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Kurzfassung

In dieser Arbeit wird die Anwendung der Full-Waveform Inversion (FWI) in einer Tunnelum-
gebung untersucht. Genauer gesagt wird versucht, Objekte zu erkennen, die unter Verwendung
der FWI unterschiedliche mechanische Materialeigenschaften aufweisen als der Rest der Tun-
nelumgebung.

Die Vorhersage der geologischen Struktur vor einem Tunnel erfolgt in der Regel durch die Lauf
der ersten reflektierten Wellen, die aufgrund von geologischen Veränderungen zurückprallen.
FWI verlässt sich nicht nur auf die ersten angekommenen reflektierten Wellen, sondern auf
alle auftreffenden Wellen aller Amplituden. Um ein FWI Problem zu lösen, wird der Unter-
schied zwischen den berechneten und realen Modellen minimiert. Die Minimierung wird durch
Ausführen einer großen Anzahl von Vorwärts-Simulationen erzielt. Aus diesem Grund ist es
sehr wichtig, ein präzises Vorwärtsmodell aufzustellen. Reflektierende Ränder sind eines der
Hindernisse, die in einem Tunnelmodell näher angegangen werden müssen. Wir verwenden die
Technik der Perfectly Matched Layers (PML), die eine sehr beliebte Technik für absorbierende
Ränder ist und in unserem Modell sehr effektiv scheint. Die Vorwärts-Modelle werden mit Hilfe
der Finite-Elemente-Methode höherer Ordnung gelöst. Dabei sind Polynome höherer Ordnung
erforderlich, um die Wellen präzise modellieren zu können.

Um die Vorwärtsmodelle zu testen, wird die numerische Lösung mit einem analytischen Modell
und mit Modellen aus einem allgemein anerkannten Programm der Geophysik-Community ver-
glichen. Zur Vereinfachung wird zunächst mit der akustischen Wellengleichung begonnen, die
lediglich Druckwellen berücksichtigt. Als nächstes werden realistischere Komponenten wie bei-
spielsweise inhomogene Dämpfung- und Dichteverteilungen zum Vorwärtsmodell hinzugefügt.
Darüber hinaus wird die elastische Wellengleichung in Betracht gezogen, weil sie Druck-, und
Scher- und Oberflächenwellen beinhaltet, die für den Grundbau realistischer sind.

Die Wellengleichung wird im Frequenzbereich gelöst. Diskrete Fourier-Transformationstechniken
werden eingesetzt, um die Wellenformen im Zeitbereich zu erkennen. Auf diese Weise kann
festgestellt werden, wie stark die Störreflektion aus den absorbierenden Randbedingungen ist.
Die Modellierung von Wellen im Frequenzbereich hat beim Lösen des Vorwärtsmodells einen
Rechennachteil im Vergleich zu einigen Methoden im Zeitbereich. Allerdings bietet die Model-
lierung im Frequenzbereich Flexibilität, um die Antwort eines Systems bei einer bestimmten
diskreten Frequenz zu betrachten. Diese Flexibilität vereinfacht das inverse Problem und infol-
gedessen kann ein besseres Inversionsergebnis erzielt werden.

Meist wird das CG-Verfahren verwendet, um die Zielfunktion zu minimieren, welche die Dif-
ferenz zwischen dem berechneten und realen Model beschreibt. Allerdings wird sowohl die
Methode des steilsten Abstiegs als auch das PCG-Verfahren in dieser Arbeit verwendet. Beim
Aufstellen des inversen Problems müssen zunächst wichtige Faktoren, wie der Frequenz-Satz
und die Quelle-Empfänger-Konfiguration abgearbeitet werden. Es wird versucht, optimale und
praktische Optionen auszuwählen und gleichzeitig ein gut gestelltes inverses Problem zu erhal-
ten. Die Positionen der Quelle-Empfänger-Standpunkte müssen mit Bedacht ausgewählt wer-
den. Sie müssen an erreichbaren Orten platziert werden. Obwohl sie in einem Computermodell
an jedem beliebigen Ort platziert werden können, werden sie nur an bestimmten Stellen ge-
setzt, um die Feldarbeit praktischer und kostengünstiger zu gestalten. Auf diese Weise kann
auf zusätzliche Bohrungen verzichtet werden. Die Standorte und die Anzahl der Empfänger
sind entscheidend für die Wohlgestelltheit des inversen Problems. Sie müssen an jenen Orten



angebracht werden, an denen sie ausreichend Reflexionen der geologischen Veränderungen an-
fangen können. Sonst hätte die Systemantwort nicht genügend Informationen über die geologi-
sche Gegebenheit und das inverse Problem wäre inkorrekt gestellt. In dieser Arbeit werden die
Standorte und die Anzahl der Quelle-Empfänger-Standpunkte untersucht. Ferner wird versucht,
die Standpunkte so zugänglich wie möglich und deren Anzahl so gering wie möglich zu halten,
und damit das bestmögliche Ergebnis mit dem geringsten Aufwand zu erziehen.



Summary

In this work, we investigate the application of full waveform inversion (FWI) in a tunnel en-
vironment. More precisely, we try to detect objects which have different mechanical material
properties than the rest of the tunnel domain by using FWI. Predicting the geological structure
ahead of a tunnel is done usually by the traveltimes of the first reflected waves bounced back
from the geological changes. FWI relies on not only first arrivals of the reflected waves, but all
arrivals and amplitudes of all waves.

To solve an FWI problem, the difference between the computer and real models has to be
minimized. The minimization task is carried out by performing many forward simulations. For
this reason, it is very crucial to have a precise forward model. Reflecting boundaries are one of
the obstacles which must be tackled in a tunnel model. We use perfectly matched layers (PML)
technique which is recently very popular absorbing boundary technique and they turn out to
be very effective in our model. The forward models are solved by higher-order finite element
method because high order polynomials are required to model the waves precisely.

To test the forward models, we compared the numerical solutions with the analytical models
and the models in a well-accepted program in the geophysics community. For the sake of sim-
plicity, we start with the acoustic wave equation which accounts only for pressure waves. Next,
more realistic elements, such as inhomogeneous attenuation and density fields, are added to the
forward model. Furthermore, the elastic wave equation is taken into consideration because it
accounts for pressure, shear, and surface waves which are more realistic for soils.

We solve the wave equation in the frequency domain. Discrete Fourier transformation techni-
ques are deployed to see the waveforms in the time domain. This way, it can be observed how
much spurious reflection is bounced back from the absorbing boundaries. Frequency domain
modelling of waves has a computational drawback in solving the forward model compared to
the time domain modelling. However, it provides flexibility to observe the response of a system
at a specific discrete frequency. Moreover, in an inversion simulation, this flexibility plays an
important role as the inverse model can be inverted over a specific set of discrete frequencies.
This flexibility makes the simplification of the inverse problem easier and as a result, a better
inversion result can be obtained.

We mostly use the conjugate gradient method to minimize the penalty function which describes
the difference between the computer and real models. However, steepest descent and precondi-
tioned conjugate gradient methods are also used throughout this work. There are certain issues
which must be done precisely while setting up the inverse problem such as frequency set and
source/receiver configuration. We try to choose optimal and practical options and at the same
time, to have a well-posed inverse problem. The locations of the source/receiver points must
be carefully chosen; they must be placed at reachable locations. Although they can be placed
anywhere in a computer model, they can only be at certain locations to make the field work
more practical and less expensive such that there is no need to make a borehole. Their locations
and numbers are decisive on well-posedness of the inverse problem. They have to be at such
locations that the receivers can catch enough reflection from the geological changes. Otherwise,
the system response would not have enough information about the geology of the domain and
the inverse problem would become ill-posed. We investigate the locations and numbers of sour-
ce/receiver points and try to keep them as practical and as few as possible and try to produce
the best possible result at the same time.





ix

Abbildungsverzeichnis

2.1 Stress/strain relationship in brittle and ductile materials . . . . . . . . . . . . . 8
2.2 Body waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Surface waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 P- and SV-waves at solid-solid interface . . . . . . . . . . . . . . . . . . . . . 12

3.1 Perfectly-matched layer (PML) . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Ricker function in the time domain . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Ricker function in the frequency domain . . . . . . . . . . . . . . . . . . . . . 28
4.3 Seismogram with a rapid stop . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Sample window function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Seismogram multiplied with the window function . . . . . . . . . . . . . . . . 32

5.1 Lagrange (left column) and Hierarchical (right column) shape functions . . . . 41

6.1 Gradients with the adjoint and functional approaches. . . . . . . . . . . . . . . 49
6.2 Global and local minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Minimization (optimization) process . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Acoustic half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Wavefields in the acoustic half-space with FE . . . . . . . . . . . . . . . . . . 60
7.3 Comparison of FE and analytical solutions over lines . . . . . . . . . . . . . . 61
7.4 Norm of FE result and norm of the difference btw. FE and analytical results . . 62
7.5 Comparison of FE and analytical solutions over a frequency range . . . . . . . 63
7.6 Pressure wavefields in the tunnel by FE, homogeneous velocity field . . . . . . 64
7.7 Pressure wavefields in the tunnel by FE, homogeneous velocity field . . . . . . 65
7.8 Source/receiver configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.9 Comparison between the time and frequency domain models . . . . . . . . . . 66
7.10 Inhomogeneous velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.11 Wavefields from homogeneous and inhomogeneous models . . . . . . . . . . . 67
7.12 Attenuation in a half-space example . . . . . . . . . . . . . . . . . . . . . . . 68
7.13 Viscoacoustic wavefields in half-space . . . . . . . . . . . . . . . . . . . . . . 68
7.14 Attenuation at receivers over a frequency interval . . . . . . . . . . . . . . . . 69
7.15 Viscosity influence on wavefields . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.16 Influence of inhomogeneous density on wavefields . . . . . . . . . . . . . . . 71
7.17 Influence of inhomogeneous attenuation on wavefields . . . . . . . . . . . . . 72
7.18 3D full-space, pressure wavefields . . . . . . . . . . . . . . . . . . . . . . . . 73
7.19 3D half-space, pressure wavefields . . . . . . . . . . . . . . . . . . . . . . . . 74
7.20 3D tunnel, pressure wavefield . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.21 2D elastic tunnel source/receiver configuration . . . . . . . . . . . . . . . . . . 76
7.22 2D elastic tunnel seismograms . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.23 Seismograms at point 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1 2D acoustic tunnel forward model . . . . . . . . . . . . . . . . . . . . . . . . 79



8.2 Source/receiver configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3 Resultant velocity fields; search for c . . . . . . . . . . . . . . . . . . . . . . . 82
8.4 Resultant velocity fields; search for 1

c2
. . . . . . . . . . . . . . . . . . . . . . 83

8.5 #1, misfit functional vs iteration, log scale . . . . . . . . . . . . . . . . . . . . 84
8.6 #1, norm of the gradient vs iteration, log scale . . . . . . . . . . . . . . . . . . 84
8.7 #1, velocity distribution over the vertical cuts . . . . . . . . . . . . . . . . . . 85
8.8 Comparison among experiments #7,#8, and #11, misfit function vs iteration . . 88
8.9 Comparison among experiments #7,#8, and #11, norm of gradient vs iteration . 89
8.10 Scenario 2, synthetic velocity field . . . . . . . . . . . . . . . . . . . . . . . . 90
8.11 Reconstructed velocity fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.12 Resultant velocity fields using higher frequencies . . . . . . . . . . . . . . . . 92
8.13 Velocity distribution over vertical line passing through the triangle . . . . . . . 93
8.14 CG vs SD, misfit function vs iteration . . . . . . . . . . . . . . . . . . . . . . 94
8.15 CG vs SD, norm of gradient vs iteration . . . . . . . . . . . . . . . . . . . . . 95
8.16 Source/receiver setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.17 Reconstructed velocity fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.18 Blind test, source/receiver configuration (scenario 1) . . . . . . . . . . . . . . 98
8.19 Wavefields at the receivers, source s1 (scenario 1) . . . . . . . . . . . . . . . . 99
8.20 Wavefields at the receivers, source s2 (scenario 1) . . . . . . . . . . . . . . . . 100
8.21 Wavefields at the receivers, source s3 (scenario 1) . . . . . . . . . . . . . . . . 101
8.22 Reconstructed velocity fields after certain frequencies (scenario 1) . . . . . . . 102
8.23 Blind test synthetic model (scenario 1) . . . . . . . . . . . . . . . . . . . . . . 103
8.24 Vertical velocity distributions through the center of the objects (scenario 1) . . 104
8.25 Blind test, source/receiver configuration (scenario 2) . . . . . . . . . . . . . . 105
8.26 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.27 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.28 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.29 Scenario 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.30 Wavefields at receivers, source s1 (scenario 5) . . . . . . . . . . . . . . . . . . 108
8.31 Scenario 5, wavefields at receivers, source s2 (scenario 5) . . . . . . . . . . . . 109
8.32 Scenario 5, wavefields at receivers, source s3 (scenario 5) . . . . . . . . . . . . 110
8.33 Inversion of viscoacoustic waves, half-space example . . . . . . . . . . . . . . 112
8.34 Inversion of viscoacoustic waves, tunnel model . . . . . . . . . . . . . . . . . 113
8.35 3D half-space synthetic velocity field . . . . . . . . . . . . . . . . . . . . . . . 114
8.36 Misfit Function vs Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.37 Norm of gradient vs iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.38 Reconstructed velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.39 3D acoustic tunnel, synthetic velocity field . . . . . . . . . . . . . . . . . . . . 118
8.40 Reconstructed velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.41 Synthetic λ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.42 λ after inversion over each frequency group . . . . . . . . . . . . . . . . . . . 120
8.43 Reconstructed λ with the second configuration . . . . . . . . . . . . . . . . . . 121
8.44 Reconstructed λ and µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.45 Search for λ, µ, and ρ; reconstructed ρ . . . . . . . . . . . . . . . . . . . . . . 122



xi

Tabellenverzeichnis

8.1 Relative errors in the results of the simulations . . . . . . . . . . . . . . . . . . 81
8.2 Radius r und and minimum required frequency ω to detect the object . . . . . . 96





xiii

Inhaltsverzeichnis

1 Introduction 1

2 Waves 7
2.1 Waves in earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Linear elastic theory and Hooke’s law . . . . . . . . . . . . . . . . . . 7
2.2 Categorization of waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Body waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Surface waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Reflection and refraction of waves at free boundaries . . . . . . . . . . 11

2.3 Wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Elastic wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Acoustic wave equation . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Viscoacoustic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Reflecting boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Absorbing boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Absorbing boundaries 17
3.1 Paraxial approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Perfectly-matched layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Perfectly-Matched Layers (PML) in Acoustic Wave Equation . . . . . 23
3.2.2 Perfectly-Matched Layers (PML) in Elastic Wave Equation . . . . . . . 24

