
E − pI, (3.86)

if incompressibility of the solid grains, i.e. Ks → ∞, is assumed. This leads to
αBW = 1 and T̃s

E = Ts
E , cf. Steeb and Renner [84].
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3.5.2 Linear elastic solid skeleton

Linear elasticity is the most simple way to describe the mechanical properties of the
solid skeleton. To obtain the well-known linear elastic equation for the solid skeleton,
the standard procedure for evaluation of the balance equations by Coleman and Noll
[21] is employed. Following Steeb and Diebels [80] or de Boer [13], the free Helmholtz
energy, which describes the required energy to reach equilibrium of a system, can be
written as

Ψs(εs) =
1

2
λtr(εs)

2 + µ tr(ε2
s), with Ts

E =
∂Ψs

∂εs
, (3.87)

with the Lamé parameters λ and µ and the linearised strain of the solid constituent
εs. In this case the constitutive equation for the extra stress of the solid skeleton is

Ts
E = λtr (εs) I + 2µεs. (3.88)

3.5.3 Plastic deformations of the solid skeleton

The constitutive theory of plasticity allows to describe, in addition to linear elastic
deformations, also plastic deformations, i.e. permanent deformations that occur when
the solid skeleton of the material body does not fully recover after a cycle of loading
and unloading, but remains irreversibly deformed. This means that, in contrast to
the linear elastic framework, a unique mapping between the strain and the stress of
a solid skeleton is not existing. The strain state of the solid skeleton depends, in
addition to the current loading, on its history.

The theory of plasticity is very well developed and represented in literature (e.g.
Simo and Hughes [79], Hill [40], Schröder [74], Betten [6], and Bertram [5]) and will
be not discussed intensively in this contribution. The framework of modelling plastic
deformations of multi-phase materials was e.g. described by Bluhm et al. [12] and de
Boer [13].

In order to describe the material behaviour of a one-phase isotropic material e.g.
steel, it is often assumed that small deformations are linear elastic (reversible) whereas
large deformations lead to plastic effects. This differentiation is not a priori given for
granular porous materials with a very small cohesion, as described in this contribution.
For those materials, also small deformations might lead to plastic effects. Thus, here
the framework of small deformations is combined with a plastic formulation.

For application of an elasto-plastic material behaviour usually an additive decom-
position of the strain of the solid constituent is performed

εs = εel
s + εpl

s , (3.89)

where εel
s describes the elastic and εpl

s the plastic part of the strain of the solid con-
stituent ϕs. The same concept is applied to the rates of the corresponding strains

ε̇s = ε̇el
s + ε̇pl

s . (3.90)
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The constitutive law of linear elastic deformation of the solid skeleton reads

Ts
E =

4

C: εel
s , (3.91)

with
4

C being the elastic fourth order stiffness tensor.
The additive decomposition of the strain tensor (Eq. (3.89)) shows how deforma-

tions are interpreted within the framework of plasticity. If a uni-axial load, which
is small enough, is applied on a material body, its solid skeleton deforms first in a
reversible elastic way. After a certain limit, the so-called yielding point, the material
behaviour changes and permanent plastic deformations arise. Transferring the con-
cept of the yielding point into three dimensions, the plastic behaviour is characterized
by the yielding function, which is a convex surface if plotted in principal stress space,
cf. Figure 3.2. Deformations, which are within the yield surface, are elastic. As soon
as the stress state of a material body reaches the yield surface, it starts yielding,
which means that stress state beyond the yield surface is not physical.

If a cyclic loading is applied inducing plastic deformations, the physics of the de-
formed material might change. In case of granular porous media, the coordination
number increases and the relative density decreases due to plastic deformations. This
means the material behaviour will also change after each cycle where plastic deforma-
tions will be reached. To account for this phenomenon a so-called hardening rule is
defined, which can be traced back to the process of isotropic or kinematic hardening.

For a physical interpretation of the material behaviour, a failure surface is intro-
duced, similar to the yield surface, as a surface in principal stress space, which is
initially larger than the yield surface. Failure of the observed material due to plastic
deformation occurs if the yield surface reaches the failure surface. If the position
of the yield surface is changed between single load cycles, by a rigid motion of the
yield surface inducing a hardening (or softening) of the material, the process is called
kinematic hardening. In case of isotropic hardening, the yield surface is growing
whereas its shape is remaining. However, this contribution is focussed on transient
and not on cyclic processes. Therefore, hardening phenomena are not investigated in
the following.

Here, an associated flow rule is used, which means the function of the yield surface
F is identical to the plastic potential Q (Q = F ). With this assumption, the plastic
part of the strain rate

ε̇pl
s = λ̇

∂F

∂Ts
E

(3.92)

is related to λ, F , and Ts
E . The plastic multiplier λ is determined applying the

Karush-Kuhn-Tucker conditions [52], which is a set of inequality equations

F ≤ 0, (3.93)

λ̇ ≥ 0, (3.94)

Fλ = 0, (3.95)
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that have to be fulfilled. The increment of the plastic multiplier λ̇ is calculated from
the consistency condition

Ḟ λ̇ = 0, (3.96)

which itself is a result of the Karush-Kuhn-Tucker conditions [79]. Whereas the stress
increment Ṫs

E is written as

Ṫs
E =

4

C : ε̇s − λ̇
4

C :
∂F

∂Ts
E

. (3.97)

Combining the consistency Eq. (3.96) with the definition of the strain increment, we
obtain an expression for the increment of the plastic multiplier λ̇, which reads

λ̇ =

(
∂F

∂Ts
E

)T
:

4

C : ε̇s

(
∂F

∂Ts
E

)T
:

4

C :
∂F

∂Ts
E

. (3.98)

In order to achieve a constitutive relation of elasto-plastic material behaviour, which
has a similar structure like the elastic constitutive law in Eq. (3.91), Eq. (3.98) is
inserted in Eq. (3.97), which leads to

Ṫs
E =




4

C −

4

C :
∂F

∂Ts
E

⊗
(
∂F

∂Ts
E

)T
:

4

C

(
∂F

∂Ts
E

)T
:

4

C :
∂F

∂Ts
E


 : ε̇s. (3.99)

Following the similarity to the elastic constitutive law, cf. Eq. (3.91), the elasto-

plastic stiffness tangent
4

C
ep

is written as

4

C
ep

=
4

C −

4

C :
∂F

∂Ts
E

⊗
(
∂F

∂Ts
E

)T
:

4

C

(
∂F

∂Ts
E

)T
:

4

C :
∂F

∂Ts
E

. (3.100)

In the framework of mechanized tunnelling materials, the application of the pro-
posed model is adapted to the usability of cement-free mortars and is therefore re-
stricted to sandy materials. Therefore, a Drucker-Prager soil plasticity model is used.
For the numerical modelling of soil plasticity a yield surface is defined. In case of the
Drucker-Prager criterion [27] the definition of the yield surface F reads

F =
√
J2 + αDPI1 − kDP, (3.101)

with the negative second deviatoric stress invariant J2, the first invariant I1 of the
Cauchy extra stress tensor Ts

E , and the material parameters αDP and kDP. The
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Mohr-Coulomb

Drucker-Prager
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Figure 3.2: Yield surface according to Mohr-Coulomb and Drucker-Prager criterion, il-
lustrated in the plane created by the principal-extra stresses T s

E,1, T
s
E,2, T

s
E,3 (adapted

from [108]).

invariants are defined as

I1 = tr(Ts
E), (3.102)

J2 =
1

2
[dev(Ts

E) : dev(Ts
E)] . (3.103)

For a physical interpretation, the material parameters of the Drucker-Prager criterion
are matched to the ones of the Mohr-Coulomb criterion [53]. For the general case it
can be written according to Yu [108] as

αDP =
2 sinφMC√

3 (3− sinφMC)
, (3.104)

kDP =
6 cMC cosφMC√
3 (3− sinφMC)

. (3.105)

Assuming plane-strain, the conversion reads

αDP =
tanφMC√

9 + 12 tan2φMC

, (3.106)

kDP =
3cMC√

9 + 12 tan2φMC

, (3.107)

with the cohesion cMC and the angle of internal friction φMC. The criterion of Drucker-
Prager leads to a cone-shaped yield surface, if plotted in the principal stress space, cf.
Figure 3.2. However, the yield surface collapses to the one of the von Mises criterion
[104], with a cylindrical-shaped yield-function in case that the material parameter
αDP is zero.
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3.5.4 Darcy’s filter law

For the derivation of Darcy’s filter law the local partial balance of momentum, cf.
Eq.(3.45), of a fluid constituent ϕf is used, which leads to

ρfRaf − div Tf = ρfRbf + p̂f, (3.108)

with the Cauchy-stress of the fluid Tf and the direct momentum production of the
fluid p̂f. For geotechnical applications it is convenient to assume laminar flow, where
inertia plays a minor role, i.e. af ≈ 0. The balance of momentum in Eq. (3.108)
reduces to

− div Tf = ρfRbf + p̂f. (3.109)

According to Ehlers and Bluhm [30] the direct momentum production and the Cauchy
stress of the fluid are rewritten as

p̂f = p gradφ+ p̂f
E , (3.110)

Tf = −φ p I + Tf
E , (3.111)

with the extra part of the direct momentum production p̂f
E and the extra part of the

Cauchy stress of the fluid Tf
E .

Following Ehlers and Bluhm [30], the impact of the latter terms is determined by
the characteristic length of the considered application. In configurations with a small
characteristic length, the Cauchy-stress of the fluid Tf

E can be neglected, whereas
in problems with large characteristic lengths (e.g. pipe flow) the direct momentum
production of the fluid p̂f plays a minor role. In granular porous media we deal with
small characteristic lengths (pore size). Thus, a vanishing extra stress of the fluid,
Tf
E = 0, is assumed.

As discussed in section 3.5.1, the extra quantities have to be determined by con-
stitutive relations. Again, we follow Ehlers and Bluhm [30], interpreting the direct
momentum production as a volume average of the local interaction forces resulting
from friction between the solid skeleton and the pore fluid. Therefore, the extra
quantity of the fluid momentum production reads

p̂f
E = −φ

2 ηfR

ks
wf, (3.112)

where the intrinsic permeability of the solid constituent is denoted as ks and ηfR rep-
resents the effective dynamic viscosity of the fluid constituent. Inserting Eq. (3.112)
and Eq. (3.110) in Eq. (3.109) and using the definition of the filter velocity in Eq.
(3.22) it is obtained

q = − ks

ηfR

(
grad p− ρfR bf

φ

)
, (3.113)
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or neglecting body forces

q = − ks

ηfR
grad p, (3.114)

which represents the well-known semi-analytical formulation for the fluid velocity or
filter velocity derived by Darcy [46].

3.6 Numerical realization

The derivation of a multi-phase model using the balance equations of the TPM and
capturing transient effects results generally in non-linear coupled Partial Differential
Equations (PDE’s). The problem description by means of these PDEs is called strong
form because the solution of this system of equations requires that the equations have
to be fulfilled at each point of the considered domain. The equations mostly can
not be solved analytically. Therefore, numerical methods are used in order to obtain
an approximated solution of the governing field equations. In this contribution the
numerical solution is gained by the Finite Element Method (FEM). The FEM was
developed for structural problems and later extended to multi-field simulations. It has
reached crucial importance in many engineering fields and, thus, it is the main topic
of different textbooks. To mention only few, there are contributions of Klein [51],
Link [56], Jung and Langer [47], Merkel and Öchser [59], Hughes [42], and Steinke
[59].

For a short overview, the numerical approach is derived for the solution of the
poroelastic model of Biot [10], which can be also found in publications of Zheng et
al. [109] and Cui et al. [23]. Using the TPM, a two phase domain represented by the
constituents ϕα, with α = {s, f} are considered. The set of poroelastic equations is
derived from the partial local balance equations. In particular, the partial local bal-
ance of mass, cf. Eq. (3.37) is used for both constituents α = {s, f} and subsequently
summed up in order to obtain the balance equation for the mixture. Additionally,
the local balance of momentum of the mixture, cf. Eq. (3.48), assuming rigid grains
is used. Thus, the poroelastic equations in their strong form read

div T = 0, (3.115)

div q + div vs = 0. (3.116)

For the numerical approximation of the field equations, first weak forms are derived
from the strong form formulation, cf. Eq. (3.115, 3.116). Hence, the strong form of
a field equation is multiplied with a test function and integrated in space. In case
of the strong form represented by the balance of momentum of the mixture, cf. Eq.
(3.115), it is obtained ∫

B

div(T) : δu dB = 0. (3.117)
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Using the identity
∫

B

div(T · δu) dB =

∫

B

div(T) · δu dB +

∫

B

T : grad(δu)dB, (3.118)

and the relation for the linearised strain grad(δu) = δε the weak form in Eq. (3.117)
is rewritten as

0 =

∫

B

div(T) · δu dB =

∫

B

div(T · δu) dB −
∫

B

T : δεdB. (3.119)

Next, the theorem of Cauchy, cf. Eq. (3.42), and the divergence-theorem, cf. Eq.
(3.43), are applied, leading to

∫

B

T : δεdB =

∫

Γu

div(t · δu) dΓu. (3.120)

In Eq. (3.120) the weak form of the local balance of momentum of the mixture is
given. The term on the left hand side has to be fulfilled weakly within the considered
domain B. The term on the right hand side (rhs) of the equation has to be ful-
filled on the surface boundary Γu of the domain. This is representing the Neumann
boundary condition. If the Neumann or Dirichlet boundary condition is applied sep-
arately within a commercial finite element software, then the rhs of Eq. (3.120) is not
considered for the implementation of the weak form.

In a way similar to the balance of momentum of the solid phase, also the local
balance of mass of the mixture, cf. Eq. (3.116) is transferred into the weak form by
multiplication with a test function and integrating in space. Thus, it can be written

∫

B

δpq dB +

∫

B

δpdiv vs dB = 0. (3.121)

Using the identity
∫

B

div(δpq) dB =

∫

B

δpdiv q dB +

∫

B

grad δp · q dB, (3.122)

and the relation grad δp = δ grad p, Eq. (3.121) becomes
∫

B

div(δpq) dB −
∫

B

δgradp · q dB +

∫

B

δpdivvs dB = 0. (3.123)
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Again, the divergence-theorem, cf. Eq. (3.43), is applied for the first term of Eq.
(3.123), and additionally, the relation vs = ∂tus is used, which leads to

∫

B

δ grad p · q dB −
∫

B

δpdiv(∂tus) dB =

∫

Γq

(δ p q) · n dΓq, (3.124)

with the surface boundary Γq. The Eq. (3.124) represents the weak form of the
local mass balance of the mixture. With similar argumentation, as in case of the
weak form of the balance of momentum of the mixture, the rhs has to be fulfilled on
the boundary surface Γq and thus can be replaced by boundary conditions within a
commercial finite element software.

Furthermore, Darcy’s law, cf. Eq. (3.114), the concept of effective stresses, cf.
Eq. (3.86) and the linear elastic constitutive assumption, cf. Eq. (3.88) is applied.
To close the problem described by Eqs.(3.120, 3.124), initial and boundary conditions
are prescribed. In case of the poroelastic approach the initial conditions are

p = p0, us = us,0, ∀x ∈ B0 × t. (3.125)

The initial conditions are valid for the reference configuration of the considered body
B0. For each considered field, boundary conditions have to be chosen to close the
system of equations and, therefore, to be able to compute a solution. The boundary
conditions are defined on the surface boundary ∂B, which is composed of the Neumann
boundary ΓN and the Dirichlet boundary ΓD, with the constraints ∂B = ΓN ∪ ΓD
and ΓN ∩ ΓD = 0. The boundary conditions are defined as

q = q · n = q̄, ∀x ∈ ΓpN × t, T · n = t̄, ∀x ∈ Γus

N × t, (3.126)

p = p̄, ∀x ∈ ΓpD × t, us = ūs, ∀x ∈ Γus

D × t. (3.127)

After the derivation of the weak equations, cf. Eqs.(3.120, 3.124), the solution of
the IBVP is obtained by solving the equations numerically, e.g, by means of the FEM.
Therefore, the considered domain B is discretised in space and time. In case of PDE’s
representing the field equations, the obtained system of equations cannot be solved
using direct methods. Instead an iterative Newton-Raphson algorithm is used.





Chapter 4

Infiltration processes in
cohesionless soils

In this chapter, a thermodynamically consistent four-phase continuum
model in the framework of the mixture theory is presented describing in-
filtration processes of suspensions in cohesionless granular material. The
chapter focuses on the distinct form of the constitutive relation for the vol-
ume production term of the fluidized particles and its consequences on the
infiltration process. To this end, a constitutive equation describing infiltra-
tion phenomena is proposed, which includes only one material parameter.
We study numerically a boundary value problem, which is characterized by
a homogeneous field of the hydraulic gradient in the reference configuration
at time t0 = 0. Infiltration affects the distribution of the hydraulic proper-
ties and illustrates the consequences of the proposed constitutive equation
for specific parameter choices. Furthermore, it is shown how the material
parameter can be estimated without explicit numerical calculations.

4.1 Introduction

Infiltration processes are characterized by seepage flow of a complex fluid through
a porous medium and a possible deposition process of the fines of the suspension.
Complex fluids are mixtures of a liquid -mostly water- and small particles (fines)
moving with the fluid. According to the necessities of the investigated infiltration
process the velocity of the fines may be assumed identical to the fluid velocity.

The deposition of fines in the pore space of the porous medium results in consid-
erable changes of the material properties of the porous medium. On the one hand,
mechanical properties are changed. The structural stiffness is increased due to a re-
duction of pore space and additional material strength coming from the deposited
fines - being part of the skeleton after deposition. On the other hand, hydraulic prop-

– 39 –
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erties like the hydraulic conductivity and the effective viscosity of the particle-laden
fluid are modified. Macroscopically, the reduced pore space leads to lower permeabili-
ties as well as to a change of effective viscosities due to the phase change of the former
fluidized fines.