4 Fourier transformation 25
4.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Discretization of the Fourier Transform . . . . . . . . . . . . . . . . . . . . . 30
4.3 Discretization of the Inverse Fourier Transform . . . . . . . . . . . . . . . . . 30
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Numerical methods for wave equations 33
5.1 Finite element method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Weak Formulation of the Acoustic Equation . . . . . . . . . . . . . . . 34
5.1.2 Weak Formulation of the Elastic Equation . . . . . . . . . . . . . . . . 38
5.1.3 Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Seismic inversion 43
6.1 Full waveform inversion (FWI) . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Definition of the inverse problem in the frequency domain . . . . . . . 44
6.1.2 Discrete approach and discrete adjoint method . . . . . . . . . . . . . 46
6.1.3 Continuous approach and functional gradient . . . . . . . . . . . . . . 47
6.1.4 Relation between discrete and continuous gradients . . . . . . . . . . . 48
6.1.5 Comparison of the discrete and continuous gradients . . . . . . . . . . 49

6.2 Important concepts of an inverse problem . . . . . . . . . . . . . . . . . . . . 50



xiv Inhaltsverzeichnis

6.3 Minimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.3 Generalized conjugate gradient method . . . . . . . . . . . . . . . . . 56
6.3.4 Pre-conditioned conjugate gradient method . . . . . . . . . . . . . . . 57

7 Forward modelling: Numerical experiments and verification 59
7.1 2D acoustic half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 2D acoustic tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 Verification of the model with Specfem software . . . . . . . . . . . . 64
7.3 2D viscoacoustic half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4 2D viscoacoustic tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 3D acoustic forward simulation results . . . . . . . . . . . . . . . . . . . . . . 72

7.5.1 3D half-space and verification of the code with the analytical solution . 72
7.5.2 3D acoustic tunnel model . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.6 2D elastic forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.6.1 Verification of the 2D elastic tunnel model with Specfem software . . . 75

8 Application of Full Waveform Inversion 79
8.1 Inversion of 2D acoustic waves . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.1.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2 Blind test on the 2D acoustic tunnel model . . . . . . . . . . . . . . . . . . . . 97
8.2.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.5 Scenario 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.3 Inversion of 2D viscoacoustic waves . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.1 Experiment in a half-space . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.2 Experiment in a tunnel model . . . . . . . . . . . . . . . . . . . . . . 112

8.4 Inversion of 3D acoustic waves . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4.1 3D acoustic half-space experiment . . . . . . . . . . . . . . . . . . . . 113
8.4.2 3D acoustic tunnel experiment . . . . . . . . . . . . . . . . . . . . . . 117

8.5 Inversion of 2D elastic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Conclusions and Outlook 123

References 125



1

1 Introduction

This work is a part of the project SFB 837 whose aim is to research on various aspects of tun-
neling process. This project has a few millions euro budget and dozens of employees who carry
out investigation on a variety of issues in tunneling. SFB 837 is divided into several subpro-
jects and this work is done under umbrella of subproject A2. The main goal of this subproject
is to use full waveform inversion to detect anomalies and obstacles ahead of a tunnel. These
anomalies can be fracture zones, erratic rocks, cavities, faults, or other geological structures.

Since the mankind started civilizing, they have been building different structures to support the
daily life. Very surprisingly, they even built tunnels thousands of years ago which can be called
an engineering miracle considering the fact that not much technology was available in those
days. An example of such an ancient tunnel was found beneath the ancient city Teotihuacan in
Mexico.

Nowadays, technology is growing very fast in all branches and we can see its effect also in
tunneling. With growing population of countries, governments try to find optimal solutions to
traffic and transportation. Big cities are becoming so condense that solution above the ground
is not an option in some cases. For this reason, finding the solution under the ground becomes
more attractive solution especially in urban areas. This is a common practice in the world,
especially in developed countries. As an example, Karlsruhe, Germany, can be mentioned. The
city is designed to handle more traffic with underground transportation and it is done smoothly
in the city center by not blocking the traffic flow.

Tunnels are not implemented only to resolve traffic problems in big cities. They are implemen-
ted also when the landscape blocks the traffic. Mountain can be an example for such a landscape,
and tunnels, in some cases, are the best option to create a traffic connection between the areas
divided by the mountain. Such a solution saves a lot of energy because vehicles consume a lot
more fuel going up a hill and a tunnel can connect two points with a straight line with almost
no altitude difference. Furthermore, such shortcuts decrease accident risks, especially in bad
weather conditions, and make the journey shorter and painless. Mont Cenis Tunnel is one of
many tunnels in the Alps which can be mentioned as an example to the tunnels in mountains.

Another landscape which can block the land traffic is water. Underwater tunnels unite the land
traffic of two pieces of lands separated by water. For example, there is a long tunnel from
France to United Kingdom which combines the European continent with the British Isles, and
eases traffic and transportation problems significantly. The dimensions of the tunnel and the
depth of water above it says a lot about how enormous the engineering structure is; it is about
50 km long and it is about 100 meters below the water surface.

With the growing technology, tunneling process has been becoming easier, especially over few
decades. Previously, the only option to build tunnels was conventional methods. The method
has been improved enormously by time and still protects its validity. This method consists of
drilling and blasting with explosives. Low cost prior to construction, possibility to replace fai-
ling equipments easily, variable response to fracture zone are advantages of the conventional
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tunnel construction. However, the drawbacks are low safety, slow tunneling progress and inten-
sive effort in lining. Apart from this, this method cannot be applied in all types of soil; it can be
used in hard rocks, whereas it is almost impossible to use it in soft soil.

In some cases, the conventional methods are replaced by mechanical tunneling which is very
new method and which takes advantage of growing technology a lot. Very sophisticated tunnel
boring machines (TBM) are produced which eases and speeds up the whole process of tunnel
excavation and construction. Each TBM is designed to a single tunnel diameter and a specific
geological structure, which are drawbacks of TBMs. High cost prior to the tunneling, high
maintenance costs, and the fact that damage to the TBM stops the whole construction process
are other disadvantages of TBMs. Despite the disadvantages, it has big preferable advantages
such as high safety, fast progress in construction, low lining effort, low construction costs in the
construction of long tunnels, and ability to deal with difficult geological structures including
both soft and hard rocks, [Jetschny, 2010].

In case of long tunnels, with big diameters mechanical, or automated, tunneling is a very at-
tractive choice when other advantages of this process are also taken into account. Since sudden
changes in the geological structure of the ground, such as fault zones and caverns, during ex-
cavation can damage the TBMs, it becomes very crucial to figure out the ahead of the tunnel.
Damage to TBM causes a delay in the construction. Any delay in the process costs money and
time, as tunnel boring machine is very expensive and as it is important to keep the machine
functional during its stay at the construction site. In other words, if the work delays at the con-
struction site, the money spent for the machines and employees in the meantime is loss of the
company. Once an anomaly is detected few dozens of meters ahead of tunnel, a measure can be
taken before reaching that area, which, in return, will prevent money and time loss. Furthermo-
re, some anomalies in the ground may cause big settlements on the surface which can damage
structures on the ground. Thus, detecting anomalies ahead of tunnel is very important not only
in terms of money and time, but also in terms of safety of people and structures. It again prevents
big money loss along with human lives and health which are more important than money. Sear-
ching for anomalies can also be important in the case of conventional tunneling. For example,
several seismic survey were performed during the construction of the Centovalli railway tunnel,
[Sattel et al., 1992]. The tunnel was excavated through gneiss rock mass which is overlain by
unconsolidated moraine deposits. If the tunnel intersected the moraine deposit suddenly at a
low angle, the mining work and the tunnel could have been hazarded. Moreover, the city area
of Locarno could have been imposed to high settlements.

If the geological structure is known, the solution to the wave propagation is unique; this is a
direct or a forward problem. On the other hand, the problem is called an inverse problem if
the wave response of the system is known and the geological structure is sought. In contrast to
forward problems, inverse problems usually suffer non-unique solutions; there can be several
possible solutions to an inverse problem. Seismic surveying is important in tunneling to localize
the anomalies ahead of tunnel. To do so, sources and receivers are required. Sources are points
where the vibrations are triggered and the seismograms are read by geophones which we call
receiver points. Source can be triggered by a small explosion, a sledgehammer, or by TBM
itself. In theory, source and receiving geophones can be places in any location. Nevertheless, it
is only practical to place those points at certain locations. For example, in some applications,
geophone array is placed in a borehole whose cost is high. In some cases, it is even not practical
to make boreholes when a tunnel is constructed in urban areas such as crowded city centers.
It becomes difficult to place geophones at locations deep below the surface. When it comes to
sources, it is not always practical to excite vibration by explosion, especially in urban places.
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In other words, in real world application, we have restrictions over the locations of source and
receiver geophones.

The waves start propagating in the ground as soon as the source is fired. They propagate in
form of pressure and shear waves. At the boundaries of different materials, some of the energy
is reflected back and some are refracted. The refracted waves continue moving forward. Some
energy is even transformed into surface waves. The seismograms become chaotic by all kinds of
reflected and refracted waves which are superposed in a single seismogram. The chaos is even
bigger with higher degree of heterogeneity of the medium.

To do so, efficient geophysical techniques are used in the industry. Some very interesting me-
thods and results are presented in [Ashida, 2001], [Kneib et al., 2000], [Jetschny et al., 2011]
and [Yamamoto et al., 2011], which all rely on the seismic surveying. Furthermore, [Miro, 2012]
use the static displacement response at the surface to identify the ground model in the case
of some special ground model scenarios. Mostly, in tunneling applications, seismic migration
techniques, which rely mainly on traveltimes of reflected and refracted waves, are used. The
restrictions over the locations of the sources and the receiver geophones increase the ambiguity
of the inverse problem even more. The idea of this work is based on to reduce the ambiguity of
seismic inverse problems in tunneling applications. We aim to do it by having an input which
contains more than traveltime information. We plan to achieve it with the help of full waveform
(FWI) technique.

Full waveform inversion is the seismic inversion technique that we utilize throughout this work.
From 1980s, Tarantola [Tarantola, 1984], [Tarantola, 1987] is one of the main pioneers of FWI.
[Nguyen, 2016] investigates the application of FWI in a tunnel model in the case of some spe-
cific ground model scenarios. The goal of FWI is to fit the computer seismograms and observed
seismograms in a rigorous sense. In contrast to migration techniques, FWI tries to fit not only
traveltimes, but also amplitudes of seismograms thru an iterative process which runs till the
defined convergence criteria is satisfied. Although computational cost of FWI is high, it takes
advantage of full waveforms that carry a lot more information than only traveltimes. This fact
brings advantages as well as drawbacks. A lot of information can end up with a more precise
geological image. However, the advantage comes with a price and the abundance of the infor-
mation increases the nonlinearity of the inverse problem. According to [Ajo-Franklin, 2005],
inversion in frequency domain may decrease the non-linearity of the problem. There are several
groups of discrete frequencies that are sorted in increasing order. The inverse problem is in-
verted over the frequency groups starting from the smallest group up to the highest group. The
results of lower frequencies are used as an initial model of higher frequencies. The non-linearity
of the inverse problem in high frequencies is tackled by an initial model which is closer to the
global solution. This fact is our main motivation to solve the inverse problem in the frequency
domain.

An inverse process is nothing else but a big bunch of forward processes. That is why the first
step of a feasible and successful inversion is a right forward model. We start with the simplest
case and improve the forward model by integrating real-world effects into the model. We in-
vestigate acoustic waves in 2 dimensional space and later, extend it to 3D. We add viscosity
effect to the acoustic equation to make the model more realistic as no material is attenuation
free. Only for some models, such as small scale model consisting of hard rock, the effect of
attenuation is negligible. Since we work in the frequency domain, we use Kolsky-Futterman
model, [Kolsky, 1956], [Futterman, 1962], which replaces velocity field with a complex veloci-
ty. In this case we also take the effect of inhomogeneity of density field. In this case, we search
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not only for velocity field, but also for density field simultaneously. The inverse problem beco-
mes more complicated as number of sought fields increase. We try to search for 2 and 3 fields
simultaneously by using FWI.

It is important to mention that acoustic waves accounts for only P-waves. This is completely
true for fluids. However, ground is solid and it has P-waves and S-waves. It even has surface,
Rayleigh and Love, waves at the surface and at the interface of different layers. Acoustic waves
are a good start and it can be applied to real world problems if P-waves are extracted from the
seismograms. However, elastic wave equation describes the response of the earth a lot more pre-
cise. For this purpose, after obtaining successful acoustic model, we also investigate the elastic
wave equation in the tunnel domain and try to model elastic waves appropriately. Furthermore,
we run inverse simulation to search for Lamé parameters as well as density field. The inverse
problem becomes complicated here too since the number of sought fields is more than one.

To model the waves correctly, we need to introduce absorbing boundaries. Since the numerical
model is only a slice from the ground, we have artificial reflecting boundaries which do not
exist in the real model and reflect all waves into the domain. In real world, those boundaries
do not exist and no waves are reflected from them. To avoid it, we use perfectly matched layer
[Berenger, 1994] whose popularity is increasing recently. It is proved that this method is very ef-
fective in tackling spurious reflections from the artificial boundaries. For acoustic waves, we use
standard PMLs. However for elastic waves, when the model is shallow, the surface waves touch
the artificial boundary at the bottom of the model and they are transformed into body waves
which pollutes the solution [Festa and Nielsen, 2003]. We use convolutional PML to overcome
possible pollutions because of the surface waves, [Festa et al. 2005], [Festa and Vilotte, 2005].

There are several numerical methods used to solve partial differential equations, such as finite-
difference method, finite element method, boundary element method and so on. There are also
several derivations of every method. Each of them can be preferable in solving some specific
problems. For example, spectral element method is a derivation of finite element method and it
provides a diagonal mass matrix which decreases the computational cost significantly by using
a correct time integration scheme. Other derivations of finite element method are discontinuous
Galerkin method, extended finite element method and so on. Higher-order finite element method
is the numerical method we deploy to solve forward problems. High order polynomials play an
important role in modelling the waves precisely. Mesh size has to be smaller than the wave
length in order to avoid numerical instability and make the numerical results precise. Higher
order method makes it possible to model higher frequency waves just by increasing the polyno-
mial degree. Since we work in the frequency domain, we can use lower degree polynomial for
lower frequencies and higher degree polynomials for higher frequencies with the same mesh. It
means, higher-order method gives us flexibility besides its role in modelling the waves.