Deposition is triggered/controlled in two ways: Hydraulic reasons trigger the pro-
cess whereas geometrical properties on the microscale control the process. The ge-
ometrical requirements for a decomposition process can readily be taken e.g. from
Terzaghi’s filter laws [94] indicating that some of the fines of the particle-laden fluid
cannot pass the constriction sizes of the porous medium. Once these requirements are
met, larger deposition rates are achieved by a higher hydraulic gradient. Addition-
ally taking sedimentation effects into account - which is not the case in the proposed
model - also gravity forces in conjunction with a rather low hydraulic gradient increase
the deposition rate.

Depending on the initial conditions of the porous medium and the complex fluid
(pore constriction size distribution on the microscopical scale of the porous material,
hydraulic gradient) there are basically two kinds of infiltration processes which should
be distinguished. A steady going infiltration, where deposition of fines takes place
rather slowly due to an initially big pore space and a rather low hydraulic gradient and
secondly a rapid infiltration, which is caused by a high hydraulic gradient and initially
small constriction sizes leading to a highly localized clogging effect. Clogging effects
during infiltration are very well known in various applications. Mainly, we distinguish
between so-called external and internal filter cakes due to clogging phenomena, cf.
Figure 4.5.

Besides various possible applications for the proposed model, such as hardening
of soils in mines or land improvements, the authors’ main focus is on the field of
mechanized tunneling. Due to technical reasons during a typical excavation process
of a tunnel lining, a gap is opening between the lining and the surrounding soil. This
gap contributes significantly to a change in the mechanical parameters of loose soil,
which leads to unwanted subsidence at the surface. Hence, it is desirable to close
the gap created by the system of tubbing. To this end the so-called backfilled grout
mortar is injected. During the tunneling process distinct material properties of the
backfilled grout mortar are needed. First, the mortar should have a good flowability
to ensure mechanical processing and transporting of the mortar through the pipelines.
As soon as the mortar is in its final position, a rapid hardening is required, which
allows to reproduce the primary stress state of the surrounding soil, so that surface
subsidence are minimized. The respective strength can be achieved by additives,
which cause a hardening process of the mortar. A cheaper and environmentally more
friendly approach is to dispense largely with cement portions and to drain the mortar
via a high-pressure injection process instead. During this procedure a consolidation
process of the mortar takes place, which causes a transport of the mortar’s pore fluid
into the surrounding soil, so that the mortar is transformed into a solid, gap-filling
structure.
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4.2 Governing equations of infiltration processes

Fig. 4.1 sketches the characteristic microstructure of a fluid-saturated granular medium,
which we investigate in the current contribution. The principal material properties
are caused by the complex pore fluid which itself is a mixture of a pore liquid and
fine-grained particles. Due to drag forces, the complex fluid, i.e. the suspension, could
be transported through the porous skeleton or, if the constriction sizes of the pore
spaces are too small, the fines are blocked in the pore constriction sizes. Obviously,
this local blocking leads to an evolution of the hydromechanical properties of the ma-
terial. In this contribution, we propose a macroscopic model which is able to predict
the evolution of the intrinsic permeability and porosity of the skeleton and therefore
could be used for predicting numerically infiltration processes.

In contrast to extensively-discussed poroelastic models describing the hydraulic
and mechanical behaviour of soils, cf. Biot [10], Coussy [22], we desire the hydraulic in-
filtration model by the thermodynamically-consistent Theory of Porous Media (TPM)
[10, 16, 17, 24, 30], which could be regarded as an extension of the mixture theory,
cf. Truesdell [99].

REV: dm, dv

ϕs

ϕl

ϕsnϕsa

ϕa ϕf

continuum mixture model

micro-scale 2-phase model 4-phase model

dms

dml

dvs

dvl

Figure 4.1: Microscale and RVE of a fully-saturated soil and the corresponding four-
phase continuum model, from [71, 82].

Since the fluid is a suspension, two constituents have been introduced to describe
its hydraulic behaviour in further detail. These are the pore fluid represented by
ϕf and the dissolved particles represented by ϕa. The evolution of the fabric of
the solid skeleton is modelled by a stable fabric ϕsn and the fines ϕsa, which are
blocked in the pore space. Thus, a liquid-solid phase transition process is taken into
account. Related to the current conditions fines can either behave fluid-like (described
by constituent ϕa) or solid-like, (described by constituent ϕsa). This phase transition
process will be taken into account in the present model by a mass/volume production
term in the corresponding partial mass/volume balances of the constituents ϕa and
ϕsa, cf. Eq. (4.10). Altogether, we observe four participating constituents ϕα with
α = {f, a, sn, sa}, cf Fig. 4.1.
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The macroscopic modelling idea i.e. the split in stable and unstable constituents,
traces back to ideas of Vardoulakis [101] and Steeb & Diebels [80] describing the
evolution of the fabric in the context of internal erosion. Nevertheless, the specific
constitutive relation, which are the driving forces for the evolution of the fabric, has
not been investigated for infiltration phenomena. If the concentration of the fines is
low and if the density contrast between the fines and the pore fluid is not too high, we
observe that the velocity of the fines va and of the pore fluid vf is almost identical,
i.e. va = vf.

In a certain Representative Volume Element (RVE) with the volume dv, cf. Fig. 4.1,
the volume fractions of the single constituents ϕα are defined as

nα =
dvα

dv
. (4.1)

The partial density ρα is defined as the ratio between the mass dmα of the phase ϕα

with respect to the total volume dv of the RVE, which leads to a relation between
partial densities ρα and effective densities ραR, the latter one being the ratio between
dmα and the actual volume of the phase dvα

ρα =
dmα

dv
=

dmα

dvα
dvα

dv
= ραR nα. (4.2)

As the 4-phase model is an extension of a previously discussed 3-phase model for
application in internal erosion, cf. [80], we briefly sketch the modelling framework.
Due to the so-called saturation condition

∑

α

nα = 1  nα ≤ 1  ρα ≤ ραR, (4.3)

the value of the partial density is always smaller than the value of the effective one.

The main part of the proposed model is the mass balance of the four phases.
In the general introduction of this contribution, cf. section 3.3.1 the partial local
mass balance was already discussed. In this part the definition is shortly repeated
and afterwards used for the derivation of a particular multi-field approach. Following
Ehlers & Bluhm [30], de Boer [24] and Steeb [82], the local form of the partial balance
of mass is given as

(ρα)
′
α + ρα div vα = ρ̂α, (4.4)

whereas a constraint for the mixture mass production
∑
α
ρ̂α = 0 for thermodynami-

cally closed systems guarantees that there is no mass production in the total mixture
ϕ =

⋃
α
ϕα, being the assembly of all single phases. Since the partial density is given

in a spatial description, the material time derivative (ρα)
′
α is expressed by the local
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and the convective parts

(ρα)
′
α =

∂ρα

∂t
+ grad ρα · vα = ∂t (ρα) + grad ρα · vα. (4.5)

Furthermore, we assume that the constituents ϕa, ϕsa the fluid constituent ϕf and
the solid skeleton ϕsn are materially incompressible. Note that the evolution of the
porosity φ = 1−ns in a certain RVE is then described through the deposition process
of fines nsa, i.e. φ = 1 − ns = 1 − nsn − nsa. Note, that the partial density of
the solid skeleton is also not a constant parameter as it depends on the porosity, i.e.
ρs = (1− φ) ρsR. Therewith we can reformulate the mass balance into

∂t (ρα) + div(ρα vα) = ρ̂α. (4.6)

Applying the definition of the partial density Eq. (4.2) and constant effective densities
ραR = ραR0 , we obtain

∂t
(
nα ραR

)
+ div(nα ραR vα) = ρ̂α = n̂αραR. (4.7)

Note, that the partial density exchange rate ρ̂α is split into a part depending on the
effective density and a volume-driven exchange rate n̂α. If the effective density is
constant, which will be the case for a material incompressible constituent ϕαR, the
partial balance of mass is reduced to a partial volume balance

∂t (nα) + div(nαvα) = n̂α. (4.8)

In the second part of this chapter we will mainly discuss the influence of the consti-
tutively determined rate of volumetric mass exchange n̂α[1/s] in more detail. Before
we formulate the specific mass balances we discuss some of the assumptions, which
we introduce to simplify the hydromechanically-driven infiltration process. Obvi-
ously, the attached fines and the primary fabric move with the same solid velocity
vs = vsn = vsa. Furthermore, we state that there is no relative movement between
fluid and fluidized particles, which can be written as vl = va = vf. Hence, we intro-
duce the relative fluid velocity with respect to the solid phase, i.e. the seepage velocity
wf, for the purpose of materially objective constitutive equations wf = wa = vf−vs.
In a next step, we introduce new field variables that are more suitable for physical
interpretations. Thus, we introduce the porosity field φ(x, t), the amount of attached
fines a(x, t) which is related to the solid phase, and the volumetric concentration
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c(x, t) of the fluidized fines in the liquid suspension.

φ = nf + na,

ns = nsn + nsa = 1− φ,

a =
nsa

ns
, (4.9)

c =
na

φ
.

4.2.1 Mass balances

As already mentioned in the previous sections, the transformation of state of the
fluidized fines into an attached particle is modelled via the rate of mass exchange
n̂α between the phases ϕsa and ϕa. The production of attached fines is equal to the
reduction of fluidized particles in the RVE. In the present chapter, we focus on the
hydraulic influence of this infiltration processes. An evolution of mechanical properties
like the stiffness of the porous skeleton is out of the scope. Thus, the deformation
process of the skeleton will be neglected (us = vs = 0) leading to

n̂a = −n̂sa =: −n̂s. (4.10)

The governing equations of the infiltration process are stated in the following.
We start with the balance of mass of the mixture which is the sum of all partial
mass balances Eq. (4.8). Transforming it using the definitions given above and the
saturation constraint Eq. (4.3)

∂t (nf + na + nsn + nsa)︸ ︷︷ ︸
1︸ ︷︷ ︸

0

+
∑

α

div(nαvα) =
∑

α

n̂α

︸ ︷︷ ︸
0

, (4.11)

leads finally to

div vs + div q = 0. (4.12)

Note, that the vanishing right hand side in Eq. (4.11) is a result of vanishing mass
productions ρ̂f and ρ̂sn and identical effective densities ραR of the phases ϕsa and
ϕa. In the balance of mass of the mixture, the so-called filter velocity q = φ wf, has
been introduced. The volume balance of porosity, i.e. of the liquid suspension ϕl is
obtained by summing up the volume balance of the pore liquid ϕf and the volume
balance of the fluidized fines ϕa

∂tφ+ div q = n̂a. (4.13)
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Summing up the balance of volume of the primary fabric ϕsn and the balance of
attached fines ϕsa, we obtain an evolution equation for the porosity

∂tφ = n̂a. (4.14)

The balance of volume of the attached fines ϕsa is similarly collapsing to an evolution
equation for the amount of fines a (x, t)

∂t(aφ)− ∂t(a) = n̂a. (4.15)

Later we will show, that both ordinary differential equations Eq. (4.14),(4.15) can be
solved locally. The balance of volume of the fluidized fines ϕa in the suspension reads

∂t(c φ) + div(c q) = n̂a. (4.16)

Summing up all local partial mass balance of the constituents ϕα with α = {f, a, sa, sn}
we obtain the continuity equation of the mixture ϕ

div q = 0. (4.17)

Note, we are able to reduce the set of microscale quantities from four to three (φ, a, c).
The integration of the mass balance of the rigid primary fabric leads to

nsn = nsn0 (1− divus) = nsn0 , (4.18)

in which the partial volume nsn can be expressed using the porosity φ and the amount
of attached fines a

nsn = (1− φ)(1− a), and nsn0 = (1− φ0)(1− a0), (4.19)

leading to

φ = 1− (1− a0)(1− φ0)

(1− a)
, (4.20)

which can be used to eliminate one dependent variable from the set of equations

a = a(φ) =
a0(1− φ0) + φ0 − φ

(1− φ)
. (4.21)

The quasi-static balance of momentum of the fluid without volume forces, the
balance of mass of the fluid and constitutive assumptions reveal the well-known Darcy
relationship between the gradient of the fluid pressure and the filter velocity, cf.
Ehlers & Bluhm [30]. Here ηlR is the effective dynamic viscosity of the particle-laden
suspension depending on the amount of fluidized particles c(x, t).
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q = − k
s(φ)

ηlR(c)
grad p. (4.22)

ks(φ) is the intrinsic permeability of the porous fabric depending on the porosity
φ(x, t). For the considered case of cohesionless granular media, the intrinsic perme-
ability ks [m2] could be related to the grain size distribution function of the particle
ensemble. Here, we calculate the permeability at the initial state ks0 = ks(x, t0) with
the Kozeny-Carman equation, cf. Carrier [18]. The evolution of permeability ks(x, t)
is related to the evolution of the porosity φ(x, t)

ks(φ) = ks0

[ φ3

(1− φ)2

][ (1− φ0)2

φ3
0

]
and ks0 =

1

C1

φ3

(1− φ)
2D

2
eq. (4.23)

C1 is the so-called Kozeny-Carman constant, cf. Irmay [46] or Ergun [34]. Deq is
the equivalent particle diameter of the granular material. Einstein [33] proposed the
evolution of the effective dynamic viscosity of a suspension. From an initial dynamic
viscosity of a liquid ηfR, it could be calculated as a function of concentration

ηlR(c) = ηfR
(

1 +
5

2
c

)
. (4.24)

It has to be noted that Eq. (4.24) has initially been proposed for dilute suspensions.
For more sophisticated viscosity corrections, e.g. for dense suspensions, we refer to
[26].

Thus, the following set of equations is remaining and is formulating the Initially
Boundary Value Problem (IBVP) of infiltration:

div

[
ks(φ)

ηf(c)
grad p

]
= 0, ∀x ∈ B × t (4.25)

∂t(c φ) + div

[
c
ks(φ)

ηf(c)
grad p

]
= n̂a, ∀x ∈ B × t (4.26)

with boundary conditions for the flux q and the flux of suspended particles c∗ at
the Neumann boundary ΓN as well as the pressure p and the concentration of the
suspended particles c at the Dirichlet boundary ΓD

q = q · n = q, ∀x ∈ ΓpN × t, c∗ = c q̄, ∀x ∈ ΓcN × t, (4.27)

p = p, ∀x ∈ ΓpD × t, c = c̄, ∀x ∈ ΓcN × t. (4.28)

Also the following initial conditions are used

p = p0, c = c0, φ = φ0, ∀x ∈ B0 × t. (4.29)
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The coupled nonlinear IBVP could be solved by numerical methods. Here, we use
Galerkin-type finite element schemes, described by Steeb [83]. The primary variables
are P = {p, c}. The IBVP is completed, in combination with the evolution equation
∂tφ = n̂a and Eq. (4.21) for a(x, t) and an appropriate constitutive equation for the
rate of mass/volume production n̂a. The form of the latter equation will be focussed
in the next section.

4.3 Constitutive equation for mass exchange

To close the IBVP, it is necessary to find a formulation for the volume exchange term,
the so-called production term n̂a. The structure of the term is already known from
previous publications, cf. [80, 82, 101]. In the context of the mathematical formulation
of general internal remodelling phenomena described within the mixture theory by a
mass production term, Steeb and Diebels [80] pointed out, that a thermodynamically
consistent form of the constitutive equation for mass production reads

n̂a ∝ |q| . (4.30)

Physically this expression is also evident. The higher the flow in a RVE, the more
particles per time unit will pass the RVE. Hence, the probability of infiltration of
individual particles or swarms of particles is higher. If we consider the limiting case
of a vanishing velocity (q = 0), then also the value of the production term disappears.
This fact can not be motivated physically, because for such a case of a vanishing
fluid velocity one could observe sedimentation of fluidized particles. At least this
model focuses on infiltration phenomena and sedimentation is not taken into account.
However, it is readily possible to consider a relative movement of fines wa 6= wf and
an additional expression in the production term to describe these phenomena.

As already described, the probability of infiltration increases with an increasing
number of particles, which pass through the RVE per time unit. This may be a
result from a higher flow rate or of a higher concentration of fluidized particles in the
fluid. Following the above argumentation, the probability of infiltration increases with
increasing concentration of fines c. Therefore, the production term may be written
as n̂a ∝ c |q|. In this case for c = 0, n̂a = 0 is obtained. This relationship illustrates
that infiltration can only take place if there are fluidized particles in the considered
area.

To complete the expression for the production term a second parameter k is added.
This parameter is a scalar value, which has to be determined by experimental inves-
tigations. Finally the complete production term can be written as

n̂a = −k c |q| . (4.31)
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In the following section a numerical example will be analysed to illustrate the
complete set of equations. Subsequently, the recently introduced parameter k will be
discussed on the basis of the results of the numerical example.

4.4 Analysis of a 1-dim infiltration problem

The numerical solution of the IBVP will be explained in a 1-dim setting. The in-
vestigated volume is fully saturated with the four previously described phases ϕα.
Dirichlet boundary conditions for the pressure p̄ are chosen for the boundaries at
x = 0 m and x = L. This is done in a way, that a pressure gradient arises which
initiates a fluid flow from the left to the right. In addition, a time-constant Dirichlet
boundary condition for concentration c (x = 0), i.e. c̄ = 0.1 is prescribed. Within
the domain an initial condition is used for the concentration, setting c0(x) = 0.001.
Thus, the porous medium is already saturated initially with a suspension. All four
constituents are therefore present. The consequence of the present initial and bound-
ary conditions is a concentration influx leading to concentration front passing through
the domain from left to right. The boundary and initial conditions as described above
are summarized in Fig. 4.2a). The time-scale of the simulation covers the duration of
the concentration front propagation through the whole domain.

p0, c̄ c0 < c < c1

t > t0

L

c0, a0, φ0

c0, a0, φ0

filter velocity q

pL

pL

ex

t = t0

a)

b)

p0 > pL, c̄

Figure 4.2: Infiltration process: a) initial and boundary conditions for the investigated
domain; b) illustration of the concentration profile for t > t0.

According to Fig. 4.3 the porosity φ(x, t) is changing in space and time. Hence,
parallel to the convective transport, an infiltration process takes place leading to a
decrease of fluidized particles. This also indicates the smooth, gradual character of the
infiltration process. The values describing the concentration c and the filter velocity
of the fluid q are at their maximum in the begin of the process. Although the Darcy
velocity q is influenced by the increase in viscosity, Eq. (4.24), and a decrease in
permeability, Eq. (4.23), the latter physical phenomenon is dominating.