We need to utilize an appropriate computer tool to solve our numerical problem. Specfem
[Komatitsch and Vilotte, 1998], [Tromp et al., 2008], [Vai et al., 1999], [Lee et al., 2008],
[Komatitsch and Tromp, 1999], [Komatitsch et al., 2004] is one of very popular tools for geo-
physical applications is which is developed by a group at Princeton University. The software
solves the wave equations with the spectral element method, which is a special kind of high-
order finite element method. It is very robust and efficient, and is widely used by geophysicists
all over the world. This program solves the wave problems in the time domain though and we
solve the wave equations in the frequency domain. This is the reason why we choose a diffe-
rent tool to solve our problems. There are other programs available out there which solves the
wave equations in the frequency domain and which are free for academic use. Nevertheless, it
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is not always practical to use a tool which is not familiar and which is not well documented. At
some points, they can block the flexibility of users. For these reasons, we developed our tool
to solve the wave problems in frequency domain and perform full waveform inversion analysis.
The tool to solve the forward problem is built upon a Java-based higher-order finite element pro-
gram developed by Prof. Dr. Matthias Baitsch. Being platform independent is a big advantage of
java-based programs. Nevertheless, java-based programs are slower than native libraries. Linear
algebraic operations are usually most expensive part of the simulations. However, this tool takes
advantage of robustness of native libraries, which do linear algebraic operations, such as PAR-
DISO [Kuzmin et al., 2013], [Schenk and Gaertner, 2004], LAPACK [LAPACK Users’ Guide],
BLAS [Lawson et al., 1979], [Dongarra et al., 1988],
[Dongarra et al., 1989], NAG [NAG1], [NAG2] and so on. Apart from this, this program is de-
signed in such a way that it can be extended very easily in many aspects; different derivations of
finite element method can be implemented, different material models and different element ty-
pes can be added without any difficulty. Using the flexibility of this program, the wave equations
were added to the list of partial differential equations solved by the program. While developing
the inversion tool, the aim was to make it extendable too. This tool is also not for one scenario
and it can be extended according to the wish of the user. For example, a new partial differential
equation used for the FWI problem can easily be added to the list of equations which the tool
can solve. This provides an opportunity to carry out further research on different issues of full
waveform inversion problems.

To validate the code and models, we test our numerical solutions of 2D and 3D acoustic half-
space forward problems to the analytical solutions. Apart from this, we compare the numerical
results of 2D acoustic and elastic models to the numerical results of Specfem which is a very
credible well-known program used by a lot of geophysicists. To verify our inverse models, we
use synthetic models. In one case, we make a blind test in cooperation with the geophysics
institute at Ruhr University Bochum. They make a synthetic model and calculate the system
response of their model in Specfem. By using the system response in our inversion, we try to
figure out the model.
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2 Waves

2.1 Waves in earth

Earth can show both elastic and inelastic behavior depending on the rate of strain it is subjec-
ted to. Nothing in nature is perfectly elastic and permanent deformations can be formed in the
structure of the earth when it is subjected to a strong earthquake. The Canterbury earthquake
is one of those strong earthquakes which struck New Zealand in 2010 and it caused permanent
deformations in earth at certain locations. One can refer to the photos taken by Malcolm Teas-
dale at the webpage of KiwiRail to see distorted railways due to the permanent deformations in
the earth caused by the Canterbury earthquake.

However, in some cases, we can precisely predict the oscillations in the earth with an elastic
theory. Small-scale earthquakes which do not create permanent deformations in the earth can
be modelled with the elastic theory. One of the main goals of this work is to model the waves
precisely so that they can be used for non-destructive ahead of tunnel prediction. This test does
not form any permanent deformation in the ground and small amplitude vibrations are triggered
usually using the tunnel boring machine or some acoustic signal. For such a non-destructive
test, we can stay within the limits of small strains to simulate the waves with the elastic theory.

2.1.1 Linear elastic theory and Hooke’s law

It can be assumed that every material has its elastic range. For very small strains, behavior of
elastic earth material can be approximated by Hooke’s Law which is based on a linear stress-
strain relation. In Figure 2.1, one can see the schematic representation of linear elastic range in
both ductile and brittle materials.

Hooke’s Law is used to describe a linear, elastic and isotropic material model mathematically.
In general, two elastic material parameters are enough to predict the stress-strain relation of the
material: the Lamé parameters λ and µ. However, there are several elastic material parameters,
such as elasticity modulus E, shear modulus G, Poisson ratio ν, and compression modulus K,
which are also used frequently. In this work, the Lamé parameters λ and µ are used as elastic
parameters. When it comes to other elastic parameters, any of them can be thought as a function
of λ and µ. The following equations

G = µ (2.1)

E =
µ(3λ+ 2µ)

λ+ µ
(2.2)
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stress

strain

elastic range

elastic limit

(a) Ductile materials
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strain

elastic range

elastic limit

(b) Brittle materials

Figure 2.1: Stress/strain relationship in brittle and ductile materials

Schematic representation

ν =
λ

2(λ+ µ)
(2.3)

K = λ+
2

3
µ (2.4)

show how parameters G, E, ν, and K are related with Lamé parameters.

The potential energy W (ε) of the linear, elastic and isotropic material described by Hooke’s
Law is

W (ε) = µε : ε+
1

2
λ(tr(ε))2, (2.5)

where

tr(ε) = ε11 + ε22 + ε33 (2.6)

is the trace of the strain tensor ε. The stress tensor σ can be derived by differentiating the
potential function W (ε) by the strain tensor ε

σij =
∂W (ε)

∂εij
= 2µεij + λεkkδij. (2.7)

The fourth order constitutive tensor C is derived by

Cijkl =
∂W

∂εij∂εkl
= µ(δilδjk + δikδjl) + λδijδkl. (2.8)

The relation between the stress tensor σ and ε is described by

σ = C : ε. (2.9)
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Again, for small strains, we skip the geometrical non-linearity, and take linear strain measure
into account. In this case,

ε =
1

2

[
∇u+∇Tu

]
(2.10)

where

∇u =
∂ui
∂xj

eiej. (2.11)

2.2 Categorization of waves

The equations above suffice to model linear elastic waves mathematically. However, the physics
of the problem is as much interesting as the mathematics behind it. The solution of the elastic
partial differential equation is usually a superposition of waves with different physics. Waves
are categorized according to the relation between their propagation direction and the kind of
deformation it causes. They are divided mainly into two categories: body waves (P-wave and
S-wave) and surface waves (Love waves and Rayleigh waves).

2.2.1 Body waves

P-wave and S-wave are two types of body waves. P-wave stands for primary waves since it
travels with the highest speed in the ground compared to other waves. Its speed in isotropic
homogeneous environment is

vp =

√
λ+ 2µ

ρ
(2.12)

which depends on the elastic parameters and the density. P-wave is also referred to as longitu-
dinal waves since its propagation direction is also the direction of the vibration of particles in
the ground.

S-wave is also called as shear wave, secondary wave, or transverse wave. Its speed of propaga-
tion is smaller than the speed of P-waves and this is a reason why it is called secondary wave.
Its propagation speed is

vs =

√
µ

ρ
(2.13)

which, as the speed of P-wave, is a function of the elastic parameters. The propagation direction
of the S-waves is perpendicular to the direction of the vibration of particles in the ground.

As in [Achenbach, 1984], plane harmonic body waves in an elastic homogeneous medium are
described as

u(x) = Ad exp([ik(x · g − ct)]), (2.14)

where k and c are wavenumber and wave velocity, respectively. Here, g is the unit propagation
vector, d is the unit direction vector of particle motions.
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If the body wave is a longitudinal P-wave, the unit vector d equals to the unit vector g (d = g)
and c = vp. In other words, as mentioned before, the direction of particle motion is same as the
wave propagation direction. If the wave is a transverse S-wave, the wave propagation direction
is perpendicular to the particle motion which is interpreted mathematically as d · g = 0 and
c = vs. The shear wave itself is divided into two categories: SV-wave with d = z ∧ g and
c = vs, and SH-wave with d = z and c = vs. The direction z is perpendicular to the 2-
dimensional plane in which the wave propagates. This categorization is again associated with
the relation between the propagation of the waves and the direction of the vibration in the
particles. Particles move in a vertical direction in SV-wave, whereas they move in horizontal
direction in SH-wave. Nevertheless, in both cases, the vibration direction is perpendicular to
the wave propagation direction.

wavelength

propagation
   direction

x

y

(a) P-wave

wavelength

x

y
propagation
   direction

(b) SV-wave

Figure 2.2: Body waves

2.2.2 Surface waves

There are two types of surface waves, Love wave and Rayleigh wave, which are named after the
scientists who first discovered them. When waves hit a free surface, some energy is reflected
back and some is refracted thru the next layer, whereas the rest of the energy is transmitted
to surface waves. P- and SV-waves transmitted at a free surface may trigger Rayleigh surface
waves travelling at a lower speed than P- and S-waves. While Rayleigh wave propagates, the
particle motion is elliptical as shown in Figure 2.3. During an earthquake, the vertical displa-
cement on the surface caused by Rayleigh wave is significantly bigger than the one caused by
body waves. Thus, Rayleigh waves are more destructive than body waves in an earthquake.
However, Rayleigh waves are only effective in regions close to the free surface and they decay
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exponentially with depth. When it comes to Love waves, they are also formed at the surfaces.
Repeated reflections of SH waves at the surface form Love waves which are slower than body
waves, but slightly faster than Rayleigh waves. In Figure 2.3, it can be seen that the surface is
subject to a torsion whose direction changes continuously in the horizontal plane.

propagation 
   direction

surface

(a) Rayleigh wave

x

y

z

uz

propagation 
   direction

surface

uz

(b) Love wave

Figure 2.3: Surface waves

2.2.3 Reflection and refraction of waves at free boundaries

As already mentioned in the previous section, although some part of the energy of the incoming
wave is converted to surface waves at the free surface, the rest of it is either reflected back to
the domain where the incident waves are coming from, or continue moving forward to the next
layer, but with refraction. On the other hand, if the incident wave is P- or SV- wave, 4 waves are
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formed at the boundary different from surface waves: a reflected P-wave, a reflected SV-wave,
a refracted P-wave, and a refracted SV-wave. For the sake of simplicity, we assume a solid-
solid interface as in Figure 2.4. As incident wave is moving in layer A towards layer B. At the
boundary, some part of the wave is reflected back and some moves forward with a refraction.
Some part of the energy may be converted to a different kind of wave at a boundary; some part
of P-wave energy is converted to SV-wave and the opposite is also true.

 Layer A

 Layer B

α α1

α2

β1

β2

  incoming P- 

    or SV-wave SV P

P

SV

  reflected P- 

 and SV-waves

  retracted P- 

 and SV-waves

Figure 2.4: P- and SV-waves at solid-solid interface

Incident, reflected and refracted waves [Achenbach, 1984]

2.3 Wave equations

Wave equations, which are partial differential equations, are used to model the propagation of
waves. In this section, we focus on two wave equations: elastic and acoustic. Acoustic wa-
ve equation is a special form of the elastic equation where the shear modulus µ is zero. The
equations are solved in the frequency domain. For a single frequency, the equations show time
harmonic response of the structure. However, transient response by solving the equation for
discrete frequencies which covers the effective frequency range of the source function and by
performing the inverse Fourier transformation of the time harmonic responses.

The inhomogeneous partial differential equations which are solved in each iteration of the in-
verse process do not have analytical solutions. We are using higher-order finite element method
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to solve the equations precisely.

2.3.1 Elastic wave equation

The elastic wave equation describes the dynamic response of solids because it accounts for
P-wave, S-wave, and surface waves at free boundaries. We do not consider permanent deforma-
tions and we solve the wave equation for isotropic and linear elastic materials. As mentioned
before, small deformations suit our problem very well because the intention of this work is
to perform a non-destructive inversion with the wave response of the earth. The elastic wave
equation

ρ(x) ¨̃u(x, t)−∇ · σ̃(x, t) = f̃(x, t), x ∈ R3, t ∈ [t0,∞] (2.15)

can be derived by the balance of momentum with continuum mechanics as shown for example in
[Marsden and Hughes, 1983]. In case of a non-dissipative, isotropic, and linear elastic medium,
the constitutive relation is formulated as

σ̃(x, t) = C : ∇ũ(x, t). (2.16)

Since the domain we aim to solve the wave equations in the frequency domain, we assume a
harmonic excitation f̃(x, t) = f(x)eiωt of the angular frequency ω to obtain the time harmonic
equation

−ρ(x)ω2u(x, ω)−∇ · σ(x, ω) = f(x, ω), x ∈ R3, ω ∈ [−∞,∞], (2.17)

σ(x, ω) = C : ∇u(x, ω) (2.18)

which is the elastic wave equation in the frequency domain.

2.3.2 Acoustic wave equation

The acoustic wave equation describes the propagation of waves in fluid medium which can be
either liquid or gas. In such a medium, the shear modulus µ is zero. As in [Fichtner, 2011], if
we consider µ = 0 in the isotropic constitutive relation with linear strain

σ = C : ε = C : ∇u, (2.19)

we obtain

σij = λδij∇ · u. (2.20)

Scalar pressure field p = −λ∇u is inserted in the elastic wave equation which yields

ρü+ ∇p = f . (2.21)
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After −λ∇u is replaced by p, the last equation is divided by ρ, divergence of both sides are
taken, and λ is replaced by c2ρ,

1

c2ρ
p̈−∇ ·

[
1

ρ
∇p

]
= −∇ · (1

ρ
f) (2.22)

is obtained. This is the acoustic wave equation with inhomogeneous density. If inhomogeneity
of ρ is negligible, we can obtain

∆p− 1

c2
p̈ = ∇ · f . (2.23)

To be more precise, we can rewrite the acoustic wave equation in the time domain with a con-
stant density field as

4p̃(x, t)− 1

c2(x)

∂2p̃(x, t)

∂t2
= f̃(x, t), p̃ : Ω× [t0,∞]→ R, (2.24)

where p̃(x, t) is the pressure field in time domain, c(x) is the velocity field, and f̃(x, t) is the
source function in the time domain. We assume a harmonic excitation f̃(x, t) = f(x)eiωt of the
angular frequency ω in the equation (2.24) to obtain the time harmonic equation

4p(x, ω) +
ω2

c2(x, ω)
p(x, ω) = f(x, ω), p : Ω→ R, (2.25)

which is the frequency domain acoustic equation. This equation is also referred as scalar-valued
Helmholtz equation in literatures.

2.3.3 Viscoacoustic waves

We did not consider the attenuation effect in the acoustic wave equation in the previous section.
However, in reality, there is no material without the attenuation effect. Some materials, such as
rocks, have so low attenuation that the waves are barely damped in a small domain. At the same
time, there are materials with high attenuation. In a domain with such a material, the attenua-
tion has to be taken into account in order to model waves properly. In this section, attenuation
is considered in the acoustic wave equation in the frequency domain. Apart from attenuation,
inhomogeneous density effect is also considered in the acoustic wave equation. Mainly, the
acoustic equation with a constant density field is referred to in many studies. In many cases, it
may suffice to model waves with a constant density field unless there is significant density gra-
dient. However, for a domain with high density gradient, the equation with an inhomogeneous
density field is

∇ ·
[

1

ρ(x)
∇pω

]
+

ω2

ρ(x)c2(x)
pω = fω. (2.26)

In this study, attenuation effect is integrated into acoustic equation by using Kolsky-Futterman
model, [Kolsky, 1956], [Futterman, 1962], which replaces the velocity field c with a complex-
valued field

c̄ = c

[(
1 +

1

πQ
|log(

ω

ωr
)|
)

+ i
sgn(ω))

2Q

]−1

. (2.27)

in the frequency domain with Q and ωr denoting the attenuation factor and the reference fre-
quency, respectively. In this case, besides being complex-valued, the velocity field c̄ also beco-
mes dependent on the angular frequency ω.
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2.4 Boundaries

The domain over which the wave equation is solved makes the problem unique. The aim of
this work is to solve the acoustic and elastic wave equations in a tunnel environment. To do so,
few boundaries have to be taken into account as well as the main equations to describe the pro-
blem properly. There are two very important boundaries: reflecting boundaries, and absorbing
boundaries which do not exist physically.