In contrast to classical seepage flow in porous media, the filter velocity q of the
front depends on the effective velocity which is a function of the concentration of fines.
Furthermore, the permeability is also not constant in the domain and depends on the
amount of infiltrated and deposited particles. Within the flow-through fine grained
material is deposited. Furthermore, it is observed that the transport processes are
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Figure 4.3: Contour plot describing the evolution of the porosity in space and time
in the domain.

essentially driven by convection. Diffusion processes play only a minor role. This is
concluded from the moving front (steep gradient of concentration).

Next, we discuss the evolution of concentration in detail. It has to be noted, that
in the case teq > t0 an equilibrium concentration ceq is reached. Microscopically, this
process can be explained as follows: The concentration in a certain control volume
is not changed while the local deposition is ongoing and the local permeability ks is
decreasing. The transport of the fine particle fraction of the domain causes a sudden
change of the concentration in the transition zone. This sudden decrease of the
concentration disappears as soon as the transition zone has passed the whole domain
and arrived at the right boundary. If the infiltration process is considered beyond the

Length of domain L 20 m

Pressure at boundary x = 0 p̄0 6.38 kPa

Pressure at boundary x = L p̄L 0 Pa

Concentration at boundary x = 0 c̄ 0.1

Effective dynamic viscosity ηfR 1 mPa s

Initial porosity φ0 0.32

Initial intrinsic permeability ks0 8.57× 10−10 m2

calculation time t 1× 105 s

Table 4.1: Material properties and used boundary conditions.
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flow-through of the transition zone, an equilibrium concentration setting is observed
in the whole domain. In particular, the chosen parameter k in the evolution equation
of the volume exchange term, has an influence on the time-independent equilibrium
concentration. In Fig. 4.4 equilibrium concentrations of fines in the suspension for
different values of k are illustrated, whereas the remaining simulation details are
unchanged. It is observed that for sufficiently small values of k

(
10−4 < k < 0.02

)
the

concentration profile across the domain shows an approximately linear behaviour.
As a result, the concentration change is constant between two time steps in the
same location for small k. The scatter plot of the concentration distribution can be
represented by a linear function. These resulting functions, describing the distribution
of concentration ceq in the domain are shown in Fig. 4.4 b). The conclusion is, that as
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Figure 4.4: Distribution of the concentration ceq at equilibrium, left: calculated con-
centration distribution, right: fitted and transformed concentration distribution.

long as values of k are considered, which lead to a linear distribution of equilibrium
concentration, the results for different parameters of k can be converted into each
other. When a distribution of equilibrium concentration is known for a certain factor
kM , it is possible to derive the distribution of concentration for another value of k.
This means a master curve for the distribution of equilibrium concentration can be
determined. Accordingly, the transformation follows the equation

ceq

( x
L

)
= mM

k

kM

x

L
+ c̄. (4.32)

In Eq. (4.32), mM describes the slope of the concentration distribution, arising when
kM is used. The resulting concentration distribution is valid for one value of k. c̄ is the
previously mentioned boundary condition for the concentration. Therefore, the graph
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Figure 4.5: Formation of a filter cake. Left: external filter cake; right: internal filter
cake.

for kM = 0.02 illustrates the master curve. This leads to a slope of mM = −0.03415

and c̄ = 0.1. The resulting distribution of concentration using these values and
Eq. (4.32) are shown in Fig. 4.4 as solid lines. This fits very well with the calculated
concentration gradients.

For larger values of k it is not sufficient to reduce the transformation of the con-
centration distribution to a pure rotation. This results from the non-linearity of the
gradient of concentration.

Considering the results of the presented analyses, it is point out, that the proposed
model is well-suited for the simulation of a filter cake formation. A filter cake is a
localized layer of highly reduced permeability. For an explanation of this term a 1-dim
domain is divided into two parts. In the left part of the domain the volume fraction
of the solid skeleton is assumed to be zero nsn = 0. The right part is represented by a
four-phase mixture in accordance to the parameters used in the analysis. If an IBVP
is solved with the previously described boundary conditions, two different types of
filter cakes might occur. First, it is possible that an external filter cake is formed,
cf. Fig. 4.5. Thereby the constriction sizes of the pore channels are smaller than the
average diameter of the fluidized fines. Hence, the fines are not able to penetrate
significantly in the second part of the domain. Instead the fines are deposited on
the border in between the both parts. As a result, more particles accumulate at the
interface, so that a layer with reduced permeability can be observed.

In contrast, the formation of an internal filter cake occurs cf. Fig. 4.5, if fines
penetrate over a certain distance into the second part of the domain. The infiltration
causes a local increase in the flow rate q and a reduction of the permeability ks. Hence,
the production term n̂a is increased locally. As a result, a high amount of fines is
infiltrated locally. It has to be pointed out, that the proposed model is applicable to
cases of internal filter cakes only. To capture the occurrence of an external filter cake
geometrical consideration concerning the analysis of the constriction size distribution
are necessary.
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4.5 Summary

In the preceding sections the governing differential equations of internal erosion pro-
cesses of cohesionless soils were formulated based on the mass and momentum balances
of the present phases. In addition material incompressibility was assumed. Within
this framework, a four-phase model for infiltration processes was presented.

Furthermore, the IBVP was extended by a production term to simulate the infil-
tration of fines from the suspension to the solid fraction. The form of the introduced
production term n̂a can be understood as a constitutive formulation. The production
term is thermodynamically consistent and contains a material parameter k, which
has to be validated by physical experiments. However, for a given combination of a
filter material and a suspension, the appropriate values of k have to be determined by
conducting infiltration experiments. For small values of k (representing linear profiles
of the equilibrium concentration ceq) a master curve was found, which could be used
to avoid experimental set-ups for respective soil materials. In particular, for larger
values of k, resulting in a nonlinear concentration distribution, further theoretical,
numerical and experimental investigations are necessary. In the future, additional
investigations will be carried out with the aim to take the pore network into account
and to describe its effects on the rearrangement phenomena in porous media. This
will lead to an even more sophisticated description of the microscopical infiltration
process.



Chapter 5

Transport and infiltration of
suspensions through porous
media

In this chapter we develop and discuss a modelling approach to describe
the transport of a suspension through granular porous media. Further-
more, a link between the coarse-grained Theory of Porous Media (TPM)
and pore scale phenomena is presented, allowing to describe events on the
pore-scale, e.g. the attachment of fines from the suspension to the porous
medium (infiltration). For this, a statistical evaluation of the Constriction
Size Distribution (CSD) of the granular porous skeleton was performed.
By the comparison of the probability of occurrence of the value of a pore
constriction with the probability of occurrence of particles which are larger
than the pore constriction the amount of attached particles is identified.
This leads to an evolution of the hydraulic properties of the considered
domain, driven by the infiltration process. This allows to describe the
evolution of the morphology of an ensemble of particles in a larger-scale
continuum multi-phase approach and a related simulation model. Addi-
tional, the evolution of the Grain Size Distribution (GSD) of the solid
skeleton and the suspended particles in the carrier fluid is accounted for.
Furthermore, an efficient way is presented to account for the evolution
of the CSD in each time step and integration point numerically within
a Galerkin finite element scheme. Therewith, the evolution of hydraulic
properties of benchmark problems and more advanced 2-dim structures is
studied. Additional, an analytical solution for a simplified 0-dim problem
is derived and presented.

– 53 –
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5.1 Introduction

Granular porous media are widely spread and can often be found in geomechanics
as well as in many technical applications. If a transport process of a suspension, i.e.
a mixture of a fluid and fine particles through a porous skeleton is observed, many
complex questions, such as the fluid/solid interaction of the system, arise. The present
contribution is focused on so-called infiltration processes. In these, fine particles,
which are dissolved in the fluid and transported through a granular porous medium,
are deposited in the pore space of the primary fabric and attached to the skeleton.
This leads to a significant evolution of effective hydraulic properties of the considered
porous medium. Besides the creation of simulation models, also the development of
an insight in the ongoing physical processes in such heterogeneous materials are of
great importance.

Examples for technical applications of those processes are found in stability calcu-
lations of embankment dams [36, 43, 45]. The origins of the present contribution are
located in the modelling of annular gap grouting processes in the field of mechanized
tunnelling [96]. In this work a hydro-mechanical coupled approach is discussed, allow-
ing to model transient processes and capturing the evolution of hydraulic properties.
The fluid-structure interaction is realized with coupled partial differential equations
using the homogenized, continuum-based TPM. The thermodynamically-consistent
TPM extends the classical mixture theory [98] by the concept of volume fractions, cf.
[22, 24, 28, 30].

One of the most famous simple relations to describe the morphological restriction
for particle transport was introduced by Terzaghi [93] and is well known as Terzaghi’s
filter criterion. It relates one diameter of the soil to one diameter of the suspension
in the carrier fluid

D15

d85
≤ 4− 5, (5.1)

and predicts thereby filter stability. In Eq. (5.1) the diameter of the 15 % fraction of
the filtering soil is denoted as D15 and the diameter of 85 % fraction of the particles
dissolved in the suspension described as d85.

Although the fraction of the smallest particles is often under-represented in terms
of volume/mass, which are the classical quantities representing the composition of
the mixture in the TPM, it is obvious, that in systems consisting of graded material
the fraction of the smallest particles is dominating the physical effects [69]. In the
present multi-phase approach, the effect of fines on the evolution of macro-scale hy-
draulic properties is taken into account by a novel multi-scale procedure implemented
in a finite element simulation model. This is accounted for by enrichment of the
continuum-based approach with micro-structural, statistical considerations.

The idea of the TPM is to divide the continuum to different, process relevant
volume fractions and to describe their behaviour by first physical principles. In this
contribution only hydraulic effects are captured. In addition to the balance of mo-
mentum of the suspension supplemented with a constitutive equation for the effective
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drag, only balance equations for the mass of different fractions are considered. We
assume that the carrier fluid of the suspension is a pore liquid (e.g. water). Thus,
the effective or true density ραR := dmα/dvα is constant throughout the physical
process, i.e.

ραR(t) = ραR(t0) =: ραR0 = const. (5.2)

Thus, as we discuss later in more detail, the considered balances of mass are collapsing
to volume balances, cf. [81].

For the presented approach we complement the concept of volume fractions by the
constituent inherent concept of species [3, 4]. Therefore, single volume fractions are
subdivided into species, in a way, similar to the concept of volume fractions, that the
sum of all species represents the behaviour of the corresponding volume fractions, cf.
Figure 5.4.

The basis for the proposed continuum-approach is located in the simulation of
internal soil erosion phenomena of hydraulic works as published by [14, 36] or sand
production in the framework of oil petroleum industry, cf. [15, 63, 81, 101].

In this article first the evaluation of the transport properties depending on the
micro structure is described. In the following the continuum-based modeling is derived
and the Initial Boundary Value Problem (IBVP) is presented. Afterwards benchmark
examples are introduced and discussed, including an analytical solution for a special
case of the here presented problem. In the last part a 2-dim simulation consisting of
sub-domains with different initial hydraulic properties is shown.

5.2 CSD-Analysis

For the development of criteria to determine the stability of granular packings with
regard to erosion and/or infiltration, the concept of constriction sizes has to be defined.
The constriction size Acs is understood as the smallest area of a flow path connecting
two pore spaces. It is always smaller than the connected pores themselves. For the
transport of particles through a porous network the largest circular area which can be
inscribed in a pore constriction is of special interest. This is the effective constriction
size ARcs , cf. Figure 5.1, which is represented by the corresponding diameter dcs of the
effective circular pore constriction. If all pore constrictions of a certain volume in a
granular material are characterized, a graph analogue to the Grain Size Distribution
(GSD) is created. For this, the probability of occurrence of a certain effective pore
constriction Pcs is plotted against its effective size using the diameter dcs of the
circular constriction. Although the distributions of grain size and constriction size
are usually plotted in the same graph it has to be pointed out, that in the first case
the physical diameter of the grain is plotted, whereas in the second case the diameter
of the effective pore constriction, i.e. the largest diameter of a particle which could
be passed through the pore, is depicted.

This leads to the concept of the Constriction Size Distribution (CSD) which is
only applicable with the assumption of spherical particles. Other methods for the
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Figure 5.1: Visualization of two possible pore constrictions, the area of a pore con-
striction Acs (blue), and the area of an effective pore constriction ARcs (black). Left:
densest pore constellation. Right: loosest pore constellation.

characterization of the CSD exist, in which this assumption is avoided. Methods to
mention are all imaging techniques, e.g. X-ray micro Computed Tomography (µCT)
or Nuclear Magnetic Resonance (NMR) [37, 41], in which the whole pore space is
characterized. The determination of the CSD has to be extracted from the 3-dim
images of the pore network in a post processing step. The application of imaging
techniques results in very accurate results. On the other hand those characterization
methods are very time-consuming. Especially for the characterization of granular
packings where the morphology is evolving in time. Such characterization experiments
are only possible under high expenditure and have an academical use only.

Furthermore, approaches which are based on a numerically created packing of
particles exist. There, numerical particle methods e.g. DEM [68] are used to generate
a packing with given GSD and porosity φ. From the numerically created pore network,
the CSD is evaluated in a post-processing step, similar to image-based techniques. It
has to be mentioned, that the numerical setup of the packing is again time consuming
and difficult to use in investigations with evolving pore spaces based on clogging or
suffosion phenomena.

5.2.1 State of the Art

For the characterization of the morphology of a granular packing, which is evolving in
time due to rearrangement effects of fine particles, a fast approach has to be used. In
this work we therefore combine a statistical approach for determining the CSD at the
material point with a coarse-grained continuum-mixture model. The basic idea of the
statistical approach traces back to a publication of Silveira in 1965 [78]. In order to
calculate the CSD of a granular packing, first the GSD has to be discretized in f single
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fractions. Silveira assumed that a constellation forming a pore constriction is always
created by three particles. Consequently all possible combinations of particles of the
fractions are considered and the constriction size is calculated for each of them. The
single constrictions are accumulated to a distribution curve, analogue to the GSD.
In the following years the approach provided by Silveira was improved in several
details. Ziems [111] introduced the idea of calculating the probability of occurrence
of a certain constriction not related to the mass but to the number distribution of the
packing. Together with the assumption of a constant density of all particle fractions,
this leads to a significantly higher impact of the fines in the system compared to the
mass distribution. A grain packing algorithm restricted to consolidated soil using
effective properties is given in [76]. Laboratory experiments measuring the CSD of a
granular material were published by Wu et al. [107]. Reboul et al. [66] proposed two
different approaches for gap-graded and continuously graded granular material.

Furthermore, Witt [105] could show by experimental investigations that a constel-
lation can not be only formed by 3 particles, but also by 4 particles, cf. Figure 5.1,
right. There are also constellations with more than 4 particles, but their probability
of occurrence is much smaller than the one of 3 or 4-particles constellations. How-
ever, the proposed method is able to represent 4-particle constellations. Note, that
in case of densest compaction, the 4 particle constellation collapses to two 3-particle
constellations, cf. Figure 5.1, left. Therefore, those are automatically captured with
this approach.

A summary of different techniques to evolve the CSD of a granular material and
their historical derivation can also be found in [57, 103].

5.2.2 Statistical evaluation of the constriction size distribution

For the evaluation of the CSD of a granular packing in a statistical manner, the GSD
of the solid and its relative density D is used. Those variables are very common
and usually part of standard geomechanical testing procedures. The relative density
is referred to the porosity φ of the solid or, as in this work, to the area of pore
constriction Acs, cf. Figure 5.1

D =
max(Acs)−Acs

max(Acs)−min(Acs)
. (5.3)

In this equation max(Acs) describes the largest pore constriction of a certain GSD,
i.e. the constriction size belonging to the largest particle species in the loosest state of
compaction (D = D0 = 0). Accordingly, min(Acs) represents the smallest constriction
size of the system belonging to the smallest particle species in the densest state of
compaction (D = D1 = 1). Furthermore, a number distribution (ND) is calculated
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from the GSD assuming spherical particles with a constant density

qi,ND =

qi,m
d3i

f∑
j=1

qj,m
d3j

. (5.4)

Here, qi,ND represents the relative number of particles, qi,m the relative mass of par-
ticles, and di the diameter of particles for the grading i. The variable f describes the
number of fractions. In the next step the constellations are assembled by considering
all possible permutations of the different particle fractions. This step leads to f4

constellations [75].

Having a closer look at the received constellations, it is realized that a large number
is geometrically identical. The calculation time of the chosen statistical approach
is reduced significantly if those constellations are identified. Two constellations are
geometrically identical if both constellations can be matched to each other by applying
a pure rotation of the constellation or exchanging the position of particles located
opposite to each other. Before deleting identical constellations, their probability of
occurrence has to be added to the identified counterpart constellation. In Figure 5.2
the number of constellations considering all possible permutations with the number of
only physically necessary constellations is compared. It is concluded, that the number
of relevant constellations is drastically smaller than the number of all permutations.
Therefore, the identification of double constellation leads to a much more efficient
calculation process.
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Figure 5.2: Comparison of all possible constellations resulting from permutation of f
fractions (cf. Schuler [75]) with the number of physical unique constellations.
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After assembling all constellations, the constriction size is evaluated for each re-
maining constellation by geometrical considerations. Further details are given in [73].
However, the output consists of a matrix including of all possible constriction sizes
dcs,i and their probability of occurrence Pcs, where the latter quantity is directly
computed from the input GSD as

Pcs
(
ARcs
)

=

4∏

i=1

qi,ND(d). (5.5)

5.2.3 Validation of statistical approach

To check the validity of the proposed approach a benchmark solution created by
DEM from Reboul et al. [68] was investigated. The corresponding GSD and the CSD
calculated on the basis of the particle position of the DEM approach are plotted in
Figure 5.3. This result is used as a benchmark to match the data with the proposed
statistical model. In many publications, the free parameter to match the statistical
derived CSD are the relative density D, cf. Eq. (5.3) [67], or the porosity φ which is
directly related to the state of compaction D, cf. [38]. In Figure 5.3 the CSD for the
densest packing (D = 1) and for the loosest packing (D = 0) is shown. At least two
points of the benchmark CSD are computed analytically, the smallest constriction size,
which corresponds to the constellation of 4 particles from the smallest discrete grading
range in maximum compaction, and also the biggest constriction size, consisting of
4 particles from the biggest discrete grading range in the loosest compaction state.
This condition is fulfilled for the proposed approach. Furthermore, it is stated that
all possible CSD curves have to be between both fictive derived curves for densest
and loosest compaction, cf. highlighted area in Figure 5.3. The benchmark results
can not be matched by recalculating the CSD simply changing the relative density D.
In this case, none of the limits is fulfilled. Therefore, a new method was developed to
match the statistical and the benchmark result, including both limit points.