2.4.1 Reflecting boundaries

The boundaries of a physical model are reflective in nature. Mathematically speaking, the reflec-
ting boundaries can be categorized in two groups: Dirichlet and Neumann boundary conditions.
Dirichlet boundary condition prescribes pressure and displacement at the region Γu in the acou-
stic and elastic equations, respectively. In other words,

p(x, t) = p∗(x, t) ∀x ∈ Γu (2.28)

in the acoustic equation, and

u(x, t) = u∗(x, t) ∀x ∈ Γu (2.29)

in the elastic equation. Throughout this work, we consider homogeneous Dirichlet boundary
condition in which p∗(x, t) and u∗(x, t) are zero. The homogeneous Neumann boundary con-
dition is

∇p · n = 0 ∀x ∈ Γσ (2.30)

in the acoustic equation, and

σ · n = 0 ∀x ∈ Γσ (2.31)

in the elastic equation. Although modelling reflecting boundary conditions can be a tricky task
in case of the finite difference method, finite element method copes with them in a straightfor-
ward way.

Free surface represents the air-soil interface in our models. In a tunnel model, air-soil interfaces
are the upper surface and all of the inner tunnel edges. In mathematical terms, the pressure is
zero at a free surface. This is a Dirichlet boundary condition in the acoustic wave equation,
whereas Neumann boundary condition in the elastic wave equation.

2.4.2 Absorbing boundaries

The domain of a tunnel is so big that it is considered as infinite in theory. However, it is in-
teresting to know the solution only in a small portion of the whole domain. Furthermore, it is
desired to have not a big numerical model in order to have inexpensive computation. These
factors play decisive role in having a smaller numerical model than the real model. Smaller
domain imposes artificial edges which pollute the solution in the numerical model. We describe
the artificial boundary technique we used in our model in the next section.
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3 Absorbing boundaries

As mentioned in the previous section, the numerical models are usually chosen much smaller
than the real models in order to minimize the computational cost. This results in artificial boun-
daries in the numerical model and they cause pollutions in the solution of the waves; the waves
are reflected back from the artificial boundaries and the domain is polluted with spurious reflec-
ted waves. To model the waves precisely, we need to avoid the pollution by spurious waves by
using absorbing boundary techniques. This is a crucial step in having a precise forward model.

Several absorbing boundary techniques to tackle artificial boundaries have been investigated
and developed by researchers. Paraxial approximation of waves is one technique used to sup-
press the spurious reflected waves. Low-order paraxial approximations suppress the waves with
very low incidence angles quite well, [Engquist and Majda, 1977], [Clayton et al. 1980]. Ho-
wever, waves with big incidence angles are not handled precisely. High-order approximations,
[Keys, 1985], [Higdon, 1991], cope with this problem better, although it is not perfect. We des-
cribe this method in a separate section because paraxial approximation is a conventional absor-
bing boundary technique.

Another method to deal with artificial boundaries is a sponge absorbing method
[Cerjan et al. 1985] whose implementation in wave equations is very simple. The idea of this
method is to represent artificial boundary with a damping zone within which the wave is multi-
plied with a Gaussian function which decays exponentially and forces the waves to be attenuated
inside the absorbing layer such that the waves are not reflected back. This method is practical
and precise. It can handle waves with big incidence angles as well as small incidence angles
efficiently. However, the damping zone must be thick to damp the spurious waves. Because of
the thick damping zone, the computational cost increases significantly, especially in 3D simu-
lations.

Perfectly matched layers (PML) is recently very widely used as an absorbing boundary techni-
que. It was first introduced by Berenger [Berenger, 1994] to overcome artificial boundaries in
Maxwell’s equation. The robustness, efficiency and practicality of this method were noticed by
researchers. It has been applied in other wave equations too and several derivations of this tech-
nique have been developed. It has been also applied to acoustic [Harari et al. 2000] and elastic
wave equations ([Collina and Tsogka, 2001], [Komatitsch and Tromp, 2003],
[Festa and Vilotte, 2005], [Festa et al. 2005] and it is significantly successful to cope with arti-
ficial layers not only in terms of body waves, but also surface waves. The method reminds of
sponge absorbing method as they both have a damping zone and the waves are forced to decay
exponentially to zero. However, PML tackles the reflections in a more efficient way; very thin
PML layers can absorb the spurious reflections from the artificial layers very effectively.

The choice of absorbing boundary method is very important in modelling the waves in an un-
bounded domain. In case a method does not absorb the incident waves properly in the time do-
main, the domain can be chosen much bigger than necessary and the simulation can be stopped
before the reflected waves pollute the domain of interest. However, this increases the compu-
tational time and cost significantly. In a highly viscous medium, there is no need to make the
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domain too big because the waves are damped till they reach the artificial layers. Nevertheless,
we try to keep the computational cost minimum and to have good absorption of both body and
surface waves at the absorbing layers. Moreover, we try to choose such a method that has a
simple implementation in the wave equations.

3.1 Paraxial approximations

As in [Fichtner, 2011], we consider the acoustic equation in the time domain (equation 2.24) in
a homogeneous and source-free (f̃ = 0) acoustic medium. Since the wave solution is a linear
combination of plane waves, we substitute

p = exp(i(k · x− ωt)) (3.1)

plane waves in the wave equation and obtain

ω2

c2
− k2

x − k2
y − k2

z = 0 (3.2)

where k = (kx, ky, kz) is the wave number vector. As a result, one can obtain kz as

kz = ±ω
c

√
1− c2

ω2
(k2
x + k2

y) (3.3)

The spurious waves reflected at a artificial boundary propagates in opposite direction to the in-
cident wave. According to this fact, the aim of paraxial approximations technique is to suppress
kz < 0 which account for the reflected waves in negative z direction and to allow only kz > 0
which accounts for the waves propagating in positive z direction. In other words, only positive
kz is taken into account

kz =
ω

c

√
1− c2

ω2
(k2
x + k2

y). (3.4)

The partial derivative of the plane wave in the equation 3.1 with respect to z

∂zp = ∂z exp(i(k · x− ωt)) = ikz exp(i(k · x− ωt)) (3.5)

leads to the equation[
∂z − i

c

ω

√
1− c2

ω2
(k2
x + k2

y)

]
p(kx, ky, z, ω) = 0. (3.6)

The square root is expanded by truncated Taylor series

ckz
ω

= 1 +O

(∣∣∣∣ c2

ω2
(k2
x + k2

y)

∣∣∣∣) , (3.7)

ckz
ω

= 1− 1

2

[
c2

ω2
(k2
x + k2

y)

]
+O

(∣∣∣∣ c2

ω2
(k2
x + k2

y)

∣∣∣∣2
)

(3.8)
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which are called A1 and A2 paraxial approximations, respectively. The equations are transfor-
med into the time domain and the following wave equations

ṗ+ c∂zp = 0, (3.9)

p̈+ c∂zṗ−
1

2
c2(∂2

x + ∂2
y)p = 0 (3.10)

are formed. The square root can be approximated in other ways to have a better absorption at the
artificial layers, which can lead to other wave equations ([Claerbout, 1979], [Zhang, 1985]). To
investigate the effectiveness of A1 and A2 paraxial approximations, again as in [Fichtner, 2011],
we split the plane wave into the plane wave propagating in positive z direction, p+, and the
reflected plane wave moving in negative z direction, u-

p = p+ +Rp− (3.11)

with

p+ = ei(kxx+kyy+kzz−ωt), (3.12)

and

p− = ei(kxx+kyy−kzz−ωt) (3.13)

where R defines the amplitude of the spurious waves. The angle between k and the x-axis,
and the angle between k and the z-axis are denoted by φ and θ, respectively. Then k can be
mathematically represented as

k =

 cosφ sin θ
sinφ sin θ

cos θ

 . (3.14)

In case of a perfect absorption, the equality

R = 0 (3.15)

has to be fulfilled. We assume that the artificial layer is at the position z = 0. Inserting 3.11 in
the paraxial approximations A1 and A2, R is calculated as

R = −1− cos θ

1 + cos θ
(3.16)

in A1 condition, and

R = −(1− cos θ)2

(1 + cos θ)2
(3.17)

in A2 condition. In both cases, R is a function of the incident angle θ. It is clearly seen that
R is smaller in case of A2 because it is higher order than A1. If the incident angle is small
enough, the amplitudes of the spurious waves are also very small. However, for little bigger
angles the spurious waves become big. As θ approaches to π, the reflected waves becomes si-
gnificantly big. Higher-order approximation can reduce the amplitudes of the spurious waves,
[Higdon, 1990], [Keys, 1985], [Clayton et al. 1980]. Nevertheless, higher-order approximations
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end up with wave equations which contain higher-order spatial derivatives which are computa-
tionally very expensive and which are not trivial to implement.

The paraxial approximation method is not only applied to acoustic wave equation, but it can
also be used in case of the elastic wave equation, [Fichtner, 2011]. However, in some cases,
the numerical problem is associated with instability problems, [Emerman and Stephen, 1983],
[Mahrer, 1986], [Mahrer, 1990], [Simone and Hestmolm, 1998].

This method has been widely used and investigated by researchers for many years. They have
improved the method with different higher-order approximations and applied it to different
wave equations. However, there are always some errors due to spurious waves reflected from the
artificial layers. Apart from the body waves, in case of shallow models, the reflection of surface
waves from the artificial bottom boundary is another problem this method cannot handle well.

When it comes to implementation of paraxial approximations technique, there are two wave
equations which have to be solved on the artificial layers which may make it less practical to
implement.

3.2 Perfectly-matched layers

PML is computationally cheap and only very thin damping zone is enough to absorb the in-
cident ways and prevent the reflections from the artificial layers regardless of the frequency
and the incidence angle. The first PML application was based on the field splitting; each field
component in Maxwell’s equation was split in two in a two-dimensional space. This ends up
in more variables, especially in the three-dimensional case as the field components are then
split into three. Moreover, applying split-field formulation to numerical methods is not very
practical. After Berenger’s work, noticing the practicality and efficiency of PML technique,
researchers conducted more investigations on it and developed the method further. Stretching
complex coordinate [Chew and Weedon, 1994] is not of the important discoveries to make the
PML formulation easier and better understandable. Furthermore, anisotropic PML in Maxwell’s
equation [Sacks et al., 1995] showed that it was possible to avoid field-splitting. This, in turn,
brought a lot of flexibility to implement numerical models with finite element and finite diffe-
rence methods.

In contrast to paraxial approximations, there are no numerical instability issues in application
of PML technique to the elastic wave equation. Furthermore, PML can be implemented such
that it can also absorb the Rayleigh surface waves, but not only body waves [Festa et al. 2005].
Anisotropic PML in elastic wave equation [Zheng and Huang, 2002] eases the implementation
of the method without requiring field-splitting which increases the variables in the damping
zone.

The basic idea of PML is to introduce a damping zone around the area of interest which is
supposed to absorb the energy of waves reaching the artificial boundaries as shown in Figure
3.1.

First we consider the case where the domain is infinite in x-direction. The same approach is
applied to the y-direction. In this study, we follow the complex coordinate stretching approach
[Chew and Weedon, 1994], [Chew and Liu, 1996]. Inside the damping zone, a complex coordi-
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Figure 3.1: Perfectly-matched layer (PML)

nate

x̃ = x0 +

∫ x

x0
εx(x

′)dx′, (3.18)

is introduced instead of the real coordinate. Here, εx is a complex function of the local variable
x (see Fig. 3.1). We show in following subsections how the complex coordinate is substituted
in the wave equations to which some mathematical tricks are applied to have a convenient
formulation in the end.

In this work, we appeal to two types of PML: standard PML and convolutional PML. The
complex function εx defines whether PML is standard or convolutional. Standard PML is repre-
sented by

εx(x) = 1 + iγx(x)/ω (3.19)

where γx represents PML damping behavior and it is zero outside the PML region. The γ
function we use throughout this study is

γx(x) = cpml(1− cos(
π

2

x

L
)), x ∈ [0, L] (3.20)

where L is the width of the PML layer and cpml is a parameter which has to be chosen correctly.
x = 0 is the point where the PML region starts, whereas x = L is the point where the PML
region ends. Since γx(x = 0) = 0 and γx(x = L) = cpml, γx increases from zero to cpml from
the beginning till the end of the PML layer.

To see how effective standard PML is in damping the incident body waves at absorbing layers,
we consider plane body waves in equation (2.14). As in [Festa et al. 2005], the complex coor-
dinate x̃ in (3.18) can be rewritten as

x̃ = x+
κ(x)

iω
(3.21)

where κ(x) is a function of x starting from zero at the interface of PML and the domain and
growing to its maximum at the end of PML layer. We substitute the complex coordinate in the
plane body waves

u = Aei(ωt−kxx−kyy) (3.22)



22 3 Absorbing boundaries

in PML which leads to

ũ = ue−
kx
ω
κ. (3.23)

Since kx
ω

= c is constant, the body waves in PML become independent of frequency and
decay exponentially. We can conclude that with a right choice of the function γx a standard
PML layer can prevent the reflection of body waves on a artificial layer very well. Howe-
ver, this fact does not guarantee that a standard PML layer can also absorb surface Rayleigh
waves well. Plane Rayleigh waves are mathematically described in [Achenbach, 1984] and
[Aki and Richards, 2011]. As in [Festa et al. 2005], we use this description to see what happens
to Rayleigh waves in a standard PML absorbing layer. In [Achenbach, 1984], the two horizontal
and vertical components of plane Rayleigh waves in a two-dimensional plane is given by

ux =
[
A1e

−b1y + A2e
−b2y

]
e[ik(x−ct)] (3.24)

uy =

[
−b1
ik
A1e

−b1y +
ik

b2

A2e
−b2y

]
e[ik(x−ct)] (3.25)

with

b1 = k(1− c2

v2
p

)
1
2 = ωd1, b2 = k(1− c2

v2
s

)
1
2 = ωd2 (3.26)

where vp, vs and c are pressure, shear and Rayleigh wave speeds, respectively. The surface waves
decays exponentially in vertical direction as it can also be seen from the equations above. These
waves still hit the bottom of the model which is not x direction, but y direction. We replace the
y coordinate by its complex counterpart to investigate what happens to surface waves in PML
layers in y direction. As a result, ux and uy turn out to be

ux =
[
A1e

−ωyd1e−id1κ + A2e
−ωyd2e−id2κ

]
e[ik(x−ct)] (3.27)

uy =

[
−b1
ik
A1e

−ωyd1e−id2κ +
ik

b2

A2e
−ωyd2e−id2κ

]
e[ik(x−ct)] (3.28)

in PML layers in the vertical direction. The term e−id2κ is a sinusoidal term independent of the
frequency where κ ranges from zero to its maximum value in the PML layer. On the other hand,
if ωy is very small and tends to be very close to zero, the terms e−ωyd1 and e−ωyd2 approach to
one; in other words, ux and uy surface waves are converted into body waves in PML layer in
y direction if ωy is small enough. Standard PML do not handle surface waves well in vertical
PML layer for very low frequencies and very shallow profiles. In contrast to standard PML,
convolutional PML copes very well with the surface waves [Festa et al. 2005].

As mentioned before, the basic idea of PML is to stretch the coordinate in the complex pla-
ne. The differences between standard and convolutional PMLs are the stretching functions. In
convolutional PML this function is

εx(x) = 1 +
γx(x)

ωc + iω
. (3.29)
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Through the equation (3.18), the complex coordinate in PML region becomes

εx(x) = x+
κ(x)

ωc + iω
. (3.30)

Again, we replace the real coordinate x2 by its complex counterpart to investigate what happens
to body and surface waves in the PML layers. First, we replace x coordinate by its complex
coordinate x̃ in body waves which reduces down to

ũ = ue
−ikxκ ωc

ω2+ω2c e
−kxκ ω

ω2+ω2c . (3.31)

The term ω
ω2+ω2

c
can be forced to be greater than some positive constant with a right selection of

ωc and as a result, an exponential decay is imposed on the waves with increasing κ. However,
this time, the decay is frequency dependent in contrast to the standard PML. Fortunately, this
dependency can be controlled by the right choice for ωc.

Next, to see what happens to surface waves in PML layers in y direction we apply the complex
stretched coordinate to the plane surface waves where the decay terms e[−ωydj ] reduce down to

e
−κ ωωc

ω2+ω2c
dj
e
−iκ ω2

ω2+ω2c
dj (3.32)

where the exponential decay term going to zero with order ω
ωc

([Festa et al. 2005]). Thus, con-
volutional PMLs are successful in handling both body and surface waves even at very low
frequencies and in shallow domains if the constant ωc and the function γ are chosen right. Stan-
dard PML is also very effective in absorbing body waves under any circumstance. The surface
waves are also absorbed effectively either if the frequency is high enough or if the model is not
shallow. In case of a shallow model and low frequency, convolutional PML are preferred.

3.2.1 Perfectly-Matched Layers (PML) in Acoustic Wave Equation

By using chain rule and the relation between the complex coordinate x̃ and x, the differential
operator

∂

∂x̃
=
∂x

∂x̃

∂

∂x
=

1

εx

∂

∂x
(3.33)

is introduced.

Inside the PML region, coordinates and the differential operators are replaced by their complex
counterparts in the acoustic equation (2.25). εx and εy are complex numbers and their imaginary
parts account for absorption of waves in PMLs. After inserting the differential operators for the
x and y-directions by their complex counterparts (3.33), the acoustic equation becomes

ω2

c2
pω +

1

εx(x)

∂

∂x

1

εx(x)

∂pω
∂x

+
1

εy(y)

∂

∂y

1

εy(y)

∂pω
∂y

= 0 (3.34)

in PML region where at least one of εx and εy is different from one. Applying the product rule,
equation (3.34) is reformulated as

ω2

c2
εxεypω +∇ · (D∇pω) = 0 (3.35)



24 3 Absorbing boundaries

where

D =

[ εy
εx

0

0 εx
εy

]
(3.36)

in 2D and

D =

 εyεzεx
0 0

0 εxεz
εy

0

0 0 εxεy
εz

 (3.37)

in 3D [Zheng and Huang, 2002].

3.2.2 Perfectly-Matched Layers (PML) in Elastic Wave Equation

Field-splitting makes implementation of PML inconvenient and increases the computational
cost because every field component is divided into subcomponents. Anisotropic PML
[Zheng and Huang, 2002] does not require field-splitting; it can be used to make the implemen-
tation of PML in the elastic wave equation simple and to have no need to split the components.

We use convolutional PML in the case of the elastic waves to prevent the transformation of
surface waves to body waves in the bottom PML layer if the domain is shallow.

By applying complex coordinate (3.18) to the elastic wave equation (2.17) and considering the
fact that source function f(x, ω) is zero in the PML region, the wave equation in the PML layer
takes the form

−ρω2u = ∇ξ · σ (3.38)

where ∇ξ = 1
ξxi

∂
∂xi
ei. For the sake of simplicity, xi represents x, y, and z for i = 1, 2, 3,

respectively. A new tensor σ̃ = εxεyεz
εxi

σijeiej is introduced so that (3.38) can take the form

−ρω2εxεyεzu = ∇ · σ̃. (3.39)

C̃ is introduced whose entries are

C̃ijkl = Cijkl
εxεyεz
εxiεxk

. (3.40)

This is where the anisotropy comes into play in the PML region. (3.39) can be rewritten as

−ρω2εxεyεzu = ∇ · (C̃ : ∇u). (3.41)



25

4 Fourier transformation

Fourier transformation [Williams, 1999] is an important part of this work since we need to go
back and forth between time and frequency domains all the time. We solve the forward problem
in the frequency domain. However, to have a better understanding of the seismograms, it is
necessary to transform the data to the time domain by inverse Fourier transformation. Apart
from this, in real world, or in blind test such as in the inversion results section, the data is first in
time domain. To perform inversion in frequency domain, it is inevitable to use forward Fourier
transformation and obtain data in frequency domain. The forward Fourier transformation is
associated with the integral

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt, (4.1)

whereas the inverse Fourier transformation is

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdω. (4.2)

In this work, we solve the wave equation in the frequency domain; in other words, we solve
time harmonic wave equation. Nevertheless, it is not possible to generate harmonic waves in
a real life application such as in a tunnel environment. However, the generated waves can be
approximated as the superposition of the time harmonic waves. We can write the acoustic and
elastic wave equations in general form(

∂2

∂t2
+ Lx

)
ũ(x, t) = f(x, t) (4.3)

where Lx is a linear differential operator. u is scalar and vector in the case of acoustic and
elastic equations, respectively. We can separate the dependency of the source function f(x, t)
on time and space by

f(x, t) = f̃t(t)fx(x) (4.4)

where f̃t and fx depend only on time and space, respectively. We now multiply both sides of
(4.3) with e−iωt and integrate over (−∞,∞):∫ ∞

−∞

∂2ũ(x, t)

∂t2
e−iωtdt+

∫ ∞
−∞

Lxũ(x, t)e−iωtdt =

∫ ∞
−∞

f̃t(t)fx(x)e−iωtdt. (4.5)

The second term on the left hand side and the term on the right hand side are easily suited to
Fourier transformation integral:∫ ∞

−∞
Lxũ(x, t)e−iωtdt = Lx

∫ ∞
−∞
ũ(x, t)e−iωtdt = Lxu(x, ω), (4.6)
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∫ ∞
−∞

f̃t(t)fx(x)e−iωtdt = fx(x)

∫ ∞
−∞

f̃t(t)e
−iωtdt = fx(x)fω(ω). (4.7)

The first term can also be derived with Fourier transformation integral. We derive the relati-
on between the Fourier transformation of the second derivative of a function and the Fourier
transformation of the function itself by the inverse transformation:

ũ(x, t) =
1

2π

∫ ∞
−∞
u(x, ω)eiωtdω. (4.8)

The second derivative of ũ(x, t) with respect to t turns out to be

∂2ũ(x, t)

∂t2
=

∂2

∂t2

(
1

2π

∫ ∞
−∞
u(x, ω)eiωtdω

)
=

1

2π

∫ ∞
−∞

(iω)2u(x, ω)eiωtdω

=
1

2π

∫ ∞
−∞
−ω2u(x, ω)eiωtdω (4.9)

which implies that∫ ∞
−∞

∂2ũ(x, t)

∂t2
e−iωtdt = −ω2u(x, ω). (4.10)

the equation (4.7) can be rewritten as(
−ω2 + Lx

)
u(x, ω) = fω(ω)fx(x). (4.11)

This equation is the time harmonic wave equation. In this study, we usually choose a nodal space
dependent source term. For the sake of simplicity, we replace fx(x) with a vector δk(x − s)
whose component k is a Dirac delta function δ(x − s) where s is the source point. We can
obtain the Green’s function by dividing both sides by fω(ω) which is nothing else but a scalar
value for a single frequency:(

−ω2 + Lx
)
G(x, ω) = δk(x− s) (4.12)

u(ω) can be calculated by

u(x, ω) = fω(ω)G(x, ω) (4.13)

The time domain seismograms are calculated by inverse Fourier transformation as

u(x, t) =
1

2π

∫ ∞
−∞
u(x, ω)eiωt =

1

2π

∫ ∞
−∞
fω(ω)G(x, ω)eiωt (4.14)

Reversing the process, we can obtain frequency domain data from the seismograms in the time
domain by using Fourier transformation.

We use Ricker function, which is the second derivative of a Gaussian function, as the source
functions fω(ω). It is

fr(t) =
(
1− 2(πfp[t− dr])2

)
e−(πfp[t−dr])2 (4.15)
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in the time domain, and

Fr(ω) = − 2

fp
√
π

(
ω

2πfp

)2

e

(
−idrω−[ ω

2πfp
]2
)

(4.16)

in the frequency domain where fp is the peak frequency and dr is the temporal delay. The Ricker
wavelet dr = 0.5 sec and fp = 50 Hz is illustrated in Figures 4.1 and 4.2. It can be seen that the
functions in both time and frequency domains decreases very rapidly towards zero outside the
effective range of time and frequency, respectively; the time and frequency outside this range do
not really contribute to the integral. This fact helps to convert the forward and inverse Fourier
integrals over an infinite domain to an integral over a finite domain.

Figure 4.1: Ricker function in the time domain

dr = 0.5 sec, fp = 50 Hz
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(a) Real part

(b) Imaginary part

Figure 4.2: Ricker function in the frequency domain

dr = 0.5 sec, fp = 50 Hz
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4.1 Fourier Series

We assume a periodic function f(t) with period T, which implies f(t + T ) = f(t). Then, f(t)
can be represented by a Fourier series

f(t) =
1

2
a0 +

∞∑
n=1

[
an cos(

2πnt

T
+ bn sin(

2πnt

T
)

]
. (4.17)

The conditions that this series converges to f(t) is fulfilled if f(t) and its first derivatives are
piecewise continuous within each period [Achenbach, 1984]. The speed of the convergence of
the Fourier series to the function f(t) depends on the smoothness of f(t); the series conver-
ges faster to smoother functions. To find coefficients an, we multiply both sides of (4.17) by
cos(mx) and integrate over [−T/2, T/2]. Similarly, to find coefficients bn, we multiply both
sides by sin(nx) and integrate. By using orthogonality relations of sin and cos functions∫ T/2

−T/2
cos(

2πnt

T
) cos(

2πmt

T
)dt =

1

2
T δnm (4.18)

∫ T/2

−T/2
sin(

2πnt

T
) sin(

2πmt

T
) dt =

1

2
T δnm (4.19)

∫ T/2

−T/2
cos(

2πnt

T
) sin(

2πmt

T
) dt = 0, (4.20)

where δnm is Kronecker delta

δmn =

{
1 if m = n
0 if m 6= n.

(4.21)

The coefficients an and bn are calculated as

an =
2

T

∫ T/2

−T/2
f(t) cos(

2πnt

T
) dt, (4.22)

bn =
2

T

∫ T/2

−T/2
f(t) sin(

2πnt

T
) dt, (4.23)

a0 =
2

T

∫ T/2

−T/2
f(t) dt. (4.24)
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4.2 Discretization of the Fourier Transform

For our problems, the infinite integral of the Fourier transformation can be precisely approxi-
mated by the finite integral

F (ω) =

∫ ∞
−∞

f(t) e−iωtdt ≈
∫ L/2−∆t

−L/2
f(t) e−iωt dt (4.25)

To convert the continuous Fourier transformation to discrete Fourier transformation, rectangular
integration rule is applied. First, we need to discretize the functions f(t) and F (ω) by N evenly
spaced samples

∆x =
L

N
(4.26)

x = q∆x, q = −N/2,−N/2 + 1, ..., N/2− 1 (4.27)

To obtain a DFT formulation, we set

∆ω = 2π/L. (4.28)

ω = q∆ω, q = −N/2,−N/2 + 1, ..., N/2− 1. (4.29)

After applying rectangular integration rule, equation (4.25) is transformed to discontinuous
equation

F (m∆ω) ≈
N/2−1∑
q=−N/2

f(q∆t) e−imq∆t∆ω ∆t =
L

N

N/2−1∑
q=−N/2

f(q∆t) e−i2πmq/N . (4.30)

4.3 Discretization of the Inverse Fourier Transform

To convert the continuous Fourier transformation to discrete inverse Fourier transformation, we
assume that the infinite integral can be represented accurately by a finite integral

f(t) =
1

2π

∫ ∞
−∞

F (ω) eiωtdω ≈ 1

2π

∫ L/2−∆ω

−L/2
F (ω) eiωt dω (4.31)

Discretizing the functions f(t) and F (ω) as in the previous section and applying rectangular
integration, the equation for discrete inverse Fourier transformation

f(m∆t) =
1

2π

N/2−1∑
q=−N/2

F (q∆ω) eimq∆ω∆t ∆ω =
1

L

N/2−1∑
q=−N/2

F (q∆ω) ei2πmq (4.32)

is obtained.
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4.4 Discussion

To transform the data in the frequency domain to the time domain, the effective frequency range
has to be taken into account. To narrow frequency range results in a wrong interpretation of data
in the time domain. On the other hand, too wide range makes the computational expensive be-
cause the frequencies outside the effective range do not really contribute to the overall integral.
An optimal frequency step size is also very important in the transformation; too big step size
makes the calculations wrong, whereas too small step size makes it computationally expensive.

Numerical simulations generate seismograms which cover only a limited time range. For the
sake of not to have a very long simulation time, the seismograms are plotted only till some
defined time. In real wave simulations in a domain such as a tunnel domain, the waves normally
do not disappear for a very long time range for which numerical simulations cannot be run
because of the computational cost. The seismograms stop fluctuating and drop to zero very
rapidly at the last point in time of the simulation duration (Figure 4.3).

Figure 4.3: Seismogram with a rapid stop

This rapid drop changes the frequency content of the seismograms significantly. This is avoided
by using a window function. In this work, we use a window function which is a constant function
of value 1 in the first 90% of the time and cos function whose angle ranges linearly at the interval
[0, π/2] over the rest of the time (Figure 4.4).