For this, the CSD for D = D0 = 0 and the CSD for D = D1 = 1 are calculated at
the beginning. The output data consist of two vectors, one containing the diameter
of the effective constriction size dcs,i and the second one containing the corresponding
probability of occurrence Pcs,i(dcs). A weighted average of both curves is then created

dcs,ave = g(ζ) dcs,D1
+ (1− g(ζ)) dcs,D0

. (5.6)

In the simplest case, which is valid for a middle dense compaction state, the corre-
sponding weighting function is given

g(ζ) = ζ ∀ ζ ∈ [0; 1]. (5.7)

This averaging method and linear function was used to calculate the fitted CSD which
is also depicted in Figure 5.3. For this special case of GSD in middle compaction state
the received results fit very well to the benchmark approach.
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Figure 5.3: Comparison of the CSD using the proposed method with the CSD achieved
by DEM simulations from Reboul et al. [68].

However, also more complex weighting functions, considering additional fitting
parameter, can be used. Therefore, a two parameter logistical (sigmoid) function in
the form of

g (ζ) =
1

B −A (sig (ζ)−A) , with (5.8)

sig (ζ) =
1

L+ exp(−ζ K)
, ∀ ζ ∈ [0; 1], (5.9)

A = sig (0) =
1

L+ 1
, (5.10)

B = sig (1) =
1

L+ exp(−K)
, (5.11)

is proposed. Here, L and K are understood as free fitting parameters.
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5.3 Multi-phase FEM approach to describe infiltra-
tion phenomena

5.3.1 Governing equations of extended continuum model

(2f + 1)-field two-field(pore scale)
macro scale macro scalemicro scale

ns

na

na2

na1

ns3

ns2

ns1

nf nf

na3

ns

nl

RVE TPM model standard
Darcy-type model

Figure 5.4: Extended homogenization technique. Left: mesoscopic RVE, right: a
two field homogenization of the RVE taking only the liquid and the solid phase into
account. Mid: illustration of the 3-phase approach and its extension to 2f +1 phases.

In the second part of the derivation of the numerical model, we use the TPM, which
is understood as an extension of the MT by the concept of volume fractions. The
work presented here is an extension of a previous publication [71]. For the continuum-
based formulation volume fractions nα are defined from macro-scale quantities, with
nα = dvα/dv. The volume of the whole RVE is described by dv and the volume of a
single constituent ϕα is express as dvα.

The continuum approach proposed in this contribution has three different homog-
enization level, cf. Figure 5.4. For the evolution of the the effective dynamic viscosity
ηfR(x, t), a two field approach is used. Thus, it has to be distinguished between the
solid phase ϕs consisting of all solid particles forming the solid skeleton and the liquid
phase ϕl describing the suspension, i.e. the mixture of the pore fluid and the dissolved
particles. This is visualized in Figure 5.4, right.

In the next step, we can introduce the three phase homogenization, which extends
the two phase approach by the differentiation between solid constituents ϕa in the
suspension and carrier fluid ϕf, with nl = nf + na.

In order to describe microscopic effects a further level of homogenization is used.
Therein, the definition of species ϕαi , which are denoted with an additional subscript,
is introduced. The concept of species is invented by a further subdivision of single
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volume fractions of the three phase homogenization. Precisely, the volume fraction of
the solid ϕs and the volume fraction of the suspended particles ϕa are divided into f
species, which leads to the (2f + 1)-field illustrated in Figure 5.4, middle. Physically,
the species are described by the discrete grading ranges, which are a result of standard
sieving test in soil mechanics.

Originally the hydraulic behaviour of the mixture was described by the volume
balances of its constituents. Therefore, the reformulation

c =
na

φ
(5.12)

was used. To capture phenomena on the scale of single discrete particle grading ranges
the volume balances of the dissolved particles ϕa and the solid skeleton have to be
divided into f species. Therefore, the fraction of solid particles ns is split into f

species nsi , with i = 1, ..., f . The original behaviour of this constituent is computed
by the sum

ns =

f∑

i=1

nsi . (5.13)

Thus, the variable of the concentration of fines c is split to describe the concentration
of fluidized fines in each species

ci =
nai
φ
, with c =

f∑

i=1

ci. (5.14)

Considering the framework of the TPM, mass balances of individual constituents
are used to derive the field-equations. Hence, the mass balance of a constituent ϕα is
written as

∂t(n
αραR) + div(nαραRvα) = ρ̂α = n̂αραR, (5.15)

with the so-called production term n̂α of a constituent ϕα. In general, in the lo-
cal mass balance of one individual constituent the production term is triggering the
mass exchange within individual constituents of the mixture. In this contribution,
infiltration is considered which means that mass exchange only occurs between the
constituent of suspended particles ϕa and the constituent of the solid skeleton ϕs.
Taking into account the constraint of mass exchange for the whole mixture

∑

α

n̂α = 0, (5.16)

the production terms can be related to each other as n̂s = −n̂a.
Again, the local partial mass balances which were derived in section 3.3.1 are used

to create a numerical multi-field model. Assuming incompressibility of the solid grains
ραR = ραR0 = const. and identical effective densities of the suspended particles and
the solid skeleton ρaR = ρsR the partial local mass balances collapse to partial local
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volume balances, which read

∂t(n
α) + div(nα vα) = n̂α. (5.17)

In this contribution the volume fractions nα are subdivided into species nαi , with
the constraint ∑

α

nαi = nα. (5.18)

Therefore, also the local partial volume balances are subdivided to obtain a balance
equation for individual species, which is written as

∂t(n
α
i ) + div(nαi vαi ) = n̂αi . (5.19)

It has to be noted that the index of the velocity changes from subscript to superscript
in this case, to keep a consistent notation.

First, the set of equations of the solid constituent ϕs with the volume fraction of
the species nsi are derived from the volume balance of the solid particles

∂t (nsi ) + div (nsiv
s
i ) = n̂si . (5.20)

In this case, the solid constituent ϕs as also the corresponding species are assumed
to be rigid, therefore its velocity vanishes (vs = vs

i = 0). This leads to an evolution
equation for the species

∂t (nsi ) = n̂si . (5.21)

Note, that here the primary variable of the equations is changed from the porosity φ
to the solid species nsi compared to previous publications, e. g. [71]. This is necessary
because a split of the porosity φ leads to a non-closed set of equations.

In the next step, the set of equations of the dissolved species is written as

∂tn
a
i + div (nai v

a
i ) = n̂ai . (5.22)

Using the definition of the partial concentration ci given in Eq. (5.14) and neglecting
relative velocity between the fluid and the fluidized particle constituent as also the
corresponding species (va = vf = va

i ), the partial volume balance of species i of the
dissolved particles reads

∂t (ciφ) + div (ciq) = n̂ai , (5.23)

with the so-called filter or Darcy velocity q.
Hence, the mass exchange is only possible within the constituents ϕs

i and ϕa
i and

of the same species i, the mass exchange terms are related to each other n̂si = −n̂ai .
Analogue to Eq. (5.13) and Eq. (5.14), we can rewrite the total value for the mass
exchange term

n̂a =

f∑

i=1

n̂ai . (5.24)
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Note, that in case of consideration of only one species, the extended approach
reduces to the original proposed four phase approach, cf. [73]. In this case, geomet-
rical consideration of the morphology of the considered material and its CSD is not
useful, because physically this means, that both particles forming the skeleton and
the particles suspended in the fluid are mono-disperse and of the same size. Since
the constriction size of a mono-disperse packing is always smaller than the particle
itself, clogging would happen immediately without transport. According to Steeb and
Diebels [80] the production term has to be proportional to the absolute value of the
filter velocity, in order to achieve a thermodynamic-consistent mass exchange within
the constituents and species

n̂ai ∝ |q| . (5.25)

However, the assumption of the mass exchange term neglecting consideration of the
morphology reads

n̂ai = −ci φ |q| . (5.26)

Furthermore, Darcy’s law [30] is obtained as the result of the balance of momentum
and used to relate the pressure p to the filter velocity q

q = − ks

ηfR
grad p. (5.27)

Assuming a rigid porous skeleton (vs = 0) the filter velocity is calculated from the
seepage velocity of the fluid phase vf to q = φvf. Here, ks(x, t) is the isotropic intrin-
sic permeability of the porous skeleton and ηfR(x, t) the effective dynamic viscosity
of the suspension. Both properties vary in space and time during the observation of
an infiltration process and therefore have to be recalculated for each time step and
integration point.

For the calculation of the intrinsic permeability of the porous skeleton ks, the
equation of Kozeny Carman, cf. Carrier [18]

ks =
1

CKC

1

S2
0

[
φ3

(1− φ2)

]
(5.28)

was applied. This is a semi-analytical approach relating the evolution of the intrinsic
permeability to the evolution of the porosity φ. The value of the Kozeny-Carman
constant CKC is documented to be in the range 4.8± 0.3 but is usually set to 5, the
specific surface area per unit volume S0 (in 1/cm) is computed straightforward. For a
granular packing of spherical particles with the effective particle diameter dR it reads

S0 =
6

dR
, with dR =

1
f∑
i=1

ns
i/ns

di

. (5.29)

In this contribution the intrinsic permeability is not a fixed value, but is evolving
within the infiltration process. Therefore, it has to be pointed out, that not only
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the porosity φ in Eq. (5.29), but also the effective particle diameter dR is evolving
within the infiltration process. The equation of Kozeny-Carman is broadly used in the
framework of granular/porous media. Nevertheless, it has to be pointed out, that this
method has its restriction. It works best for mono-disperse or narrow graded spherical
particles and moderate porosity. The GSD is reduced to one scalar parameter, the
effective particle diameter dR, which is a very strong assumption. Conceptually it is
also not very obvious to relate the intrinsic permeability to the pore space.

If the initial dynamic viscosity of the liquid phase ηlR is known, the evolution of
the effective dynamic viscosity of a suspension ηfR is described using the equation

ηfR = ηlR
(

1 +
2.5 c

2 (1− κc)

)2

, (5.30)

proposed by Eilers [31, 32]. Here, the material parameter κ takes the heterogeneity
of the grading of the particles in the suspension into account. In case of mono-
disperse particles κ = 1.28 is documented. For broadly graded particles κ = 1.35

and for narrow graded particle distributions κ = 1.30 should be used. However, for
the calculations in this contribution κ = 1.30 was chosen. Note, that this equation is
valid for dilute and dense suspensions. For dilute suspensions (c < 0.05) it leads to
the same results as the equation proposed by Einstein [33]

ηfR = ηlR (1 + 2.5 c) . (5.31)

The densest packing of mono-disperse spherical particles leads to a pore space of
φ = 0.26, which corresponds to c = 0.74 considering the suspension only. However, a
denser packing of mono-disperse spherical particles is non-physical, therefore effective
dynamic viscosity ηfR in Eq. (5.30) goes to infinity in this case.

5.3.2 Initial Boundary Value Problem (IBVP) for Infiltration pro-
cesses

Considering the volume balance of the mixture [71], cf. Eq. (5.32), the IBVP is
created by combination of all previously described equations

div

[
− ks

ηfR
grad p

]
= 0, ∀ x ∈ B × t, (5.32)

∂t(ci φ)− div

[
ci
ks

ηfR
grad p

]
= n̂ai , ∀ x ∈ B × t, (5.33)

∂t (nsi ) = −n̂ai , ∀ x ∈ B × t, (5.34)

where B represents the spatial domain and t the time. To close the system, boundary
conditions for the filter-velocity q (cf. Eq. (5.27)) and the flux of suspended particle
species c∗i at the Neumann boundary ΓN as well as the pressure p and the concentra-
tions of the particle species ci at the Dirichlet boundary ΓD, with ΓN ∩ΓD = ∂B and
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ΓN ∪ ΓD = 0 are prescribed as

q = q · n = q, c∗i = ci q̄, ∀ x ∈ ΓN × t, (5.35)

p = p, ci = ci, ∀ x ∈ ΓD × t. (5.36)

Within this multi-phase approach an own set of boundary conditions for each physical
field is chosen. Thus, the Neumann boundary ΓN and the Dirichlet boundary ΓD are
set separately for the field of the concentrations of particle species with the primary
variables ci and for the pressure field with the primary variable p. Additionally, the
following initial conditions are used at B0 × t

p = p0, c = c0, φ = φ0, ∀ x ∈ B0 × t. (5.37)

For the solution of the set of equations the standard mixed Galerkin finite element
scheme is applied. To obtain the weak format, the previously described balance
equations are multiplied by test functions and integrated in space

∫

B

ks

ηfR
grad p · grad δpdB =

∫

Γq

δpq · n dΓq,

(5.38)
∫

B

δci [∂t(ci)φ− ci∂t(ns)− n̂ai ] dB −
∫

B

ci
ks

ηfR
grad(δci) · grad p dB =

∫

Γc∗
i

δci ci q · n dΓc∗i ,

(5.39)

∂t(n
s
i ) = −n̂ai . (5.40)

Note that Eq. (5.40) is an Ordinary Differential Equation (ODE) integrated in time
at each integration point of the finite element, parallel to the set of Partial Differential
Equations (PDE), cf. Eqs. (5.38, 5.39). The Neumann boundary is depicted as Γc∗i
for the field of the concentrations of particle species ci and as Γq for the pressure field.
Furthermore, it has to be pointed out, that the right hand side (rhs) of Eqs. (5.38, 5.39)
can be prescribed as a boundary condition in a finite element scheme. In this case,
the rhs vanishes in the corresponding equations.

5.3.3 Analytical solution for a simplified hydraulic IBVP

In case of simplification of the IBVP described above, cf. section 5.3.2, an analytical
solution can be found. For this, the physical dimension of the problem is reduced to
0-dim by neglecting the spatial dependencies of the field equations and also by using
of no-flux or periodic boundary conditions for the species of concentrations ci. This
means numerically that the field equations are evaluated in one material point, which
leads to a homogeneous problem.
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For this, we can find an analytic solution for the previously described problem.
Thus, considering a 0-dim IBVP, the equations given above are further simplified to

∂t(ciφ) = n̂ai , with nsi = ci φ,  ∂t n
s
i − nsi q = 0, (5.41)

∂nsi = −n̂ai . (5.42)

Hereby, the PDE resulting from the balance of mass of the mixture, with the pressure
p as primary variable is identically satisfied in the 0-dim case. To overcome this
issue, the filter velocity is prescribed as a boundary condition. First, we assume a
spatially homogeneous filter velocity q = q0, with divq = 0. The remaining two ODE
describing the problem are solved analytically using standard methods. Using t0 = 0

for the initiation of the process the solution reads

nsi (t) = nsi0 − nai0 (exp(−q0 t)− 1) , with nai (t) = nai0 exp(−q0 t). (5.43)

The second part of Eq. (5.43) is the trivial solution of an evolution equation. In order
to compare the analytical solution of the IBVP with the solution of the numerical ap-
proach, we reformulate the analytical problem avoiding the assumption of a constant
filter velocity. This means the filter velocity is allowed to evolve in time q = q(t).
Thereby the filter velocity q is exported from the numerical calculation and used for
the analytical approach. Following this procedure, both approaches become directly
comparable with each other. To make use of this procedure the solution of the IBVP
(Eqs. (5.41), (5.42)) has to be adapted. For an arbitrary filter velocity the solution
resulting from the set of balances of the solid constituents with the primary variables
nai (t) is

nai (t) = nai0 (e−Q(t) − 1), with Q(t) =

∫
q(t)dt. (5.44)

This is used to calculate the species of solid constituents

nsi (t) = nsi0 − nai0 (e−Q(t) − 1). (5.45)

Note, that for this derivation the relation

∫ t

t̃=t0

exp

(
−
∫ t̃

t̄=t0

q(t̄)dt̄

)
q(t̃) dt̃ = −exp

(
−
∫ t̃

t̄=t0

q(t̄)dt̄

)
(5.46)

was used. The derivation of this relation is not straightforward, but its validity can
be shown easily by considering the derivative of the second part which results in the
first part.
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Species of suspended fines na1/n
a 0.8

Species of suspended fines na2/n
a 0.2

Species of solid particles ns1/n
s 0.6

Species of solid particles ns2/n
s 0.4

Diameter of species 1 d1 0.125 mm

Diameter of species 2 d2 0.25 mm

Initial concentration c0 0.2

Initial solid constituent ns0 0.68

Pressure at boundary p0 0.3 Pa

Pressure at boundary p1 100.3 Pa

Time step ∆t 60 s

Simulation time tmax 3× 104 s

Table 5.1: Material properties and used boundary conditions

5.3.4 Example: comparison of analytical and numerical solution

For the comparison of the analytical and numerical approach an IBVP was considered,
cf. Figure 5.5. The parameters, used for the calculation, are summarized in Table 5.1.
The numerical example was constructed using Dirichlet boundary conditions p̄1 for
the pressure on the left and p̄0 on the right edge. According to Darcy’s law (Eq.
(5.27)) the filter velocity q is defined. This filter velocity is used in the analytical and
the numerically implemented approach to ensure comparability of both methods. Due
to the spatial homogeneity of the problem, the numerical implementation is realized
by a 1-element FEM calculation with periodic concentration boundary conditions c̄
on both boundaries.

For the comparison of both approaches the temporal evolution of the porosity φ is
depicted, cf. Figure 5.6. Both, the numerical and the analytical solution are in good
agreement. Due to the assumption that from a geometrical point of view all particles
of the suspension have to be attached to the skeleton, the porosity in the equilibrium
state can be easily computed from the initial state to φ∞ = φ0(1− c0). Both graphs
match this equilibrium very well.