Multiplying a seismogram with such a window function, it approaches to zero very smoothly
at the very end of the seismogram rather than dropping to zero instantly (Figure 4.5). This, in
turn, saves the frequency content of the seismogram from being polluted by a sudden drop in it.
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Figure 4.4: Sample window function

Figure 4.5: Seismogram multiplied with the window function
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5 Numerical methods for wave equations

Analytical solutions of the wave equations are available only for some special cases; for exam-
ple, the solutions are known for full-space, half-space and some bounded domains with a ho-
mogeneous material and materials with some regular heterogeneity. In the inverse simulations
of our tunnel models, the forward model solved in each iteration is a randomly heterogeneous
model. However, for an arbitrary domain with a random heterogeneity, numerical methods are
required to solve the wave equations since the analytical solutions are not available. Finite diffe-
rence and finite element methods are the numerical methods which are used the most frequently
to model the propagation of waves by solving the wave equations. Both of the methods solve
the equations by discretizing them.

Finite difference method is very frequently used in modelling the propagation of waves. The
method is integrated very well into wave propagation problems, [Alterman and Karal, 1968],
[Madariaga, 1967], [Virieux, 1984], [Dablain, 1986], [Kristek et al., 2002], [Moczo et al., 2002],
[Wang et al., 2008].

5.1 Finite element method (FEM)

Higher-order finite element method, [Szabó and Babuška, 2011], is the numerical method used
to model the waves throughout this work. It is a well-known numerical technique which is
very often referred to by mathematicians, natural scientists and engineers both for real world
and research problems. Mathematically speaking, it is a very effective technique to solve parti-
al differential equations. When it comes to its application in real world problems, it has a wide
range of application fields such as structural engineering, mechanical engineering, physics, geo-
physics, electrical engineering, aeronautical engineering and so on. After being researched by
many scientists, several types of FE- such as spectral element method, discontinuous Galerkin
method, extended finite element method, etc.- have been developed each of which is effecti-
ve for some specific problems. However, we will mention only spectral element method and
discontinuous Galerkin method because they are of interest in seismology.

The spectral element method, [Seriani and Priolo, 1994], [Priolo et al., 1994],
[Chaljub et al., 2007], [Komatitsch and Vilotte, 1998], is one of the most popular methods in
seismology. The fame of this method underlies the fact that it provides diagonal mass ma-
trix. Diagonal mass matrix is obtained by using Lagrange shape functions and Gauss-Lobatto-
Legendre integration rule which makes all non-diagonal terms of the mass matrix zero. Using a
right time integration scheme, the most time consuming part- solving system of linear equations-
becomes computationally very cheap because a diagonal matrix stands on the left hand side
which does not require any direct or indirect solver. Thus, the computation becomes signifi-
cantly cheaper, which is very important especially in case of big scale problems which are
very often encountered in the field of seismology. However, the method has its restrictions too;
the chosen quadrature rule requires quadrangle meshes in 2D and hexahedral meshes in 3D.
In some cases, triangular meshes in 2D and tetrahedral meshes in 3D are more convenient to
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use. This is the motivation for using discontinuous Galerkin (DG), [Dumbser and Kaser, 2006],
[Lambrecht and Friederich, 2013], method in seismology. Moreover, the neighboring elements
are related with each other only by numerical fluxes at their boundaries. This fact provides fle-
xibility to refine an element locally. Furthermore, this fact makes it very practical to implement
the parallelized form of the method.

In this study, we use higher-order finite element method to solve the wave equations in the fre-
quency domain; we use hierarchical shape functions which are not same as the shape functions
of the spectral element method which offers very low computational cost in the time domain.
However, in the frequency domain, there is a need for a direct or indirect solver to solve the
system of linear equations because a time integration scheme is not used in the frequency do-
main. Thus, we do not expect much difference between using spectral element method and a
normal higher-order finite element method in the frequency domain. High orders are important
to model the waves correctly and it provides flexibility working with low and high frequencies
using the same mesh only by changing the degree of FE polynomials. FE is a very general me-
thod and can be applied to solve many partial differential equations. The equations we solve are
frequency acoustic and elastic wave equation. Application of FE starts with generating weak
forms of equations from their strong form. Generation of weak forms of the wave equations and
shape functions are described in the following sections.

Numerical methods transform partial differential equations into a system of linear equations

Ku = f (5.1)

whose solution is computationally expensive especially for large systems. Here, K is a matrix
which represents the system properties, u is a sought vector which represents the response of
the system, and f is a vector which represents the source. In our inversion problems, the forward
problem is solved for each of several source functions separately. In other words, the system of
the linear equations has to be solved several times for the same system. In such a case, it is
better to use direct methods; a direct method decomposes the matrix only once, and the system
is solved for each source separately. The decomposition of a matrix is computationally much
more expensive than solving a decomposed system, especially for large systems. We use sparse
direct solvers as mentioned in the introduction.

5.1.1 Weak Formulation of the Acoustic Equation

In this section, the application of FE method to the acoustic wave equation is described in
detail from mathematical point of view. We split the whole numerical domain Ω into domain
of interest Ωdoi and absorbing domain Ωpml. The numerical domain is surrounded by edges of
PML layers Γpml, free surface which is Dirichlet boundary Γu, and Neumann boundary Γσ. In
this case, ∂Ω = Γpml ∪ Γu ∪ Γσ where ∂Ω is the border of the whole numerical domain. We
apply Neumann boundary at Γpml too. First of all, we write down acoustic equation with all
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boundary conditions as

∇(D∇p) + k2εxεyp− f = 0 ∀x ∈ Ω

∂p
∂ñ

= ∇̃p · ñ = 0 ∀x ∈ Γpml

∂p
∂n

= ∇p · n = 0 ∀x ∈ Γσ

p = 0 ∀x ∈ Γu.

(5.2)

Here,D is the matrix defined in the equations (3.36) and (3.37). For simplicity we replace ω
c

by
wavenumber k. Here, f = 0 in Ωpml as we do not trigger the waves from the domain which is only
responsible to absorb the coming waves properly. Inside the domain of interest, we have only
real coordinate system, which implies that γx = γy = 0 and εx = εy = 1 in Ωdoi. The complex
coordinate and complex norm vector ñ =

˜∇Γσ
‖∇̃Γσ‖

can be represented by their real counterparts

with the help of the chain rule. Using the relation ∂
∂x̃i

= 1
εi

∂
∂xi

which is derived by the chain rule

(∇̃p)i =
∂p

∂x̃i
=

1

εi

∂p

∂xi
(5.3)

(∇̃Γσ)i =
∂Γσ
∂x̃i

=
1

εi

∂Γσ
∂xi

(5.4)

and the Neumann boundary condition at Γpml takes the form

1

(εx)2

∂p

∂x

∂Γpml
∂x

1

‖∇Γpml‖
+

1

(εy)2

∂p

∂y

∂Γpml
∂y

1

‖∇Γpml‖
= 0

⇔ εy
εx

∂p

∂x
n1 +

εx
εy

∂p

∂y
n2 = 0

=⇒ ∂p

∂ñ
= D∇p · n = 0. (5.5)

Now, test function w : Ωdoi → C is chosen and it has the following properties:

• w satisfies the geometrical boundary conditions w = 0 ∀ x ∈ Γu

• w is infinitesimal

• w is arbitrary

To obtain the weak form of the equation, the strong form is multiplied with w and integrated
over the whole domain Ω∫

Ω

w
[
∇ · (D∇p) + k2εxεyp− f

]
dΩ = 0 (5.6)

⇔
∫

Ω

w [∇ · (D∇p)+] dΩ +

∫
Ω

k2εxεyp =

∫
Ω

wfdΩ. (5.7)
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After applying the product rule

∇ · [wD∇p] = w [∇ · (D∇p)] +∇w · [D∇p] (5.8)

the equation takes the form

⇔
∫

Ω

∇ · [wD∇p] dΩ−
∫

Ω

∇w · [D∇p] dΩ +

∫
Ω

wk2εxεy dΩ =

∫
Ω

wf dΩ. (5.9)

Gauss theorem is used to convert the integral over the domain to an integral over the boundary∫
Ω

∇ · [wD∇p] dΩ =

∫
Γ

wD∇p · n dΓ

=

∫
Γu

wD∇p · n dΓu +

∫
Γpml

wD∇p · n dΓpml +

∫
Γσ

wD∇p · n dΓσ. (5.10)

Since w = 0 on Γu according to the definition of the test function,∫
Γu

wD∇p · n dΓu = 0. (5.11)

According to equation (5.5),∫
Γpml

wD∇p · n dΓpml = 0. (5.12)

Outside the absorbing domain, D =

[
1 0
0 1

]
and according to equation (5.2),

∫
Γσ

wD∇p · n dΓσ = 0. (5.13)

And we obtain the simplified form of the weak form as

−
∫

Ω

∇w · [D∇p] dΩ +

∫
Ω

w
ω2

c2
εxεy dΩ =

∫
Ω

wf dΩ. (5.14)

The next step is to discretize the test function w and pressure field p. They are approximated as
linear combinations of element shape functions N(x)

w(x) ≈
NS∑
i=1

Ni(x)wi (5.15)

p(x) ≈
NS∑
i=1

Ni(x)pi, (5.16)
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where NS is the size of the basis. By substituting discretized functions in equation (5.14), we
can write the equation in matrix and vector form as

Kp + ω2Mp = f, (5.17)

where entries of the matrices K, M and vector f can be calculated as

Kij =

∫
Ω

−∇Ni(x) · (D∇Nj(x))dΩ, (5.18)

Mij =

∫
Ω

εxεy
1

c2
Ni(x)Nj(x)dΩ, (5.19)

fi =

∫
Ω

Ni(x)f(x)dΩ. (5.20)

These integrals are calculated by splitting the domain into small elements Ω =
⋃NE
e=1 Ωe where

NE is the number of all elements. To make the geometry x a function of the natural coordinate
of a single element, The geometry is approximated by the ansatz functions N iξ and element
positions xe in an element in physical coordinates:

xi(ξ) ≈
∑

xeiN i(ξ). (5.21)

In case of straight element edges, the geometry can be perfectly approximated with only linear
ansatz functions. The curved elements can be also precisely approximated with higher degree
functions. It can be written in a more general form as

x1(ξ)
x2(ξ)
x3(ξ)

 ≈
N1(ξ) 0 0 N2(ξ) 0 0 ...

0 N1(ξ) 0 0 N2(ξ) 0 ...
0 0 N1 0 0 N3(ξ) ...





xe11

xe12

xe13

xe21

xe22

xe23

.

.

.


. (5.22)

The derivatives with respect to physical coordinates x is transformed to the derivatives with
respect to the natural coordinates ξ with the help of the Jacobi matrix which is derived by the
chain rule:

∂

∂ξi
=
∑
j

∂

∂xj

∂xj
∂ξi

(5.23)

The Jacobi matrix is obtained by writing the last equation in the matrix form:

∂

∂ξ
= J(ξ)

∂

∂x
. (5.24)

The derivative ∂
∂x

can be replaced by the derivatives ∂
∂ξ

by using the reverse of the last equation:

∂

∂x
= J−1(ξ)

∂

∂ξ
. (5.25)
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The infinitesimal element dΩ can be calculated as

dΩ = dx1dx2dx3 = |J | dξ1dξ2dξ3. (5.26)

This equations are also same for the two dimensional space.

The integrals in (5.20) are calculated over each element using numerical integration techniques.
As an example, if g is a function to be integrated over a two dimensional element Ωe, it can be
calculated numerically in natural coordinates as∫ 1

−1

∫ 1

−1

g(ξ1, ξ2)dξ1dξ2 =
n∑
i=1

n∑
j=1

αiαjg(ξi, ξj). (5.27)

[−1, 1] is the range of coordinate in each axis in natural coordinates. Here, ξ represents Gauss
points, whereas α represents the corresponding weight factor.

5.1.2 Weak Formulation of the Elastic Equation

As in the weak formulation of the acoustic equation, the whole domain Ω consists of the domain
of interest Ωdoi and absorbing domain Ωpml. The borders of the domain in the absorbing region
is denoted as Γpml where we apply Neumann boundary condition with no external stress on the
surface because it is not realistic to have external stress on the surface which does not exist
physically. We name the borders as in the acoustic case. First of all, we write down the equation
with all boundary conditions

−ρω2εxεyεzu−∇ · σ = 0 ∀ x ∈ Ω
σ · ñ− f = 0 ∀ x ∈ Γpml

σ · n− t∗ = 0 ∀ x ∈ Γσ
u = 0 ∀ x ∈ Γu.

(5.28)

A complex-valued vector test function w is chosen which has the following properties:

• w satisfies the geometrical boundary conditions w = 0 ∀ x ∈ Γu

• w is infinitesimal

• w is arbitrary

The scalar product of the partial differential equation is taken with w and is integrated over the
whole domain

−
∫

Ω

ρω2εxεyεzw · udΩ−
∫

Ω

w · [∇ · σ] dΩ = 0. (5.29)

To simplify the equation, we use the product rule

∇ · (w · σ) = w · (∇ · σ) +∇w : σ. (5.30)

w · (∇ · σ) = ∇ · (w · σ)−∇w : σ (5.31)
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To convert the volume integral to a boundary integral, Gauss theorem is used∫
Ω

∇ · (w · σ)dΩ =

∫
Γ

w · σ · ndΓ =

∫
Γσ

w · σ · ndΓ +

∫
Γpml

w · σ · ñdΓ. (5.32)

To simplify the weak form further, we use Neumann boundary conditions in (5.28) for Γσ∫
Γσ

w · σ · ndΓ =

∫
Γσ

w · t∗dΓ, (5.33)

and for Γpml∫
Γpml

w · σ · ñdΓ = 0. (5.34)

Inserting (5.31), (5.32), (5.33) and (5.34) in equation (5.29), we obtain the weak formulation as

−
∫

Ω

ρω2εxεyεzw · udΩ−
∫

Ω

w · t∗dΓ +

∫
Ω

∇w : σdΩ = 0. (5.35)

Sincew and u are vectors, their components are discretized separately; they are again approxi-
mated as linear combination of shape functions N(x)

w(x) = wi(x)ei ≈
NS∑
j=1

Ni(x)wij (5.36)

u(x) = ui(x)ei ≈
NS∑
j=1

Ni(x)uij, (5.37)

where NS is the size of the basis. By substituting discretized functions in equation (5.14), we
can write the equation in matrix and vector form as

Ku+ ω2Mu = f , (5.38)

where the matrices K, M and vector f stiffness matrix, mass matrix and external force vector,
respectively.