5.4 Evolution of morphologic properties

5.4.1 Numerical realization

After the description of the statistical approach to determine the CSD as well as the
extension of the volume balances to describe f species of fine particles, both methods
have to be combined to describe the infiltration behaviour of each single species.
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p̄0, c̄p̄1, c̄

c0, nai /na

ns0, nsi/ns

Figure 5.5: Illustration of the 0-dim IBVP and the used boundary and initial condi-
tions.

From geometrical considerations, infiltration of fluidized particles takes place if the
pore constriction is smaller or of the same size compared to the transported particle
(dcs ≤ d). Considering a non-uniform mixture of particles a probability of infiltration
due to geometrical restrictions has to be considered and is written as

Pinf(di) = Pcs(dcs,i). (5.47)

To capture the evolution of hydraulic properties due to infiltration of fine particles
in a suspension to a rigid porous skeleton, the CSD has to be evaluated for each time
step and each RVE of the considered domain, which is very time consuming even
with the efficient statistical calculation of the CSD. However, by plotting the CSD
and GSD of particles dissolved in the fluid ϕa and particles of the skeleton ϕs using
the same x-axis, the computational expensive vector of the size of the effective pore
constriction is remaining constant during the calculation. Only the probability of the
occurrence of single pore constrictions vary, but is easy to calculate, cf. Eq. (5.5).

In the part of the FE approach the statistical evaluation is considered by splitting
the mass/volume balance with respect to the number of species existing in the fluidized
fines ϕa and the solid constituent ϕs. Therefore, one mass exchange term for each
species has to be defined.

n̂i
a = −ψ Pinf ci φ q. (5.48)

Thereby, na = c φ is the total amount of potentially infiltratable particles in the RVE
during one time step and the range of the probability of infiltration of a single species
is Pinf ∈ [0, 1]. Following, the condition 0 ≤ (ψ |q|) ≤ 1 has to be fulfilled.
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Figure 5.6: Comparison of the numerical and analytical solution for a 0-dim infiltra-
tion IBVP.

5.4.2 Numerical example for evolution of morphological proper-
ties

In this section a numerical example is presented, combining all previous described
capabilities of the developed model. Therefore, we extend the previous 0-dim exam-
ple, cf. Figure 5.5, by the geometrical analysis of the morphology. In this example
three different combinations of GSD in the skeleton and the suspension were used, cf.
Table 5.2. The idea of those calculations is visualized in Figure 5.8. For all of them
filter stability of the solid is assumed. This means only infiltration phenomena are
studied and all kind of erosion is neglected:

• In case A particles of the suspension are mostly larger than the pore constric-
tions, which leads to clogging of the suspension in the skeleton.

• In case B particles of the suspension are partially larger than the pore constric-
tions. Some of the particles penetrate through the specimen, whereas others
infiltrate in the solid domain.

• In case C the particles of the suspension are much smaller than the pore con-
strictions. Almost all particles penetrate through the solid domain.

The corresponding results are shown in Figure 5.9. The simulations of case A and
case C are understood as limit cases for the evolution of hydraulic properties. In
case C, the GSD of filter and suspension is chosen in a way, that no infiltration takes
place due to geometrical considerations. The particles in the suspension are much
smaller than the initial constriction sizes in the skeleton. Therefore, all particles of
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Figure 5.7: Definition of the probability of infiltration considering geometrical restric-
tions. ND represents the Number Distribution of the particles forming the skeleton,
GSDF represents the Grain Size Distribution in the suspension.

species i 1 2 3 4 5

case particle size (mm) 0.125 0.25 0.5 1 2

A nsi/n
s 0.6 0.4

nai /n
a 0.8 0.2

B nsi/n
s 0.4 0.6

nai /n
a 0.2 0.3 0.4 0.1

C nsi/n
s 0.4 0.6

nai /n
a 0.7 0.3

Table 5.2: Initial morphologic properties.
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the suspension can pass the domain without infiltration. This means the porosity is
not evolving in time and remains constant. Accordingly, case A is chosen that all
particles in the suspension are of the same magnitude or larger than the initial pore
constrictions. This means that geometrically all particles are filtered by the solid
skeleton. In this case, the maximum reduction of the porosity in the solid skeleton is
observed. Therefore, the equilibrium porosity is computed analytically, as shown in
the previous example in section 5.3.4. The resulting porosity in case A matches the
analytically computed porosity.

t = t0 :

t� t0 :

cases A B C

Figure 5.8: Defined cases in order to perform benchmark calculations. For all cases
filter stability of the solid is assumed.

5.4.3 Numerical example of a 2-dim heterogeneous domain

Based on the previous chapters, this section presents a two dimensional example.
Therefore, a 2-dim domain was created, consisting of different regions, cf. Figure 5.11.
The initial and boundary conditions used for the calculation are summarized in Ta-
ble 5.3. The convective transport of the suspension through the porous medium in
the domain is driven by a pressure boundary condition on the left (p̄1) and the right
(p̄0) edge. For the concentration of the suspended particles, a periodic boundary
condition c̄ is used. This means the total amount of solid particles, consisting of sus-
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Figure 5.9: Evolution of porosity due to different micro structures. the description of
the single cases is given in Figure 5.8.

pended particles and particles forming the porous medium, remains constant during
the calculation (ns(t) + na(t) = const).

In the sub-domain 1 (1a & 1b) the initial porosity φ0,1 = 0.32 was used, cf.
Figure 5.11. Furthermore, the infiltration was neglected in this sub-domain by setting
the material parameter ψ = 0. This material properties describe a porous material
with large pore constrictions, e.g. mono-disperse packed spherical particles. In sub-
domain 2 (2a & 2b) the initial porosity of φ0,2 = 0.4 and a GSD, consisting mostly
of coarse particles, was used. This corresponds to a coarse sand material. In the
center the sub-domain 3 is allocated, with an initial porosity of φ0,3 = 0.45, but a
finer graded sand than sub-domain 2.

The results of this calculation are summarized in Figures 5.10 and 5.12. In Fig-
ure 5.10 contour plots of the considered domain during different time steps are shown.
The permeability decreases, driven by the infiltration process within time. This effect
is not homogeneously distributed, but depends on the initial values of the perme-
ability and GSD of each sub-domain. The evolution of hydraulic properties occur
in horizontal and vertical direction. The permeability is initially homogeneously dis-
tributed within the sub-domains. Due to a higher permeability in sub-domain 2 a
higher filter velocity arises, leading to a higher rate of infiltration. On the other hand
the GSD of sub-domain 1 contains finer particles, compared to sub-domain 2, which
results in smaller pore constrictions. Therefore, the probability of infiltration Pinf

is higher. In the first phase of the calculation (t < 0.46 h) this contrary effects are
equilibrated, leading to a smaller difference in permeability between the sub-domains.
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Length of domain 1 L 1 m

Pressure at boundary p̄1 1.3 Pa

Pressure at boundary p̄0 0.3 Pa

Concentration of fines c0 0.4

Concentration of fines c̄ periodic b.c.

Effective dynamic viscosity ηfR0 1 mPa s

Initial porosity φ0,1 0.32

Initial porosity φ0,2 0.4

Initial porosity φ0,3 0.45

material parameter ψ1 0

material parameter ψ2 = ψ3 1

simulation time tmax 242 h

Initial intrinsic permeability ks0,2 7.93× 10−6 m2

Table 5.3: Material properties and used boundary conditions used for the 2-dim
calculation.

In the following phase infiltration takes place more homogeneously reducing the per-
meability. In the last phase of the calculation (t = 242 h) the permeability is almost
homogeneously distributed. In Figure 5.12 the GSD and CSD in the beginning and
the end of the calculation process is shown for two specific points, which are specified
in Figure 5.11.

5.5 Discussion

In the first example in section 5.3.4 a 0-dim IBVP was created, allowing to capture the
evolution of the hydraulic properties (e.g. porosity φ, intrinsic permeability ks) for a
homogeneous infiltration process. By the application of periodic boundary conditions
for the concentration of fluidized particles and focussing on one material point by
neglecting all spatial dependencies, the inherent heterogeneous infiltration process is
transformed to be homogeneous. Therefore, the equilibrium state after all fluidized
particles were attached to the solid skeleton can be easily computed. The evolution
of the morphology and the evaluation of geometric quantities is neglected within this
method. The reduced analytical approach was compared to a numerical simulation
using the full approach on the 0-dim example. Both methods match the equilibrium
state after infiltration very well and additionally they are in good agreement with
each other.

The analytical 0-dim approach is on the one hand useful for academic purposes.
On the other hand it is a very simple and fast approach for the estimation of the
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Figure 5.10: Evolution of the intrinsic permeability as a result of the 2-dim calcula-
tion for different times. The results were scaled with respect of the initial intrinsic
permeability of sub-domain 2.

evolution of hydraulic properties. In a first step the distribution of the porosity
within time is computed. In a second step this is linked to the evolution of intrinsic
permeability using the equation of Kozeny Carman, cf. Eq. (5.29). The equations
were formulated for a direct application of a prescribed filter velocity (Neumann b.c.).
In case of a prescribed pressure gradient (Dirichlet b.c.) the Darcy relationship (cf.
Eq. (5.27)) has to be used, additionally.

The numerical example in section 5.4.2 describes the evolution of hydraulic prop-
erties induced by the consideration of the morphology. The presented examples were
implemented using the 2-dim formulation. Analogue to the previous example, the
problem was constructed in a way that a 0-dim description of the results in the do-
main is sufficient.

This example shows the impact of the statistical consideration of geometry during
the infiltration process on the hydraulic properties. This is illustrated by the calcula-
tion of 3 different cases, described above. Case C shows the result, which is occurring
if the calculation is conducted so that the CSD of the solid is larger than the GSD
of the fluid. Thus, this calculation is comparable to a classical transport formulation
neglecting the impact of the geometry and infiltration in general. Comparing case B



76 Chapter 5 Transport and infiltration of suspensions through porous media

A

e1

p̄1, c̄ p̄0, c̄

1a 1b
3

2b

P
2a

L

L

Figure 5.11: Visualization of the computed 2-dim IBVP.

to case A leads to the conclusion that in case B not all particle are attached to the
solid skeleton but can also pass through the domain. This effect is in contrast to the
filter rule of Terzaghi, cf. Eq. (5.1), which is fulfilled for case B. This means that no
penetration of the suspension should occur. Summarizing it can be stated that the
observation of two single points of the GSD of solid and suspension is not sufficient
for predictions of infiltration phenomena. In case of uniformly distributed GSD of
solid and fluid the filter rule leads to correct, although too restrictive results. In case
of broadly distributed GSD it even might lead to wrong results. This is especially the
case for gap graded materials. Case A shows the maximum possible change in the
hydraulic properties. This occurs, because all particles are infiltrating in the porous
domain or even before. Physically such a case is called the formation of an external
filter-cake, which is a well-known and often unwanted phenomenon in geotechnical ap-
plications. In this case the final porosity can be computed straightforward as shown
in section 5.3.4.

A 2-dim example was presented in section 5.4.3. This example exploits all capa-
bilities of the method, described in this contribution. The presented problem can not
be solved analytically. Therefore, the examples presented before are used as bench-
marks to ensure correct results. Despite the simplicity of the conducted calculation,
the results are quite complex and not easy to predict. Slightly different initial values
in the GSD within sub-domains lead to different rates of infiltration. The process
is driven by heterogeneities and the species of smallest particles in the system. The
example shows that infiltration of fine particles in the porous domain varies the ef-
fective hydraulic properties significantly, leading to a more precise description of the
multi-physical transport problem. This model is also applicable to more realistic and
complex structures, but the computation time, especially resulting from the linking
procedures of the continuum and micro-scale approach has to be optimized. Never-
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Figure 5.12: Evolution of the morphology, here described by the GSD and CSD,
induced by infiltration of a suspension in two different points of the domain in Fig-
ure 5.11.

theless, a description of the morphology by considering the evolution of the GSD in
each integration point was achieved.

The main drawback of the proposed model so far is its restriction on hydraulic
properties. In classic poro-elastic formulations it could be shown that also the evo-
lution of mechanical properties has an impact on the overall process. Due to defor-
mations of the solid skeleton also the pore spaces are effected. Furthermore, it is
expected that the infiltration of fine particles to the solid skeleton has an influence
on the stiffness of the porous matrix and also on the final deformation-field of the
process.

The combination of the statistical evaluation of the morphology properties with
the TPM leads to the possibility of consideration of micro-scale effects together with
the usage of a field equation on the mesoscopic continuum formulation. The proposed
calculation approach removes the restriction of the consideration of effective mate-
rial properties, only. Within the multi-physical approach different types of variables
are used. The macro- and mesoscopic quantities are evolved due to micro-structural
effects. The approach presented in this contribution adds the possibility of the descrip-
tion of an additional level of homogenization, capturing micro-scale effects additional
to the use of conventional continuum formulation.
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5.6 Summary

In this contribution a multi-phase modelling approach was presented, capturing the
evolution of hydraulic properties of a porous medium on the continuum scale. To
enrich the continuum scale with informations from the micro structure, a statistical
method to calculate the CSD of a granular medium was derived and implemented at
the material point of the coarse-grained continuum model. The statistical approach
is a fast way to take into account the morphology of a granular material. Based
on existing calculation methods, the statistical CSD analysis was performed and im-
proved in crucial points. First, it was found that not every constellation is unique and
therefore the calculation process can become a lot more efficient, by considering only
the necessary constellations. Furthermore, it was pointed out that approaches taking
into account the relative density of a granular material, which were often used so far,
are not appropriate to capture the smallest and largest pore constriction at the same
time. A new averaging technique was presented, which is in very good agreement
with numerical results using a 3-dim pore network modelling approach. A simple way
of coupling the single approaches was presented by a novel definition of the mass ex-
change terms, which is defined by the comparison of the probability of occurrence of a
certain constriction size value Pcs with the probability of occurrence of a particle with
a larger diameter than the pore constriction. It could be shown that the consideration
of the whole GSD of solid matrix and the suspension leads to more accurate results
concerning infiltration processes and filter stability, than conventional methods, cf.
Eq. (5.1).

In the second part of the contribution, a continuum based approach was extended
from the description of single constituents to the description of constituents sub-
divided into species. In this framework the species correspond to discrete grad-
ing ranges of particles, which could be a result of sieving tests, which is the stan-
dard method for characterization of granular materials. In the resulting simulation
model, mass/volume balances of the partial constituents are numerically solved by the
Galerkin finite element method. This allows to describe the evolution of the hydraulic
properties of the mixture.

The link from the micro scale to the continuum model is realized with constitutive
equations of the mass exchange terms n̂ai , describing the probability for attachment
of each species within the fluid to the solid skeleton. Therefore, considerations on
the micro scale are the driving processes for the evolution of hydraulic properties.
Thus, the discussed model combines, in an averaged sense, small-scale morphologi-
cal constituents and transport process of fines with large-scale Darcy-type transport
equations.

This combination of simulations using different methods and scales allows to set
an IBVP and to solve it numerically. This fact makes the presented approach easy
to implement and applicable to technical applications. Although different examples
up to 2-dim were presented here, it has to be pointed out that the general numerical
approach, especially the statistical method, is valid for 3-dim without any restrictions.



Chapter 6

Hydro-mechanical simulations
of the annular gap grouting
process in mechanized
tunnelling

In this chapter a hydro-mechanical coupled model is developed using the
TPM. The approach is formulated on the continuum scale. The main fea-
ture of the proposed approach is the simulation of the evolution of hydraulic
and mechanical properties during the convective transport of a suspension
through a deformable porous medium. Within this approach infiltration,
stiffening, consolidation and plastic deformations are considered. The nu-
merical model is applied on an example in the field of mechanized tun-
nelling, simulating a tunnel cross-section during the gap grouting process.
The main focus here is to study the evolution of the intrinsic permeability
and the settlements. The latter are represented by the deformation of the
porous solid structure at the interface of the soil and the grouting domain.

6.1 Introduction

6.1.1 Suspension flow through porous media

The understanding of the ongoing processes during and especially after the backfilling
of the annular gap is of crucial importance to reach an efficient, fast and secure bedding
of the tunnel lining. Therefore, we propose a numerical modelling approach, capturing
the main physics of the technical application. The proposed multi-phase continuum
model is based on the concept of superimposed continua in the framework of the

– 79 –
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TPM, cf. Ehlers and Bluhm [30]. Within this concept, the pore fluid is modelled
as a suspension consisting of a tracer fluid and dissolved particles. As we restrict
ourselves to small Re-number, i.e. creeping flow, non-Newtonian effects (non-linear
shear stresses vs. shear strain rates) are not taken into account.

Considering this, infiltration is understood as the attachment of particles from
the suspension into the pore spaces or pore constrictions of the solid porous medium.
The driving process is the convective transport of the suspension and also the micro
structure of the porous medium and the particles in the fluid. The attachment of fine
solid particles to the solid skeleton leads on the one hand to an evolution of hydraulic
properties by reduction of the pore spaces and the intrinsic permeability of the solid
skeleton. On the other hand also the mechanical properties are varied, because the
additionally attached particles lead to an increase in stiffness of the solid skeleton.
From the modelling point of view, infiltration can be captured with a so called mass
exchange term in the relevant mass balances as published by de Boer [13] or Steeb et
al. [86].

Various aspects of the infiltration processes are taken into account within the pro-
posed model. There are already many modelling approaches existing, which describe
single effects. For the modelling of the hydraulics of particle transport through porous
media an analytical model has been proposed by Locke et al. [57]. Kenney et al. pro-
posed the idea to relate the particle transport to a so-called controlling constriction
size [49]. The approach was extended by Kenney and Lau [50] to predict the inter-
nal filter stability of a granular filter. An explicit solution for the critical hydraulic
gradient for the penetration of particles through a porous medium was provided by
Indraratna [44]. A contribution focussed on the formation of an internal filter cake
using the concepts of the evaluation of the grain packing is provided by Schwartz and
Wilkinson [76].