5.1.3 Shape Functions

Selection of the shape functions is one of the important points at FE analysis. Hierarchical
shape functions are used throughout this study. As degree of the basis increase, the basis is
not changed completely, but only some new functions are added to the basis. This can ease
the calculation of matrices tremendously once we have matrices for lower basis degree; only
new entries are added to the matrices with lower basis degree to construct matrices for higher
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degrees. We use Lagrange shape functions as a reference to compare hierarchical functions to.
Lagrange functions are constructed with the formula

ϕlag
i (ξ) =

p+1∏
k=1
k 6=i

ξ − ξk
ξi − ξk

. (5.39)

where ξ1
k is the natural coordinate of ξ1 at node k. The idea behind these shape functions is that

every shape function is 1 at the node it is assigned to and zero at the rest of points to which
shape functions are assigned. This relation can be shown mathematically as

ϕlag
i (ξk) = δik. (5.40)

Hierarchical shape functions are constructed as

ϕhier
1 (ξ) =

1

2
(1− ξ) (5.41)

ϕhier
2 (ξ) =

1

2
(1 + ξ) (5.42)

ϕhier
i (ξ) = φi−1(ξ), i = 3, 4, ..., p+ 1. (5.43)

N1 and N2 are linear shape functions which is the same as linear Lagrange functions. Ni, for
i > 2, is constructed by polynomial φi−1 which is obtained by integrating Legendre polynomials

φj(ξ) =

√
2j − 1

2

∫ ξ

−1

Lj−1(x) dx =
1√

4j − 2
(Lj(ξ)− Lj−2(ξ)), j = 2, 3, ... (5.44)

where

Ln(x) =
1

2nn! dxn
(x2 − 1)n, x ∈ (−1, 1), n = 0, 1, 2, ... (5.45)

Legendre polynomials are orthogonal

∫ 1

−1

Ln(x)Lm(x) dx =

{
2

2n+1
if n = m

0 otherwise.
(5.46)

In contrast to Lagrange polynomials, high order hierarchical polynomials are not equal to zero
at the same point (see Figure 5.1). Furthermore, Lagrange polynomials change completely as



5.1 Finite element method (FEM) 41

basis degree changes, whereas only new higher order polynomials are added in hierarchical
basis as its degree increases. This fact can ease computational pain of this work. A lower basis
degree is needed for lower frequencies than for higher frequencies. As we go up from low to
high frequencies, we do not need to change the basis and matrices completely, but we just need
to add new functions to the basis and add new entries to mass and stiffness matrices in order to
carry out precise calculations for higher frequency.

Figure 5.1: Lagrange (left column) and Hierarchical (right column) shape functions
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6 Seismic inversion

Prediction of geological changes, such as caverns, fault zones, weakened zones, etc., ahead of
the tunnel is crucial for the safety of the tunnel and the structures above the surface. Enough
number of boreholes can give an understanding of the geological structure below the surface.
However, too many of boreholes, which is very costly in terms of both time and money, are
usually needed to scan the geological structure of the ground. To avoid the high cost, scanning
ahead of a tunnel is usually done by carrying out a seismic survey. Sources are excited at certain
points and the seismograms are read at geophones located at receiver points. The locations of
the sources and receivers, the type of the source used to excite the waves determine the type of
imaging approach used to predict the geological structure ahead of the tunnel.

Since the cutting wheel is not reachable during the boring process, placing source and receiver
points at reachable locations makes their maintenance possible in case they fail.
[Petronio and Poletto, 2002], [Petronio et al., 2003], [Petronio et al., 2007], [Ashida, 2001], and
[Brückl et al., 2008] use the energy of the cutting wheel as the source of the excitation of the
seismic waves. Placing the receivers well behind the cutting wheel eases the maintenance of the
system if necessary. The reflected P- and S-waves are used to detect the anomalies ahead of the
tunnel.

Choosing both source and receiver points well behind the boring machine makes them reachable
during the construction. In some of such applications, the source is excited by small explosi-
ons in boreholes well behind the front tunnel face, e.g. [Ashida, 2001], [Sattel et al., 1992].
[Sattel et al., 1992] and [Brückl et al., 2001] used vertical seismic profiling (VSP) technique,
whereas [Inazaki et al., 1999] used horizontal seismic profiling technique for tunnel exploration
purpose. Tunnel seismic prediction system, [Sattel et al., 1996], [Dickmann and Sander, 1996],
is another compact commercial package, developed by Amberg Technologies, with measure-
ment instrumentation and interpretation software together.

Seismic imaging system [Borm et al., 2003], tunnel reflector tracing [Neil et al., 1999],
[Yamamoto et al., 2011], true reflection tomography (TRT) [Otto et al., 2002], true reflection
underground seismic technique (TRUST) [Benecke et al., 2008], tunnel seismic tomography
(TST) [Zhao et al., 2006], and tunnel geological prediction (TGP) [Jiao et al., 2015] are other
systems to predict geological structure of a tunnel.

[Kneib et al., 2000] and [Gehrig et al., 2010] propose Seismic Softground Probing (SSP) where
all source and receiver points are located on the cutting wheel of the tunnel boring machine.
SSP is designed for tunneling in soft soils by earth pressure balance machines (EPBMs). In case
the source and receivers are failed, the maintenance is not possible during the boring process
because the cutting wheel is not reachable. Migration is carried out over the reflected P-waves
to scan ahead of the tunnel.

The systems mentioned till now mostly take advantage of first arrivals of body waves and seis-
mic migration to interpret the reflection data. However, surface waves are also generated when
small explosive are blasted in boreholes well behind the front tunnel face. It was figured out by
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[Bohlen et al., 2007] and [Jetschny et al., 2010] that the surface waves propagating at the tunnel
side walls are converted to body waves when they hit the front tunnel face. The reverse is also
true when the body waves are reflected from the geological boundaries and hit the front tunnel
face. Taking advantage of this finding, they use surface waves to explore the geological structure
ahead of a tunnel.

More recently, [Tzavaras et al., 2012] applied 3D Kirchhoff prestack migration, Fresnel volume
migration, and reflection image spectroscopy, and [Cheng et al., 2014] applied 2D reverse time
migration to explore the reflectors ahead of tunnel.

6.1 Full waveform inversion (FWI)

It is possible to use only wave traveltimes of some waves and reconstruct the velocity field to
some precision. However, waveforms contain more information than only traveltimes of some
waves. This is the idea of full waveform inversion which aims to find such an optimal velocity
field that fits the waveforms the best. All types of waves (body and surface waves) are super-
posed in a single seismogram. Goal of FWI is not only to fit first arrivals of some waves, but
arrivals and amplitudes of all waves. Trying to fit full seismograms decreases the ambiguity
level of the inverse problem. In other words, it reduces number of possible models which suit
the real data. However, full seismogram contains a lot of information including all kinds of inci-
dent and reflected body and surface waves. This, in turn, makes the problem highly non-linear,
which can be overcome with a very close initial model. The nonlinearity can also be partly sub-
sided by using low frequency components of the seismogram first and use the resultant model
as an initial model for the higher frequency components. Although it can be done in both time
and frequency domains, the frequency domain provides more flexibility to handle any single
frequency separately in a given frequency range. This fact is the motivation to carry out the
numerical experiments of this study in the frequency domain.

Researchers have been applying FWI in geophysical exploration problems since early 1980s,
[Bamberger et al., 1982], [Crase et al., 1990], [Pratt et al., 1998], [Pratt, 1999a], [Pratt, 1999b],
[Virieux et al., 2009]. FWI is computationally expensive, which made it not practical to use.
However, with the exponential growth of computer technologies, researchers apply FWI more
often in a variety of exploration problems; e.g., continental scale problems are addressed by
using FWI, [Fichtner et al., 2008], [Fichtner et al., 2009a], [Fichtner et al., 2009b].

6.1.1 Definition of the inverse problem in the frequency domain

In this section, we describe how we mathematically define our inverse problem in the frequen-
cy domain. We assume that our source function has a frequency range [ωmin, ωmax]. A set of
discrete frequencies

F = {ω1, ω2, ..., ωN}, where ωi ∈ [ωmin, ωmax] . (6.1)

is chosen and collected in groups . We define K frequency groups where each group is a non-
empty subset of F

Gk = {ωk1 , ωk2 , ..., ωkMk} ⊂ F, k = 1, ..., K, (6.2)
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where Mk is the number of frequencies in set k. The selection of these frequency groups plays a
very crucial role in the inversion process. Too few frequencies may not be a good representation
of the real problem so that the inversion process ends up with an unreasonable result. At the
same time, a large number of frequencies tremendously increase the computation time. The
importance of the frequency groups is highlighted in the results section.

The model is inverted over each frequency group separately and, for this reason, we solve K
inverse problems in one FWI process. We define K inverse problems

Pi : min
ci
χi(ci), i = 1, ..., K. (6.3)

and denote the result of each problem as cresi . Here, χ(c) is the misfit functional and we define
it as

χi(ci) =

Mi∑
j=1

1

2

ns∑
l=1

4plωij · (4plωij)
∗ =

1

2

Mi∑
j=1

ns∑
l=1

|4plωij |
2. (6.4)

For each problem Pi which takes the frequency group Gi into account. s1, s2, ..., sns represent
source points, whereas r1, r2, ..., rnr represent receiver points. Here, ns is the number of source
points and 4plωij(ci) is the difference of the pressure values at the receiver points between the
real and computer models when the source is fired at the sender point sl

4plωij = plωij − (pobs)
l
ωij
. (6.5)

Here, plωij and (pobs)lωij are vectors of pressure values read at the receiver points when the
source is fired at the sender point sl in the computer and real models, respectively. (4plωij)

∗ is
the conjugate of the complex vector4plωij .

In the frequency domain, the misfit functional is minimized over a set of discrete frequencies.
The lower frequencies are tackled first, and the result of the lower frequencies becomes the
initial model of the next higher frequencies. As mentioned before, the misfit functional can be
highly nonlinear in FWI. Tackling lower and higher frequencies separately helps to decrease the
nonlinearity of the misfit functional, [Ajo-Franklin, 2005]. An initial model is very important
for each problem Pi and we denote it as ciniti . We can write each inversion process as

ciniti =⇒ Pi =⇒ cresi , i = 1, ..., K, (6.6)

which means that we use the initial model ciniti as an input to the inverse problem Pi to obtain
the desired cresi . Since the optimization method we use is a gradient-based method, the initial
model should be close enough to the real model so that it is not stuck at a local minimum
point. cinit1 depends on intuition or on previous experimental results, if there are any. For Pi
i = 2, ..., K, the initial model is the result of the previous velocity field, which can be expressed
mathematically as

ciniti = cresi−1, i = 2, ..., K. (6.7)

This work compares two inversion approaches - discrete and continuous. In the discrete ap-
proach, the velocity field is discretized beforehand such that a vector of design variables repres-
ents the velocity field. This problem can be solved by conventional optimization methods. In the
continuous approach, the velocity function itself is sought in order to minimize the misfit func-
tion. In this case, there is no need to discretize the velocity field beforehand since the gradient
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of the misfit is a functional gradient that is derived by taking the derivative of the misfit function
with respect to the velocity function by means of functional derivations. In this work, the dis-
crete approach is applied to both acoustic and elastic wave equations, whereas the continuous
approach is applied only to the acoustic wave equation.

As already mentioned, a gradient-based optimization method is used to minimize the misfit
functional and to find an optimal velocity field. More precisely, the conjugate-gradient (CG)
method is applied to solve inverse problems. In the following sections, the algorithm of CG and
the ways it is applied to both discrete and continuous approaches are described in detail.

6.1.2 Discrete approach and discrete adjoint method

We apply the discrete approach to both acoustic and elastic equations in a trivial manner. In this
approach, the velocity field is approximated by a linear combination of adequately chosen basis
functions ϕi : Ω→ R and scalar valued model parameters mi ∈ R, i = 1, 2, ..., n as

ch(x) =
n∑
e=1

ϕe(x)me. (6.8)

We use two different discretizations in this work: A piecewise linear approach where there are
no jumps in the function and a piecewise constant function in which me is a velocity value on
the element e. A comparison is given in the result section. Piecewise linear functions can be
good to approximate a function that has no jumps and is changing smoothly. On the other hand,
a piecewise constant function can be good to detect jumps and approximate rapidly changing
functions. After discretization, the velocity field can be represented with a vector of model
parameters

m = (m1,m2, ...,mn)T . (6.9)

Using a finite-element approximation, the acoustic wave equation in the frequency domain
(2.25) can be reduced to

−ω2M(m)pω + Kpω = fω (6.10)

where M,K, and p are the mass matrix, the stiffness matrix, and the discrete version of the
pressure field, respectively. If a matrix L is defined such that L = −ω2M(m) + K, equation
(6.10) reduces to a system of linear equations

L(m)pω = fω. (6.11)

The gradient of the misfit functional χ(m) is calculated using the discrete adjoint method (see
[Fichtner, 2011]). By applying the chain rule, the partial derivative of the misfit functional with
respect to a model parameter mi is

∂χ

∂mi

= ∇pχ ·
∂pω
∂mi

(6.12)

where ∇p = ∂
∂pω

. In order to derive the partial derivatives of the discrete pressure coefficients
with respect to the model parameters, equation (6.11) is differentiated with respect to mi

∂L
∂mi

· pω + L · ∂pω
∂mi

= 0, (6.13)
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and thus

∂pω
∂mi

= −L−1 · ∂L
∂mi

· pω. (6.14)

By substituting the partial derivatives of the discrete pressure values with respect to the model
parameters mi into (6.12), the gradient of the misfit functional becomes

∂χ

∂mi

= −∇pχ ·
(

L−1 · ∂L
∂mi

)
· pω = −pω ·

(
∂LT

∂mi

· L−T
)
· ∇pχ. (6.15)

In our case, L is a symmetric matrix. This allows us to replace LT with L. The discrete adjoint
wave field p†ω is defined as the solution of the adjoint equation

LTp†ω = −∇pχ ⇒ p†ω = −L−T∇pχ. (6.16)

This simplifies the calculation of the gradient of the misfit functional in (6.15)

∂χ

∂mi

= p†ω ·
∂L
∂mi

· pω. (6.17)

This equation significantly reduces the computational effort for calculating the gradient of the
misfit functional: For every source point, the system of linear equations is solved only twice. If
direct solvers are used, they need more time for the decomposition than for solving backward.
This makes direct solvers advantageous in this case; decomposition is performed only once,
and in the following calculations, only the backward solve is performed. Compared to a finite-
difference approach, in which a linear system is to be solved for each model parameter mi, this
is a major improvement. Moreover, derivatives are computed exactly and the stepsize dilemma
is avoided.