Experimental studies of rearrangement effects are also crucial for a physical un-
derstanding and parameter identification. The transport of a suspension through a
porous medium during infiltration and drainage was carried out by Zhuang et al.
[110]. Furthermore, analytical solutions for many simplified and decoupled prob-
lems have been developed by Verrujt [102], some of them are presented and used for
benchmarking purposes in this contribution. A model describing a similar effect of
rearrangement modelling, i.e. the erosion process, has been proposed by Steeb et al.
[81]. In addition to previously published approaches [70, 71, 73], also deformation of
the solid porous medium is captured in order to be able to simulate settlements of the
surface induced by the excavation process during the construction of a tunnel. The
continuum-based formulation is described within the poro-elastic approach published
by Biot [10].

The aim of this work is to develop a numerical continuum model for the simu-
lation of the hydro-mechanically coupled grouting process in mechanized tunnelling.
The evolution of hydraulic properties has been already discussed in previously pub-
lished approaches [70, 71, 73]. It could be shown that an evolution of the morphology
results from the infiltration process leading to significant variation of the hydraulic
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properties. The quantification of this properties, especially represented by the in-
trinsic permeability, is the basis for the adequate design of the annular gap grouting
mortar with respect to the dewatering process.

Apart from the hydraulic properties also the mechanical properties of the annular
gap mortar have an important impact on the grouting procedure. Thus, the numerical
model in this work is extended to capture the evolution of mechanical properties
in addition to the hydraulic part. The deformation of the solid porous medium is
captured in order to be able to simulate settlements of the surface induced by the
excavation process during the construction of a tunnel.

A fast transition from the pumpable properties of the grout in the initial phase to
a shear-stiffness of the grouting material, which allows to recover the primary stress
state of the surrounding soil in the final phase is required. The evolution of mechanical
properties is determined by different processes. Thus, stiffening, consolidation and
plasticity have been identified and, therefore, modelled in the following of this work.

The consolidation process describes the development of the solid skeleton of the
annular gap grout induced by dewatering. Thereby, a decrease of pore space results
in a higher coordination number of the particles, which results in an increase of
stiffness of the grouting material. The continuum-based formulation of consolidation
is described within the poro-elastic approach published by Biot [10].

As described above, this contribution is focussed on cement-free annular gap grout-
ing mortars. In order to reach the demanded shear-stiffness, the application of cement-
free mortars in tunnelling is restricted to permeable granular soils. For cohesionless
granular soils plasticity occurs also for small deformations. Thus, although this ap-
proach is restricted to small deformations of the solid, also a simple plastic constitutive
assumption is considered to account for a more realistic simulation of the mechanical
properties of the porous medium.

The plastic deformation is characterized by dislocations of single grains, which
results in de-structuring of the solid skeleton. The solid skeleton becomes weaker
during plastic deformations. The infiltration of fine particles increases the volume
fraction of the solid skeleton, which leads to a stiffening process of the solid skele-
ton. Thus, plasticity and stiffening can be present simultaneous and have an contrary
phenomenological effect. The numerical modelling approach is illustrated in Figure
6.1. In the upper part of the figure the rheological model for the simultaneous sim-
ulation of plasticity and stiffening is shown as a series connection of both elements.
The rheological element on the left consists of in parallel connected spring elements
describing the stiffening effect. Initially the stiffness of the solid skeleton is repre-
sented by the spring stiffness C1. As a result of infiltration of fine particles to the
solid skeleton its stiffness increases. This is illustrated with additional connections of
the spring elements C2-Cn. In the rheological illustration the stiffness is represented
by n springs in a discrete way. In the following part of this work it will be shown that
in the numerical model the increase of stiffness is not discrete but continuous. On
the right hand side of the rheological model a friction element is shown, describing
plastic deformations in the classical way.
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In the lower part of Figure 6.1 exemplary stress-strain curves are shown, assuming
plastic and stiffening material behaviour. Applying a load on the stiffening element,
leads to an increase in stiffness of the solid skeleton, which is related to the infiltration
process and therefore, to the hydraulic conditions. In case of an unloading the stiffness
of solid material remains constant. This is accounted for by the slope of the unloading
path in the stress-strain curve, which corresponds to the slope of the last loading path.
In the middle of the figure the corresponding stress-strain curve of an well-known ideal
plastic material behaviour is shown. Initially the material behaviour is elastic. As
soon as the yielding stress is reached additional deformation does not lead to an
increase of the solid stress, but to a plastic deformation. The unloading path of the
material is parallel to the loading path, which means that the material stiffness after
the loading cycle is the same as before the loading.

Furthermore, the behaviour of the suspension is captured by a mass balance and
a constitutive assumption for the effective dynamic viscosity of a particle laden fluid.

σEs σEs

εs εs

C1

C2

Cn

σEs

εs

yield

σEs σEs

stress

yield
stress

Figure 6.1: Details of numerical implementation of plastic behaviour of the solid
skeleton and its stiffening due to infiltration. Upper part: rheological model capturing
stiffening and plasticity simultaneously. The stiffening behaviour is represented by in
parallel connected spring elements and the plastic deformation by the friction element.
Lower part: stress-strain curves of a stiffening (left), plastic solid material (middle),
and the superposition of both effects (right).
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6.2 Continuum mechanical framework of modelling
hydro-mechanical coupling in porous media

6.2.1 Kinematics

In this section, a method to capture the hydro-mechanical coupling of a fully saturated
porous medium is presented. Hence, a brief introduction of the TPM is given.

four-constituents two-constituents

nsa

na

nf
ns

nlnsn

Figure 6.2: Fully saturated RVE representing a soil material (left), its homogenization
within the TPM , according to Steeb [82], as a four-constituent approach, with α =
{sa, sn, a, f} (middle), and the two-constituent approach, with β = {l, s} (right).

In order to use the TPM for the description of the processes mentioned above, a
homogenization technique is applied. The physics of a Representative Volume Element
(RVE) is traced back on individual phases ϕα of the constituent α. The mixture ϕ is
given as the superposition of all phases

ϕ =
∑

α

ϕα. (6.1)

Thus, the impact of a constituent ϕα on the physical behaviour of the mixture is
reduced on the volume fraction of a constituent ϕα. The volume fraction with respect
to a constituent ϕα is defined as

nα =
dvα

dv
, (6.2)

where dvα describes the volume of a constituent α in a certain unit cell with the
volume dv. The Representative Volume Element (RVE), illustrated in Figure 6.2 is
divided into four or two constituents with respect to its volume fraction, depending on
the application. In case of four constituents the following volume fractions are defined:
nf describes the volume fraction of the fluid, na the volume fraction of particles, which
are suspended in the fluid, nsn represents the particles forming a deformable porous
matrix, which is not participating in rearrangement effects, and nsa describes the
volume fraction of particles which are attached to the skeleton due to infiltration
from the constituent na.

A two-phase model is derived from the four-phase model by summing up certain
volume fractions. Here, the liquid fraction consists of the pore fluid and the therein
dissolved particles nl = nf + na. The solid constituent represents the solid particles
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forming the porous skeleton and the attached particles ns = nsn+nsa. In the following
it will be shown that the two-phase model is used, describing the evolution of the
dynamic viscosity of the suspension. For a formulation of the problem, which is easy
to interpret from physical point of view, the following reformulation is presented

φ = 1− ns, (6.3)

c =
na

φ
, (6.4)

a =
nsa

ns
, (6.5)

where c describes the concentration of suspended fine particles in the fluid, φ the
porosity of the medium, and a the amount of fine particles, that are attached to the
solid matrix. Note, that this formulation is restricted to fully-saturated volumes, i.e.
there is one liquid constituent, only. This allows to formulate the algebraic constraint
for the mixture nf + nsa + nsn + na = nl + ns = 1.

Furthermore, incompressibility of all constituents is assumed. Therefore, the ef-
fective densities of the constituents

ραR = ραR0 =
dmα

dv
= const (6.6)

remain constant. Thereby dmα describes the mass of a constituent ϕα. Assuming
incompressibility of the constituent, gas phases, which are known to be compressible
can not be captured. Additionally, also dynamic processes, e.g. the propagation of
acoustic waves, can not be simulated.

Motivated by the numerical implementation of the proposed approach using a
Galerkin-type finite element scheme, the motion of liquid constituents is described
using a modified Eulerian approach. Thus, the seepage velocity w is introduced as

w = vl − vs, (6.7)

with vl denoting the velocity of the liquid phase ϕl and vs the velocity of the solid
skeleton ϕs. The filter or Darcy velocity is given as

q = φw. (6.8)

6.2.2 Balance equations

Using the concepts of the TPM, we introduce partial local balance relations to derive
the field equations. The partial local mass balance of a constituent ϕα is given as

∂t(n
αραR) + div(nαραRvα) = ρ̂α = n̂αραR, (6.9)

with the velocity vα of the constituent ϕα and the volume production term n̂α. With
the assumptions of constant effective densities of the constituents, cf. Eq.(6.6) and
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mass exchange between constituents with the same effective density, the partial local
mass balance can be simplified to the partial local volume balance which reads

∂t(n
α) + div(nα vα) = n̂α. (6.10)

According to Figure 6.2 the volume/mass exchange is restricted in this numerical
model to the constituent of the suspended particle ϕa and the constituent of particles
attached to the solid skeleton ϕsa, cf. Ehlers and Buhm [30]. This prescribes the
direction of phase transition, which is represented in this work by the phenomenon of
infiltration. Together with the constraint of mass/volume exchange for the mixture

∑

α

n̂α = 0, (6.11)

it can be concluded that the production term is simplified to n̂sa = −n̂a.
For the description of the mechanical behaviour of the unit cell, the partial local

balance of momentum of an individual constituent ϕα is introduced as

ραaα − div Tα = ραbα + ŝα − ρ̂αvα, (6.12)

with the volume force bα, the total momentum production ŝα. The direct momentum
production p̂α is given as

p̂α = ŝα − ρ̂αvα. (6.13)

Additionally, we can formulate the restriction of the total momentum production for
the mixture as ∑

α

ŝα = 0. (6.14)

6.2.3 Constitutive formulation

The infiltration process is triggered by a mass exchange term n̂a. With this term the
rate of particles which rearrange from the volume fraction na to nsa is quantified. In
order to close the set of equations a constitutive assumption for the mass exchange
term n̂a is required. The thermodynamic consistency is ensured by the relation n̂a ∝ q
as derived by Steeb and Diebels [80]. Hence, this contribution is not focussed on the
evolution of geometrical properties of the particle packing, but on its mechanical
properties. A simplified expression for the mass exchange term

n̂a = −ψ cφ q (6.15)

is used, where ψ [m] describes a material parameter which depends on the morphol-
ogy of the porous skeleton and the fluidized fines in the suspension. For a more
sophisticated formulation details are given in [72].
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The coupling of the mechanical properties between the solid structure and the
pore fluid is realized via the concept of effective stresses of Terzaghi [25, 92]. This is
formulated as

Tα = Tα
E − nαp I, (6.16)

where Tα
E is the extra stress tensor and Tα the partial Cauchy stress tensor of a

constituent ϕα. The pore pressure is depicted as p. This concept is applied on the
mixture, i.e. the sum of all constituents. Therefore, the concept of effective stresses
is written as T = Ts

E − pI.

For the derivation of a linear-elastic constitutive equation for the extra stress tensor
Ts
E of the solid constituent ϕs, we follow the idea of Steeb et al. [86] to interpret

the volume fraction of the solid particles attached to the skeleton nsa as a process
variable in terms of the constitutive formulation using the framework of the entropy
principle published by Coleman and Noll [21]. Thus, the free Helmholtz energy Ψs of
the solid constituent ϕs is assumed as

Ψs(a, εs) = (1 + a)

(
1

2
λ(tr(εs)

2 + µ tr(ε2
s)

)
, with Ts

E =
∂Ψs

∂εs
. (6.17)

The strain of the solid skeleton is denoted as εs, λ and µ are the well known Lamé
parameter, which are obtained from various sets of other elasticity parameters. The

elastic forth order stiffness tensor
4

C (λ, µ) can also be used equivalently. The amount
of attached particles is denoted as a and results by the reformulation used in Eq. (6.5)
from the volume fraction nsa. Then the elastic constitutive assumption for the solid
skeleton reads

Ts
E = (λ tr (εs) I + 2µ εs) (1 + a) . (6.18)

For a = 0, which physically means that no particles were infiltrated to the solid skele-
ton yet, Eq. (6.18) represents linear-elastic behaviour. Therefore, a acts as a stiffening
parameter, in terms of an inverse-damage formulation in this case and accounts for
the evolution in the stiffness of the solid skeleton due to attachment of additional
particles to it. This is an assumption, which has to be validated experimentally. Es-
pecially linearity of Eq. (6.18) has to be questioned. It is interesting to note here,
that, according to Steeb et al. [81] this parameter is not an additional unknown, but
can directly be calculated by integrating the volume balance of the stable part of the
solid skeleton ϕsn to

a = 1− (1− a0)(1− φ0)(1− div us)

1− φ . (6.19)

The deformations of the solid phase is expressed as us and the initial amount of
attached particles is a0. Neglecting erosion processes and considering infiltration only,
the initial amount of attached particles is not present (a0 = 0). Note, that this type of
constitutive formulation might lead to non physical results of increasing stresses if an
numerical experiment with constant strain value and increasing number of attached



6.2. Continuum mechanical framework of modelling hydro-mechanical coupling in
porous media 87

particles a is considered. This can be overcome be an incremental implementation of
Eq. (6.18).

For the numerical implementation of the stiffening behaviour the elastic constants
are modified and are given as

λ∗ = λ(1 + a), µ∗ = µ(1 + a). (6.20)

Therefore, also a modified stiffness tensor is defined as

4

C∗(λ∗, µ∗) = (1 + a)
4

C (λ, µ), (6.21)

using the corresponding elastic constants.

In case of modelling infiltration phenomena as presented within this approach, an
evolution of the dynamic viscosity of the liquid phase, i.e the mixture of the fluid
and suspended particles is observed. In order to account for this, evolution equations
for the effective dynamic viscosity ηfR of the suspension were formulated. For dilute
suspensions (small concentration c) Einstein proposed a linear dependency of the
effective dynamic viscosity ηfR and the concentration of suspended particles c, which
is given as

ηfR = ηlR (1 + 2.5 c) . (6.22)

Following Einstein, this equation is limited to dilute suspensions and is vaild for
c ≤ 0.05. Later, Eilers [31, 32] proposed a non-linear dependency, which is valid for
dilute and dense suspensions. The equation derived by Eilers reads

ηfR = ηlR
(

1 +
2.5 c

2 (1− κc)

)2

, (6.23)

with the material parameter κ. The material parameter depends on the grading of
the GSD. For mono-disperse particle distributions κ = 1.28 and in case of narrow
graded material κ = 1.30 is proposed. For broadly graded material κ = 1.35 can be
used. The following examples were conducted using κ = 1.30. In general, Eq. (6.23)
collapses to Eq. (6.22) for small values of the concentration c ≤ 0.05. Eq. (6.23) is
valid for concentrations of c < 0.74. This value represent the most densest packing of
mono-disperse spherical particles.

Additionally, Darcy’s law [30] was used, which establishes a dependency of the
pressure gradient grad p to the filter velocity q. For the quasi static case (af = 0) it
can be written as

q = − ks

ηfR
grad p. (6.24)

As it will be shown later, the porosity φ is one of the primary variables within
the multi-physical approach. For the evaluation of the hydraulic conductivity, the
intrinsic permeability ks, which is purely dependent on the porous material and is
not affected by the penetrating fluid, is calculated. Thus, a link of the porosity φ and



88 Chapter 6 Hydro-mechanical simulations of the annular gap grouting process

the intrinsic permeability ks is given by the Kozeny-Carman equation [18] as

ks =
1

CKC

1

S2
0

[
φ3

(1− φ2)

]
, (6.25)

with the Kozeny-Carman parameter CKC which is in the range 4.8± 0.3, but usually
5 is used. The parameter S0 describes the specific surface of the porous medium per
unit volume. In case of a granular porous medium S0 reads

S0 =
6

Deff
, with Deff =

1
f∑
i=1

ns
i/ns

di

, (6.26)

Deff being the effective particle diameter of the considered GSD of the solid skeleton.
If the GSD consists of f discrete grading ranges, then one certain grading with the
index i is described by its mean diameter di and the corresponding species nsi .

6.2.4 Extension to soil-plasticity

After the formulation of the hydro-mechanical coupling using an extended linear-
elastic constitutive formulation, the constitutive relation of the mechanical part of
the approach is extended to capture plastic deformations of the solid skeleton. This
is necessary to capture a realistic stress state of granular porous material. In the
following section, the definitions given in section 3.5.3 are used to implement plastic
deformations of the solid skeleton in addition to the hydro-mechanical coupling and
the stiffening effect caused by infiltration of the fines. Therefore, the most important
definitions are repeated and applied on the modelling approach, which is created in
this chapter of the thesis.

Again, the additive decomposition of the solid strain εs and the corresponding
rate ε̇s into the elastic εel

s and the plastic part εpl
s is performed as

εs = εel
s + εpl

s , ε̇s = ε̇el
s + ε̇pl

s . (6.27)

According to Figure 6.1 stiffening and plastic deformations have contrary effects on the
solid skeleton but can be simultaneously present. To account for this the constitutive
equation for the elastic deformation is modified to

Ts
E =

4

C∗ : εel
s . (6.28)

This leads also to a modified definition of the stress increment Ṫs
E , which is given as

Ṫs
E =

4

C∗ : ε̇s − λ̇
4

C∗ :
∂F

∂Ts
E

(6.29)
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with the function of the yield surface F . The increment of the plastic multiplier λ̇
becomes

λ̇ =

(
∂F

∂Ts
E

)T
:

4

C∗ : ε̇s

(
∂F

∂Ts
E

)T
:

4

C∗ :
∂F

∂Ts
E

. (6.30)

Finally, the constitutive relation of elasto-plastic material behaviour including stiff-
ening effects is written as

Ṫs
E =




4

C∗ −

4

C∗ :
∂F

∂Ts
E

⊗
(
∂F

∂Ts
E

)T
:

4

C∗

(
∂F

∂Ts
E

)T
:

4

C∗ :
∂F

∂Ts
E


 : ε̇s. (6.31)

This chapter of the thesis is focussed on the hydro-mechanical coupling and the im-
pact of single coupling phenomena. Therefore, the most simple yielding function
representing perfect plastic material behaviour is used in the following. In order to
obtain this the constant in the criterion of Drucker-Prager, cf. Eq. (3.101) is zero
(αDP = 0), which leads to the yielding function defined as

F =
√
J2 − kDP. (6.32)

Note, that the focus of the model presented in this chapter is to describe the inter-
action of infiltration and plasticity. In order to capture realistic soil behaviour it can
be extended by more sophisticated yielding-criteria.

6.2.5 Boundary Value Problem considering infiltration and defor-
mation of the solid skeleton

Summing up all above described relationships an Initial Boundary Value Problem
(IBVP) is created consisting of four coupled Partial Differential Equations (PDE’s):

div vs + div q = 0, ∀x ∈ B × t, (6.33)

∂t(c φ) + div (c φvs) + div (cq) = n̂a, ∀x ∈ B × t, (6.34)

∂t (φ)− div(vs) + div(φvs) = n̂a, ∀x ∈ B × t, (6.35)

div T =
n̂aρsR

φ
q, ∀x ∈ B × t. (6.36)

The Eqs. (6.33-6.35) are obtained using the definition of the partial local mass balance
of a constituent ϕα (cf. Eq.(6.10)) as well as the definitions of the reformulated
primary variables (cf. Eqs.(6.3-6.4)), the seepage velocity (cf. Eq. (6.7)), the filter
velocity (cf. Eq. (6.8)), and Darcy’s law (cf. Eq. (6.24)). Due to the concept of
superimposed continua, the local partial mass balance is also valid for an arbitrary
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subdivision of the unit-cell. To obtain Eq. (6.33) the local mass balance is evaluated
for the mixture. For the derivation of Eq. (6.34) the constituent of the suspended
particles ϕa and for Eq. (6.35) the constituent of the solid skeleton ϕs = ϕsa + ϕn

is considered. Following Steeb et al. [81] we obtain Eq. (6.36) by evaluation of the
local balance of momentum, cf. Eq. (6.12) for the mixture.

Furthermore, boundary conditions (b.c.’s) are prescribed to close the problem.
The Neumann boundary is defined as ΓN and the Dirichlet boundary as ΓD

q = q · n = q, cq · n = c̄ q, T · n = t̄ ∀x ∈ ΓN × t, (6.37)

p = p, c = c, us = ūs ∀x ∈ ΓD × t. (6.38)

Note, that only one of both boundary conditions can be applied on the same cor-
responding boundary. The motivation for the choice of boundary conditions results
from the physical interpretation. Prescribing q and c on a boundary leads also to a
fixed value of cq ·n. This approach (Eqs. (6.33-6.36)) captures the solid deformation
in the framework of elasto-plastic as also the evolution of hydraulic properties due
to infiltration. In addition, initial conditions are prescribed within the calculation
domain

p = p0, c = c0, φ = φ0, us = us,0 ∀x ∈ B0 × T. (6.39)

6.2.6 Numerical implementation

To obtain a numerical solution of the IBVP described above, Eqs. (6.33-6.39) were
implemented in a commercial finite element software (Comsol Multiphysics). To this
aim, a weak formulation is derived from the local balance equations. The strong forms
(Eqs. (6.33-6.36)) are multiplied by test functions and integrated in space, thus

∫

B

δφdiv (φvs) dB =

∫

B

δφ n̂a dB (6.40)

∫

B

ks

ηfR
grad p · (δ grad p) dB +

∫

B

δpdiv (vs) dB =

∫

Γq

(δ pq) · n dΓq,

(6.41)
∫

B

c
ks

ηfR
grad(δc) · grad(p) dB +

∫

B

δc [∂t(c)φ+ c ∂t(φ)− n̂a (6.42)

+grad(c)φvs + c grad(φ) vs + c φdiv(vs)]dB =

∫

Γc

δcq · n dΓc,

∫

B

T : δεs dB −
∫

B

n̂aρsR

φ

ks

ηfR
grad(p) · δus dB =

∫

Γus

t · δus dΓus
. (6.43)
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Intrinsic permeability ks 1.02× 10−12 m2

Effective dyn. viscosity ηfR 80 Pa s

Dimension of domain H 1 m

Elastic modulus E 1.44 MPa

Poisson’s ratio ν 0.2

Boundary loading t 10 kPa

Table 6.1: Material properties and boundary conditions usedd for the consolidation
problem.

Note, that the right hand side (rhs) of Eqs. (6.41-6.43) can be also replaced by bound-
ary conditions, introduced above, cf. Eqs. (6.37, 6.38). In case of homogeneous Neu-
mann boundary conditions the corresponding rhs vanishes. Additionally the weak
formulations have to be discretized in time and a numerical solution scheme, e.g. the
Newton-Raphson algorithm is used in order to obtain the numerical solution. The
plastic equations are solved with an additional Newton-Raphson algorithm.

6.3 Validation of the numerical model

6.3.1 Mechanical part: validation of the approach using Terza-
ghi’s problem

In this section a validation of the hydro-mechanical infiltration model is presented.
In a first step the approach is reduced to capture consolidation and its outcome is
compared with the well known Terzaghi’s problem.

For the validation of the consolidation modelling presented here, a physical 1-
dim numerical example is used and a fully-saturated porous media is considered, cf.
Figure 6.3. On three of the four edges of the domain undrained boundary conditions
are chosen and displacement of the solid is additionally prescribed to zero. On the
remaining edge a drained boundary condition (p = 0) is used and additionally a
distributed load t is applied on the mixture.

This problem is described by the 1-dim pressure diffusion equation proposed by
Terzaghi [93], which reads

∂p

∂t
= cv

∂2p

∂z2
, (6.44)

Assuming rigid solid grains (α = 1) and incompressible fluid constituent (Sp = 0) the
consolidation coefficient cv is defined as

cv =
ks(2µs + λs)

ηlR
, (6.45)
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Figure 6.3: Illustration of the 1-dim IBVP and used boundary and initial conditions.

where λs and µs are the Lamé parameters of the solid skeleton, which are directly
calculated from E and ν. For this problem, an analytical solution has been developed
[19, 102]. Thus, the pressure distribution p(t, z) in spatial position z and time t is
written as a infinite series which reads

p(t, z)

p0
=

4

π

∞∑

j=1

(
(−1)j−1

2j − 1
cos

[
(2j − 1)

π

2

(
H − z
H

)]
exp

[
−(2j − 1)2π

2

4

cvt

H2

])
.

(6.46)
Additional to the definitions used in Table 6.1, p0 is the initial pore pressure and
corresponds to the boundary load (p0 = t · n), in case of the considered Terzaghi’s
problem. Following Verrujt [102] the consolidation process is assumed to be finished
if

cvt

H2
≈ 2. (6.47)

when solving the analytical expression in Eq. (6.46) the first 100 terms of the infinite
series were considered.

For the numerical calculation, the approach described in the previous part of the
contribution was used in a simplified version, to adapt to the analytical calculation.
First, the intrinsic permeability is assumed constant during the calculation and is not
evolving in time (ks = ks0). Therefore, equation (6.25) is neglected. The infiltration
process is not accounted for within the Terzaghi’s consolidation problem. Thus, the
mass exchange is neglected for this problem. To validate the coupling and numerical
implementation the mass exchange term is not removed completely, but is set in a
range where mass exchange between constituents is neglected n̂a ≈ 0. The simulation
time was limited by Eq. (6.47) to tmax = 2H2/cv.
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Figure 6.4: Comparison of the analytical and the numerical solution of Terzaghi’s
consolidation problem. The results of the pressure distribution of both approaches is
plotted for the same times. The time step is determined based on the consolidation
time ∆t = 0.1× tmax.

The corresponding results of both approaches are presented in Figure 6.4. There,
the pressure distribution is plotted for a cross section along the coordinate z through
the domain, cf. Fig. 6.3. As a result of consolidation the pressure decreases within
time, starting from the drained boundary. Both approaches are in good agreement
with each other.

6.3.2 Hydraulic part: validation with a 0-dim example for infil-
tration

In this section the hydraulic part of the numerical model is validated with a 0-dim
numerical example. The 0-dim calculations are conducted as shown in Figure 6.5.
For the numerical approach it is realized as a 1-element FEM implementation. The
mechanical part is simulated with restriction of the displacement on all boundaries and
a very stiff porous matrix, cf. Table 6.2. For the hydraulic part the upper and lower
boundaries are undrained, whereas the other boundaries are drained. Additionally, a
material transport is enhanced by prescribing a pressure gradient between the edge
on the left and the right edge. To ensure a constant amount of fine particles in the
system, periodic boundary conditions for the concentration of fines are used.

However, to match the numerical problem to the analytical one some additional
assumptions are required. The mechanical behaviour was validated in the previous
example and is therefore of minor interest. Hence, the stiffness of the porous mate-
rial E was chosen so high, that deformation of the solid is neglected. Furthermore,



94 Chapter 6 Hydro-mechanical simulations of the annular gap grouting process

the evolution of the microstructure is not considered in the mass exchange term.
Therefore, the mass exchange term reads

n̂a = −c φ q. (6.48)

The analytical solution for the evolution of porosity φ in 0-dim is written as

ns(t) = ns0 − na0 (exp(−Q(t))− 1), with Q(t) =

∫ t

T̄=T0

q(t̄)dt̄. (6.49)

In case of a constant filter velocity, e.g. for an infiltration problem driven by Neumann
b.c. for q, this equation is used directly. Here, the filter velocity q is a result of
the hydraulic properties of the medium and the corresponding Dirichlet b.c. for
the pressure p. Hence here, the evolution of the filter velocity can not be derived
analytically, it is taken from the numerical solution.

Pressure at boundary p1 10 kPa

Pressure at boundary p0 0 kPa

Initial concentration c 0.2

Initial porosity φ 0.4

Effective particle size Deff 0.05 cm

Effective dyn. viscosity ηlR 80 Pa s

Dimension of domain H 1 m

Elastic modulus E 1.44 GPa

Table 6.2: Material properties and
boundary conditions used for the
analytical solution of infiltration
and the corresponding numerical
simulation.

φ0, c0

H

p1, c̄ p0, c̄

Figure 6.5: IBVP containing initial
and boundary conditions for the sim-
ulation of 0-dim infiltration.

The results obtained from both approaches are shown in Figure 6.6. The porosity
evolves from the initial value φ0 to an equilibrium value. As a result of the fact that
the amount of fine particles remains constant for all time steps, the final porosity φ∞
is computed to φ∞ = φ0(1 − c0) = 0.32. The evolution of porosity resulting from
both approaches match very well to each other and to the final porosity.

6.3.3 Validation of the plastic formulation

In this section an analytical solution for a simple Boundary Value Problem (BVP)
is presented. After this the numerical approach is adopted and the corresponding
results are compared with each other.
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Figure 6.6: Numerical and analytical solution for the time depended evolution of
porosity of the 0-dim infiltration approach.
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Figure 6.7: Boundary Value Problem (expansion of a cylindrical tube) to compare the
numerical approach with an analytical solution in case of ideal plastic yield function
using Tresca criterion.
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The BVP, which is solved analytically describes an expansion of a cylindrical
tube, assuming ideal plasticity, cf. Figure 6.7. A cross-section of a cylindrical tube is
characterized by its inner radius τ and the outer radius ω. Furthermore, a loading t̄
is applied on the inner border, whereas the outer border remains stress free. If the
loading t̄ is high enough, the material starts yielding at the point of highest stress,
i.e. the inner border of the tube. Therefore, a plastic zone develops starting from
the inner border, which is represented by the variable γ. Due to the geometry of
the problem, the stress state is described in polar coordinates. The transformation
of the corresponding entries of the Cauchy stress tensor T is traced back to simple
geometrical considerations. Without derivation, following Altenbach et al. [1] the
components of the Cauchy stress tensor are written as

Trr = T11 cos2θ + T22 sin2θ + T12 sin 2θ, (6.50)

Tθθ = T11 sin2θ + T22 cos2θ − T12 sin 2θ, (6.51)

Trθ = (T22 − T11) sin θ cos θ + T12 cos 2θ. (6.52)

Here, the radius r and the the angle θ describe the 2-dim polar coordinate system.
The analytical solution that is used here was documented by Hill [40] and partly also
by Turner in 1909 [100]. There, ideal plasticity applying the yield criterion of Tresca
is employed, as an associated flow rule. In polar coordinates it reads

F = Tθθ − Trr = const. (6.53)

In this case and using the abbreviation Y = Tθθ − Trr, the stress distribution along
the r-axis is derived. It is distinguished between the plastic and the elastic zone of
the material. In the elastic zone the stress distribution (γ ≤ r ≤ ω) is given as

Trr
Y

= − γ2

2ω2

(
ω2

r2
− 1

)
, (6.54)

Tθθ
Y

=
γ2

2ω2

(
ω2

r2
+ 1

)
. (6.55)

(6.56)

In the plastic zone (τ ≤ r ≤ γ) the following formulation is used

Trr
Y

= −1

2
− ln

(γ
r

)
+

γ2

2ω2
, (6.57)

Tθθ
Y

=
1

2
− ln

(γ
r

)
+

γ2

2ω2
. (6.58)

In order to adapt the numerical results to the analytical solution, a similar BVP
was created, cf. Figure 6.7. Additionally to the aforementioned boundary values
the fluid pressure of the outer boundary (r = γ) was set to zero, which represents
a drained boundary condition. Furthermore, infiltration was inhibited by choosing
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Figure 6.8: Distribution of the radial stress component Trr in case of different loading
conditions for the numerical and the analytical approach.

the corresponding material parameter to be almost zero ψ ≈ 0 and the same yielding
function, as for the analytical solution was used, cf. Eq. (6.53).

The results of the stress distributions of both, the numerical and analytical ap-
proaches, are plotted in the Figures 6.8 and 6.9. Both figures consist of dimensionless
graphs. To obtain the stress distribution curves, the parameter Y was kept constant.
In the numerical case the loading t̄ was varied. Hence, the plastic zone γ could be
identified as a maximum of the graphs in Figure 6.9. Knowing the size of the plastic
zone, it was used to obtain the analytical solution.

In Figure 6.8 the radial stress component Trr is plotted for the same loading con-
ditions. Here, the development of the plastic zone is visualized as a kink in the stress
distribution. However, both, the analytical and the proposed numerical approach,
lead to very similar results in the circumferential and the radial stress distribution.

In Figure 6.9 the distribution of the circumferential stress Tθθ is shown for different
loading conditions. With increasing load t̄ the size of the plastic zone is increased.
Despite yielding of the material takes place, the absolute value of the circumferential
stress is also increasing with a higher loading. At the outer boundary, r = ω, the
equilibrium condition of Tθθ = 0 is fulfilled for all times.
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Figure 6.9: Distribution of the circumferential stress component Tθθ in case of different
loading conditions for the numerical and the analytical approach.

6.4 Numerical results

6.4.1 Evolution of mechanical and hydraulic properties in a cross
section of a tunnel lining

The following example shows the application of the developed model and all its ca-
pabilities in the field of mechanized tunnelling. Therefore, a cross section of a tunnel
lining is considered during the grouting process of the annular gap (Figure 6.10).
Furthermore, it is illustrated how to transform the physical domain, consisting of the
lining, the filled annular gap and the surrounding soil into a numerical simulation
model. The lining is not modelled, but is replaced by boundary conditions instead,
i.e. a flux is prescribed on the corresponding border. Resulting from the chosen filter
velocity, displacements arise that would lead to traction on the boundary of the lining,
which means that the tunnel lining is not supporting the material in this case. Since
the filling process itself is not captured in this approach, the border of the tunnel
lining is chosen to be traction free. The same boundary condition was also chosen for
the outer radial border. Furthermore, drained boundary conditions for the convective
transport of the suspension, i.e. q̄ and c̄ were chosen. On the other borders symmetry
boundary conditions were applied, i.e. undrained conditions and displacements in the
tangential directions, only.

To analyse the grouting process, different phenomena of the model were investi-
gated. In general those are:
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Figure 6.10: From the application (left) to a numerical IBVP (right). Homogenization
and boundary conditions for the IBVP.

• Infiltration: captures the attachment of fine particles from the suspension to
the porous medium.

• Stiffening: due to infiltration the volume fraction of the solid constituent in-
creases. This leads to an increase of the stiffness of the porous medium.

• Plasticity: captures permanent plastic deformations of the solid skeleton.

• Consolidation: poro-elastic approach, simulating the deformation of the solid
skeleton resulting from the loading of the grouting process.

Each physical combination of those phenomena has been carried out and is presented
in the following. For this, different combinations of aforementioned phenomena were
created and are summarized as six different cases in Table 6.3.

For the analysis of the mechanical properties of the domain, the radial displace-
ment in point P was chosen, cf. Figure 6.10. To describe the evolution of the hydraulic
properties, the intrinsic permeability along radial direction of the domain was plotted
for the last time step at tpr.
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Case Infiltration Stiffening Plasticity Consolidation

1 X

2 X X X

3 X X

4 X X X

5 X

6 X X

Table 6.3: Different cases, created to analyse the coupling of different effects and their
impact on the evolution of hydraulic and mechanical properies.

Hydraulic properties:

In Figure 6.11 the evolution of the hydraulic properties, represented by the intrinsic
permeability ks is plotted. In case 5 no infiltration is considered. Therefore, also
stiffening of the material can not be captured and the permeability is not evolving in a
broad range. Nevertheless, resulting from the solid-fluid interaction, the permeability
decreases due to the pure deformation of the solid. The deformation depends on the
local pressure gradient, which is a linear decreasing function evaluated in the radial
direction. This is the reason why also the intrinsic permeability is not constant, but
a linearly decreasing function. In case 1 the distribution of the intrinsic permeability
due to infiltration only is plotted. This means, that all kind of mechanical interaction
is neglected. The intrinsic permeability decreases most in the region of the grouting
edge, followed by a transition zone of ≈ 0.3 m. After that the characteristics is
almost constant. The full approach including infiltration, stiffening, and plasticity is
represented by case 4. There, the evolution of the intrinsic permeability is similar to
case 1, but slightly smaller. This is explained by the deformable solid skeleton and the
non constant distribution of tensile stresses. However, the impact of the mechanical
properties and its modelling on the hydraulic properties is rather small. Therefore,
case 4 represents also the permeability distribution of cases 2, 3, and 6.

Mechanical properties:

The radial displacement was evaluated at a chosen point P on the interface between
grouting and surrounding soil domain, cf. Figure 6.10. The radial displacement is
plotted for all time steps and chosen cases in Figure 6.12. The characteristics of the
curve representing case 5 are driven by the consolidation process. As a result of the
solid-fluid interaction, the prescribed filter velocity on the inner edge leads to a time
depended deformation of the soil. After the porous medium is consolidated the dis-
placement remains constant for all further time steps. In case 3 and case 6, in addition
to the consolidation process, infiltration was simulated. In both cases this leads to
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higher deformations, which is an result of the infiltration process. Resulting from the
decreasing intrinsic permeability, the effective stresses of the solid constituent are in-
creasing, leading to larger deformations. The highest deformations are obtained using
an elastic material behaviour (case 6). Considering plasticity (case 3), the increase
for the last part of the simulation is smaller, compared to consolidation. If stiffening
is considered, it additionally leads to a relativization of the deformations (case 2,
case 4). On the one hand infiltration is considered, which enhances the deformations.
On the other hand deformations are diminished by stiffening of the solid constituent.
Therefore, the combined effect of infiltration and stiffening provides deformations in
between of pure consolidation and additional infiltration. The aforementioned impact
of plasticity differs the characterizations of the functions of case 2 and case 4.

Initial concentration c0 0.1 -

Initial porosity φ0 0.55 -

Effective particle size Deff,01 0.005 m

Effective dyn. viscosity ηlR 80 Pa s

Density of solid constituent ρs 2000 kg/m3

Density of fluid constituent ρf 1000 kg/m3

Infiltration parameter ψ 30 m

Dimension of domain H1 0.85 m

Dimension of domain H2 0.15 m

Elastic modulus of the skeleton E0 5 MPa

Poisson’s ratio of the skeleton ν 0.2 -

Grouting time tpr 18000 s

Grout injection flux q̄r 3× 10−5 m/s

Kozeny-Carman constant CKC 5 -

Constant for Eilers equation κ 1.3 -

Drucker-Prager constant αDP 0 -

Drucker-Prager constant kDP 0.15 MPa

Table 6.4: Material properties and used boundary conditions used for the simulation
of the cross section of a tunnel lining illustrated in Figure 6.10.

Heterogeneous inclusions in the surrounding soil

Extending the numerical example of section 6.4.1, the impact of heterogeneous in-
clusions in the surrounding soil of the tunnel cross section is demonstrated. For the
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Figure 6.11: Distribution of the intrinsic permeability for the last time step of the
simulation along the e1 direction, cf. Figure 6.10. The definition of the corresponding
cases is given in Table 6.3.
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conducted numerical example all given definitions in Figure 6.10 and Table 6.4 were
used. Additionally arbitrary sized, spherical, and impermeable inclusions were im-
plemented in the calculation domain. Physically, it corresponds to coarse grained
material, which are too large for homogenization within the TPM. The numerical
implementation was performed by removing the area of the inclusions from the con-
sidered domain and replacing it as a spring foundation boundary condition, with the
stiffness Einc = 10E0, acting normal to the surface boundary of the inclusions. For
all other fields no-flux boundary conditions were used.

In Figure 6.13 the results of the calculation are shown by contour plots for the shear
modulus of the solid skeleton µs and the intrinsic permeability ks for three different
time frames. Initially a lower shear-modulus of the mortar domain compared with the
soil domain was chosen. After t = 0.41 h already a first evolution in the shear-modulus
is visible. In the grout domain the shear-modulus is increasing homogeneously. In
the soil domain the shear-modulus is evolving heterogeneously, as a consequence of
the impermeable inclusions. After t = 5 h also in the mortar domain the shear-
modulus has a non-constant distribution and its value corresponds at least to the
initial shear-modulus in the soil domain. In the soil domain a significant increase
of the shear-modulus is observed, especially localized at the interface of the soil and
mortar domain.

For the intrinsic permeability a constant distribution in the grout and the soil
domain is initially assumed. During the simulation process, a highly non-uniform
distribution arises which is characterized on the one hand by the infiltration process
and on the other hand by the heterogeneous inclusions.

6.5 Discussion

The process of annular gap grouting in context of a tunnel lining is very complex
and depends on many coupled effects. For its simulation a simplified IBVP was
created in section 6.2.5. As driving quantity of the grouting process the material flux
of the suspension was prescribed. It is pointed out that, in practical applications
several possibilities for the realization of the grouting process exist. For a deeper
understanding of the practical gap grouting it is referred to the publication of Thewes
et al. [95]. In general, grouting can be continuous or discontinuous. Furthermore,
it is distinguished between pressure or flux-driven grouting. Practically, also the
experience of the responsible project engineer is of crucial importance, to adjust the
pressure and/or flux within the process. Concluding, the here presented example of
the grouting process represents only one of many possibilities of annular gap grouting.
This means that the findings can be only transferred to similar problems. However, all
aforementioned cases of grouting are simulated within the proposed numerical model,
by appropriately choosing corresponding boundary conditions.

The results of the numerical example (Figures 6.11, 6.12) show, that the hydraulic
properties are not strongly depending on the way of simulating mechanical quantities.
The major part of the evolution of the intrinsic permeability is traced back to the
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infiltration process. Though, also the deformation of the porous medium, resulting
in a variation of the porosity, has an impact on the intrinsic permeability, which is
captured within the proposed approach. Considering the numerical simulation of the
infiltration, the evolution of the intrinsic permeability mainly depends on the time
duration of the grouting process and the microstructure of the mortar/soil system. In
this example, the evolution of the intrinsic permeability is localized on the grouting
domain and a small part of the soil domain. Overall the formation of a filter cake is
observed.

The evolution of mechanical properties results from a more complex coupling of
single effects. As soon as the porous medium is considered not to be rigid, where
naturally no deformations are possible (case 1), an impact of all described physical
effects is observed. In general, simulations neglecting the infiltration process provide
the quantitative smallest deformations on the interface of soil and mortar. If infil-
tration is considered, the largest deformations are observed in simulations neglecting
stiffening. Additional consideration of material stiffening leads to a slightly weaker
development of the deformation field. If importance of all physically described ef-
fects is postulated, the smallest deformations arise (case 5). This is explained by the
missing hydro-mechanical coupling. Neglecting the stiffening effect, the prediction
of displacements becomes to conservative. Although it is counter-intuitive imple-
mentation of a plastic material model leads to smaller deformations at the evaluated
interface compared to an elastic model. The proposed model, as implemented with an
ideal plastic material behaviour, is surely not suitable for modelling of a realistic soil
behaviour. However, using perfect plasticity leads to the lower limit of the material
strength, whereas the upper limit is achieved by using an elastic model. Considering
the difference in soil deformation between both approaches, e.g. case 2 and case 4,
the expected impact of a realistic, more complex soil plasticity model is of minor
interest. In principle the usage of such an approach within the here presented model
is straightforward.

In case of the simulation represented by Figure 6.13 the impact of impermeable
inclusions with a higher stiffness than the surrounding soil were studied. The evolution
of the shear-modulus can be traced back on two different phenomena. In the beginning
phase the process is dominated by consolidation, which leads to a almost constant
distribution of the shear-modulus in the grout domain. After t = 5 h the process
is dominated by the infiltration leading to a almost linear distributed shear-modulus
in the grout domain and a highly non-uniform distribution in the soil domain. The
impact of the impermeable inclusions takes mostly place perpendicular to the flow
direction. The evolution of the shear-modulus can be interpreted taking the evolution
in the intrinsic permeability into account. The effective cross section is decreased by
the impermeable inclusions and thus the filter velocity is increased, which leads to a
higher infiltration rate. In the direction of the flow in the region of the inclusions the
smallest infiltration rate is observed. Concluding, it can be stated that the demanded
shear-modulus in the grout domain is reached by consideration of the consolidation
and infiltration process.
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6.6 Conclusion

A multi-physical numerical approach was presented in this contribution. By use
of the continuum-based TPM, the evolution of mechanical and hydraulic properties
during the flow of a suspension through a deformable porous medium was described
numerically. The proposed approach considered several physical phenomena, which
were benchmarked one after the other using broadly used or self developed analytical
solutions for unique phenomena. The numerical solutions for individual phenomena
are in very good agreement with the corresponding analytical solutions.

Subsequently, a numerical example in the field of mechanized tunnelling was cre-
ated considering a part of a cross section of a tunnel lining. Neglecting volume forces,
rotational symmetry was exploited. Hence, the soil deformation, which corresponds
to the settlements, was evaluated at a point on the interface of the soil and grout
domain and visualized for all time steps. Furthermore, the intrinsic permeability was
evaluated along a cut line though both domains in radial direction for the last time
step of the grouting process. By comparing of simulations capturing different com-
bination of the physical phenomena, the coupling and the impact of single modelling
features on the overall process was obtained. Furthermore, the practical use of the
derived approach was demonstrated by a numerical example with heterogeneous im-
permeable inclusions. It could be shown that the demanded mechanical properties
can be reached with cement-free grouting mortar by a de-watering process induced
by a flux driven backfilling of the annular gap.



Chapter 7

Concluding remarks

In this last chapter of the work, the results obtained in the previous chap-
ters are discussed and concluded. The main findings are related to the
annular gap grouting procedure, which was described in the introduction
of Chapter 2. After this, the work is summarized and possible fields for
further investigations and open questions are presented.

7.1 Discussion and conclusion

The scope of this work, presented in Chapter 1, was to develop numerical models for
the simulation of the annular gap grouting process in mechanized tunnelling. After
that, Chapter 2 was focussed on the technical details of the annular gap grouting
process in engineering practise. The theoretical framework of the TPM for the de-
velopment of the numerical models capturing the grouting process was presented in
Chapter 3. The most important physical properties have been identified and simulated
using an extended approach of the TPM. This allows to simulate infiltration during
the hydro-mechanically coupled gap-grouting procedure. The developed approach is
formulated on the continuum scale including the evolution of the morphology on the
micro scale.

Chapter 4 of this thesis was focussed on the infiltration process discussing the
evolution of hydraulic properties from a mesoscopic perspective. The performed nu-
merical investigations have an 1-dim character, although numerically implemented in
2-dim. In order to capture infiltration phenomena, a thermodynamically-consistent
production term was introduced, containing one material parameter k, which remains
constant within the ongoing infiltration process in the whole calculation domain. For
the conducted numerical example an equilibrium concentration was observed, induced
by this material parameter k. This concentration is not evolving in time although
hydraulic properties of the domain were varied. For small values of the material pa-
rameter for infiltration k < 0.02, a linear behaviour of the equilibrium concentration
was found, which could be described by means of a master curve.

– 107 –
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The convection dominated characteristic of the infiltration process was identified
where a steep gradient of concentration within the numerical example was observed.
This was supported by the assumption that the suspended particles penetrate the
porous domain with fluid velocity vf. This means, that the relative velocity between
the constituent of suspended particles ϕa and the fluid constituent ϕf was neglected.

In Chapter 5 a more sophisticated approach to evaluate the mass/volume ex-
change, in order to determine the infiltration behaviour, was developed. Thus, the
four-phase approach developed in Chapter 4 was extended to a (2f + 1) field for-
mulation by introducing a further homogenization level with the concept of species.
Three phases were considered, where two of those are subdivided into f species, which
correspond to the discrete grading ranges obtained from sieving analysis of the solid
skeleton and the suspended particles. Hence, these species have a physical interpreta-
tion and can be extracted straightforward from geotechnical standard characterization
methods. This leads to f different production terms n̂a

i , which are not constant val-
ues but evolve in time. For the numerical realization, a statistical approach was used,
comparing the suspended particle grading ranges with the constriction sizes of the
porous skeleton. The infiltration behaviour was simulated using this geometrical ap-
proach. The GSD of the suspended particles and the GSD of the solid skeleton vary
in time and space, due to the infiltration process. This means that the heterogeneous
characteristics of infiltration phenomena can be simulated with that methodology.
Furthermore, an analytical approach to capture infiltration phenomena for simplified
problems was carried out. For its application, the heterogeneous infiltration problem
was simplified to obtain a physical but spatial homogeneous numerical domain.

In Chapter 6 the multi-field approach was extended by the consideration of the
balance of momentum of the mixture. In addition, the concept of effective stress was
taken into account, which allows to describe the deformations of the solid skeleton.
Therefore, infiltration and consolidation were captured by the modelling approach de-
scribed in Chapter 6, leading to a more realistic simulation of the gap grouting process
in mechanized tunnelling. To account for the mechanical properties of the annular gap
and of the surrounding soil, a stiffening parameter a was introduced. This parameter
is not an additional unknown, but prescribed within the multi-field formulation as
the amount of particles attached to the solid skeleton. A linear correlation between
the material stiffness and the amount of attached particles was assumed, which led
to a qualitative description of the process. The performed numerical investigations
were focussed on the gap grouting process in mechanized tunnelling. Numerically,
simulations have been carried out observing the mechanical and hydraulic proper-
ties of cement-free mortar during the dewatering process. It was shown numerically
that the central requirement for achieving a material stiffness of the grouting mortar,
which corresponds to the material stiffness of the surrounding soil in the primary
stress state, was fulfilled by the dewatering process. Although the requirements on
the grouting mortar are generally formulated with respect to mechanical properties,
it has been shown that the simulation of mechanical properties alone is not sufficient
to correctly capture the physics. In fact, the hydro-mechanical coupling is crucial
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and can not be neglected. The mechanical properties are significantly evolved by the
evolution of the hydraulic properties. Infiltration and formation of a filter cake at the
interface of soil and grout lead to a substantial impact on the material stiffness of the
annular gap grouting mortar.

For a numerical experiment induced by a pressure gradient, a local decrease of
hydraulic conductivity, which is traced back to infiltration, induces a higher filter
velocity in the remaining part of the cross section (Chapter 4). The proportionality
of the production term n̂a to the absolute value of the filter velocity |q| leads to a
higher infiltration rate and a faster decrease in the hydraulic conductivity. In the
approach conducted in Chapter 5 this effect was enhanced by the evolution of the
production term with respect to the spatial position and the time of the calculation
process. Hence, the decrease in hydraulic conductivity even enhances infiltration,
which is motivated by the smaller pore constrictions. This leads to a more realistic
simulation of clogging phenomena, as for example the formation of a filter cake.

Furthermore, a more realistic description of the suspension was obtained in the
approaches of Chapters 5 and 6 by the consideration of Eilers equation, cf. Eqs.(5.30,
6.23), which is valid not only for dilute but also for dense suspensions, instead of the
evolution equation proposed by Einstein, cf. Eq. (4.24). The higher accuracy of the
Eilers equation is a result of the highly non-linear evolution of the effective dynamic
viscosity of the suspension ηfR with respect to the concentration c, especially for larger
values of the concentration.

Next, different possibilities for the interpretation of the Kozeny-Carman equation
are discussed within the single modelling approaches. In the calculations in Chapters
4 and 6 the material parameter of the Kozeny-Carman equation, the effective particle
diameter, was assumed to be constant. In Chapter 5 the effective particle diameter
was not understood as an input parameter, which has to be prescribed, but it was
calculated directly from the GSD of the solid skeleton. Due to the evolution of the
GSD of the solid skeleton, the effective particle diameter was recalculated for each
integration point in each time step.

Comparing the here proposed modelling approach of infiltration phenomena to
investigations capturing erosion using the TPM, cf. Bonelli and Marot [14] or Steeb
et al. [85], it can be stated that the obtained field equations are similar. This
means the differentiation, between infiltration or erosion is captured with a particular
numerical approach, is determined by the constitutive formulation, e.g. for the mass
exchange term n̂a. In case of modelling clogging effects, as described in this thesis,
this differentiation is straightforward. In other research fields, e.g. dam construction,
both phenomena, i.e. infiltration and erosion, are observed at different locations
at the same time. Hence, it is not obvious whether infiltration, erosion, or both
phenomena occur if a convective transport of a suspension through a porous domain
is considered. This point could be a potential field of further research activities. A
numerical approach could be created, which does not a priori differentiate between
erosion and infiltration. Instead, this could be a result of the local morphology of



110 Chapter 7 Concluding remarks

the considered domain. For this, the filter stability in each material point could be
evaluated, e.g. using methods proposed by Kenney and Lau [50].

As described in Chapter 2, the numerical models developed in this work are suited
to capture the continuous grouting process. For discontinuous grouting, the numerical
model has to be adapted. Despite the fact that the continuous grouting procedure
leads to the best bedding of the tunnel lining and to the smallest surface settlements
above the tunnel, discontinuous grouting is still used in engineering practise. Thus,
this process could be investigated numerically in further research activities. In case
of continuous grouting it is convenient to assume a (weakly) developed solid skeleton
of the grouting mortar in the annular gap in the initial phase of the grouting process.
Therefore, the grouting mortar and the solid domain can be described as a porous
medium using the TPM during the entire simulation. For the discontinuous grouting
procedure this assumption is not valid. Initially, the characteristics of the mortar are
dominated by a low shear-modulus, and therefore, by a fluid like behaviour. During
the grouting process the properties of the mortar change due to the development
of grain to grain contacts and dewatering. From this point on, simulation of the
grouting process can be realized with the numerical models presented in this work.
Before the development of the grain to grain contacts, a flow simulation is required
that captures the filling process of the discontinuous grouting. For this, the evolution
of a free surface boundary of the domain representing the mortar has to be considered.

The numerical approaches presented in this work were focussed on the applica-
tion of cement-free grouting mortar. Also standard (cement-containing) mortars or
2-component mortars are of industrial importance for tunnelling projects in granu-
lar soil. Therefore, further research with focus on those materials could lead to a
comprehensive numerical toolbox for engineering practise.

Concluding, the presented numerical models lead to a deeper physical understand-
ing of the grouting process in mechanized tunnelling. The proposed simulation models
can be understood as basic research with a special focus on the industrial application.
Although further investigations, especially in the experimental field, are required,
the proposed numerical approaches capture the physical phenomena of the grouting
process in mechanized tunnelling. The proposed models lead to a more accurate sim-
ulation of the applicability of cement-free mortars for particular tunnelling projects.
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