6.1.3 Continuous approach and functional gradient

We apply this approach only to the acoustic wave equation. Before the continuous approach can
be applied, the functional must be derived by using the variational approach. 1

c2(x)
, f(x, ω) in

equation (2.25) are replaced by d(x), and δ(x− s), respectively, to give

4pω + ω2d(x)pω = δ(x− s). (6.18)

For the sake of simplicity, the equations are given here for only one frequency and one source
point. In the end, the final formulations are only summation over the frequencies and the source
points. The variation of the misfit functional (6.4) is

δχ = 4(pω)∗ · δpω =
nr∑
i=1

(pω(ri)− pobs,ω(ri))∗δpω(ri) (6.19)

where nr is the number of receiver points, and pω(ri) and pobs,ω(ri) are the pressure values at
the receiver point ri in the computer and real models, respectively. We define4piω to represent

4piω = pω(ri)− pobs,ω(ri). (6.20)
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The variation of (6.18) is used to derive δp(ri) and it takes the form

4δpω + ω2d(x)δpω = −ω2δd(x)pω. (6.21)

Once (6.18) is solved, the solution of (6.21) can be constructed using Green’s function as

δpiω(x) = −ω2

∫
Ω

Gω(y− x)δd(y)piω(y)dy. (6.22)

It is taken into account that p(y) is the Green function of (6.18). δp(ri) is substituted in (6.19)
to obtain the equation

δχ = −
∫

Ω

ω2

nr∑
i=1

(
(4piω)∗Gω(y− ri)Gω(y− s)

)
δd(y)dy. (6.23)

Using the equation δχ = −
∫

Ω
∇χδd(x)dΩ gives the functional gradient as

∇χ = ω2

nr∑
i=1

(
(4piω)∗Gω(y− ri)Gω(y− s)

)
, (6.24)

where ∇χ = ∂χ
∂d

as in [Sirgue and Pratt, 2004] and [Ajo-Franklin, 2005]. The functional gradi-
ent is the direction of the maximum rate of change. According to equation (6.24), the functional
gradient can be constructed with Green functions, which are linear combinations of finite ele-
ment basis. In our case, this means that discretization of the velocity field is directly dependent
on the finite element basis.

6.1.4 Relation between discrete and continuous gradients

We aim to compare the discrete and continuous approaches in the acoustic wave equation and
the mathematical relation between these two approaches are shown before doing this. In prac-
tice, before running any simulations, it is possible to see advantages and disadvantages of both
approaches. The continuous approach does not require discretization of the velocity field before
the simulation starts, and it provides a more precise gradient of the misfit functional. Howe-
ver, in the discrete approach, we can discretize the velocity field as we wish. This may be an
advantage if we know what kind of medium we are trying to scan and, in such a case, we can
discretize the velocity field accordingly. We compare the results of both approaches and discuss
them in the result section. To show the mathematical correlation between the approaches, we
analyze the relation between discrete and functional gradients. The derivative of (6.18) with
respect to a model parameter mk is used to derive ∂p(ri)

∂mk
and it takes the form

4 ∂p

∂mk

+ ω2d(x)
∂p

∂mk

= −ω2∂d(x)

∂mk

p. (6.25)

Once (6.18) is solved, the solution of (6.25) can be constructed as

∂p(x)

∂mk

= −ω2

∫
Ω

G(y− x)
∂d(y)

∂mk

p(y)dy. (6.26)

The derivative of the misfit functional with respect to a model parameter mk is

∂χ

∂mk

=
∑

(p(ri)− pobs(ri))∗
∂p(ri)
∂mk

. (6.27)
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Substituting (6.26) in equation (6.27) gives

∂χ

∂mk

= −
∫

Ω

ω2
∑(

4(pi)∗G(y− ri)G(y− s)
) ∂d(y)

∂mk

dy. (6.28)

Using equation (6.24) in (6.28), the relation between the continuous and discrete gradients is
obtained as

∂χ

∂mk

= −
∫

Ω

∂χ

∂d

∂d

∂mk

dy = − < ∇χ, ∂d
∂mk

> (6.29)

where the <,> operator denotes the inner product. In this study, discretization is performed
according to equation (6.8). If this equation is taken into account, the equation ∂χ

∂mk
= − <

∇χ, ϕi > is obtained. In the end, the discrete gradient is related to the inner product of the
continuous gradient, and shape functions are used to discretize the velocity field function.

6.1.5 Comparison of the discrete and continuous gradients

The idea of the functional gradient is that it calculates the gradient of the misfit functional with
respect to the velocity field without discretizing it. If analytical solutions are known, the gra-
dient could also be calculated analytically with equation (6.24) using the functional derivation.
In this section, an example that has analytical solution for the acoustic equation is investigated
to calculate the analytical gradient. We also calculate the gradient with the discrete adjoint and
compare them. An infinite box is taken as an example. Only one single source point and one
single receiver point are chosen in the model (see Figure 6.1a). It is assumed that the sought ve-
locity field and the initial velocity field are homogeneous. The initial and sought velocity values
are 2000 m/s and 1630 m/s, respectively. In this case, the analytical solutions of the acoustic equa-
tion (2.25) for both of the velocity fields are known. The analytical gradient is constructed as
functional gradient (6.24) (see Figure 6.1c). Figure 6.1a and 6.1b are the gradient plots obtained
by the adjoint method by discretizing the velocity with a basis of degrees 1 and 3, respectively.
Unfortunately, Figure 6.1b looks numerically unreasonable because the picture is not pixel-wise
very smooth. However, if we overlook this error, we will see that as the basis degree becomes
higher the gradient converges to the functional gradient which is the analytical gradient of the
example.

(a) adjoint p=1 (b) adjoint p=3 (c) functional

Figure 6.1: Gradients with the adjoint and functional approaches.

Scaled plots
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6.2 Important concepts of an inverse problem

Our aim is to find such an optimal geological model m for the tunnel domain such that the
misfit functional χ(m) is minimum. There are a few mathematical concepts which have to be
understood well in order to have a good insight of the inverse problem we are trying to solve:
global and local minima, non-uniqueness, and convexity. The search space for the geological
model m is high-dimensional. It renders stochastic minimization methods not well applicable
to FWI problems. We aim to use deterministic minimization methods which are dependent of
the gradient of the misfit functional χ. Although the stochastic methods can avoid becoming
stuck in a local minimum, gradient-based methods tend to take the way to the closest minimum
point which can be local minimum. Figure 6.2a illustrates a function which has strict global and
strict local minima. With a gradient-based method, it is required to have an initial earth model
close enough to the global minimum not to let the method take the path to the local minimum.
Being a strict global minimum means that there is only one point mglobal that corresponds to
the minimum value of the misfit functional χ. In other words,

χ(mglobal) < χ(m) for allm 6= mglobal (6.30)

It also means that mglobal is unique. However, geophysical inverse problems do not usually have
a unique solution and there are more than one global minimum:

χ(mglobal) ≤ χ(m) for allm 6= mglobal (6.31)

Figure 6.2b shows an example of such global and local minima. Inverse problems which ha-
ve only one global minimum without any local minima with a unique solution are the most
convenient to handle. However, geophysical inverse problems, on which non-uniqueness of the
solution and many local minima impose a big challenge, are the opposite.

(a) Unique global minimum mglobal, unique local
minima mlocal1 and mlocal2

(b) Non-unique global minimum mglobal, non-
unique local minimum mlocal

Figure 6.2: Global and local minima

Convexity is a mathematical concept on which both the uniqueness and local or global nature
of the minimum of the misfit function depend. The misfit functional χ(m) is a convex function
if the relation

χ[(1− ε)m1 + εm2] ≤ (1− ε)χ(m1) + εχ(m2) (6.32)
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is satisfied for any earth models m1 and m2 in the search space and for any ε ∈ [0, 1]. This
inequality means that the line connecting any two points on the graph of the misfit function is
above or on the graph. The misfit function is called strictly convex when the line connecting
two points on the graph is above the graph:

χ[(1− ε)m1 + εm2] < (1− ε)χ(m1) + εχ(m2)∀ε ∈ [0, 1]. (6.33)

A convex function has no local minima, but one global minimum. However, the global minimum
point is not unique and there are infinitely many of them. Strictly convex functions have unique
global minimum and no local minima. In an ideal case, we would like to have a strictly convex
function in order to have only one unique global minimum. We would be sure that the gradient-
based method searches for the global minimum, but does not converge to a local minimum.
Unfortunately, real world problems impose much more difficulties than an ideal case. To prove
that a convex function have no local minima, but only global minimum, we assume that mlocal

is a local minimum and mglobal is the global minimum. For the earth models m in the close
vicinity ofmlocal, the following relation

χ(mlocal) ≤ χ(m) (6.34)

must satisfy. We choose an earth modelm1 as

m1 = (1− ε0)mlocal + ε0mglobal = ml + ε0(mglobal −mlocal) (6.35)

where ε0 is chosen so close to zero thatm1 is in the close vicinity ofmlocal to satisfy the relation

χ(mlocal) ≤ χ(m1). (6.36)

Using the convexity relation

χ(mlocal) ≤ χ(m1) = χ((1−ε0)mlocal+ε0mglobal) ≤ (1−ε0)χ(mlocal)+ε0χ(mglobal), (6.37)

the relation

χ(mlocal) ≤ χ(mglobal) (6.38)

is obtained. Sincemglobal is the global minimum point, the inequality

χ(mglobal) ≤ χ(mlocal) (6.39)

must be right. The last two conditions must satisfy at the same time, which can only happen if

χ(mglobal) = χ(mlocal). (6.40)

It means, if a function is convex and if it has a local minimum, the value of the misfit function
at that point is equal to the value of the function at the global minimum. We choose any point
m in between the local minimummlocal and the global minimummglobal

ma = (1− ε)mlocal + εmglobal. (6.41)

Using the convexity condition,

χ(mglobal) ≤ χ(ma) = χ((1−εa)mlocal+εamglobal) ≤ (1−εa)χ(mlocal)+εaχ(mglobal) = χ(mglobal)
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(6.42)

is obtained. The inequalities can only be satisfied if

χ(mglobal) = χ(ma) (6.43)

is satisfied, which means that value of the function at any point equals to the value of the
function at the global minimum. This implies that mlocal is not a local minimum, but one of
infinitely many global minima. There can only be one global minimum region in a convex
function. However, the minimum is not unique.

If we use strictly convex relation, and follow the same derivation as we applied for the convex
functions, instead of equation (6.38), we obtain a strict inequality

χ(mlocal) < χ(mglobal) (6.44)

which contradicts the relation (6.39) between the local minimum mlocal and the global mini-
mummglobal. It is concluded that a strictly convex function has no local minima and it has only
one unique global minimum.

The Hessian matrixHχ(m) of a convex function χ, which equals ∂2χ
∂m∂m

, is positive semidefinite
for any modelm2:

m1 ·Hχ(m2) ·m1 ≥ 0 (6.45)

for all earth models m1 and m2. In case of a strictly convex function χ, the Hessian matrix is
positive definite for all m2:

m1 ·Hχ(m2) ·m1 > 0 (6.46)

for all m1 and m2. One can refer to [Fichtner, 2011] for the derivation of (6.45) and (6.46)
from the convexity condition. Since the model parameter m is too big in geophysical inverse
problems, the calculation of Hessian matrix is computationally very expensive. However, it is
easier to have some insight about the misfit function with the help of its Hessian relation than
the convexity relation.

In tunneling problems, the sources and receivers geophones are usually placed inside the tunnel,
either close to the tunnel face or side walls, due to time and budget restrictions. The response
of the model can be measured only at certain points. It causes ambiguity in the misfit func-
tional because not only one unique model has a similar approach. This is one reason of the
non-uniqueness of the tunnel exploration problems. Another reason for non-uniqueness can be
parameters which affect the wave propagation. The wave propagation sometimes depends on
a parameter not directly, but it depends on some type of a relation between two parameters.
For example, infinitely many Lamé parameters and density combination can give the same P-
and S-wave speeds which can result in system behavior. Apart from uniqueness of the tunnel
exploration problems, the misfit functional is a nonlinear function of parameters, such as wave
speeds, density, etc., which define the mechanical properties of soil.

There are first-order and second order conditions to prove mathematically whether a point is
a minimum point. Assume that mmin is a minimum point(either local or global). Then, the
inequality

χ(mmin + ε0m) ≥ χ(mmin) (6.47)
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holds for any model parameter m if ε0 very close to zero. Taking all terms to the left side,
dividing by ε, and taking limit for ε→ 0, we obtain

lim
ε→0

1

ε
(χ(mmin + ε0m)− χ(mmin)) = m · ∇mχ(mmin) ≥ 0 (6.48)

which holds for any arbitrary model parameterm. In other words, the inequality is true for both
m and −m, which can only be true if

∇mχ(mmin) = 0. (6.49)

This equality, or the first-order necessary condition, is fulfilled if mmin is a local or global
minimum. However, the reverse of it is not true; if a point satisfies the equality (6.49), it can be
a minimum, a maximum or a saddle point. Nevertheless, only the first order condition is used by
minimization methods to find the minimum point. To derive the second order condition, Taylor
expansion of χ is used:

χ(mmin +ε0m) = χ(mmin)+ε0m·∇mχ(mmin)+
1

2
ε2m·Hχ(mmin)·m+ε3Θ(m3). (6.50)

Rearranging the equation, considering the first order condition and that mmin is the minimum
point,

1

ε2
(χ(mmin + ε0m)− χ(mmin)) =

1

2
m ·Hχ(mmin) ·m+ ε0Θ(m3) ≥ 0 (6.51)

is obtained. Here, ε0 can be chosen so close to zero that, ε0Θ(m3) term can be neglected with
respect to 1

2
m ·Hχ(mmin) ·m. It implies that

1

2
m ·Hχ(mmin) ·m ≥ 0 (6.52)

which is a second order necessary condition implying that Hessian matrix of χ at the minimum
pointmmin is positive semi-definite, must hold.

6.3 Minimization methods

An appropriate minimization method is inevitable to solve the full waveform inversion pro-
blems. Figure 6.3 shows schematically how the minimization methods work. All non-linear
iterative minimization methods, including stochastic methods, rely on updating the current pa-
rameter modelm:

mi+1 = mi + αisi (6.53)

where αi is step size and si is search direction at iteration i. The difference amongst minimiza-
tion methods is the determination of the search direction. In FWI problems, where the model
space is too big, determining the search direction with stochastic methods is almost impossible.
This is the reason why we deploy gradient-based methods to minimize the misfit function. Once
the search direction si is known, the next challenge is to determine the step size, which is done
with the help of the first order condition:

d

dαi
χ(mi + αisi) = si · ∇mχ(mi + αisi) = 0. (6.54)
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With the quadratic approximation of χ(m+ αs) with Taylor expansion around α

χ(m+ αs) ≈ χ(m) + α

[
d

dα
χ(m+ αs)

]
α=0

+
α2

2

[
d2

dα2
χ(m+ αs)

]
α=0

= χ(m) + αs · ∇mχ(m) +
α2

2
s ·Hχ(m) · s, (6.55)

we obtain

0 ≈ χ(m+ αs)− χ(m)

α
≈ s · ∇mχ(m) + αs ·Hχ(m) · s. (6.56)

Solving the last equation, we obtain the step size αi as

α ≈ − s · ∇mχ(m)

s ·Hχ(m) · s
. (6.57)

The search for α is an iterative process. One possibility to avoid the calculation of the Hessian
matrix is to use the Secant method to calculate d2χ(m+αs)

dα2 approximately :

d2χ(m+ αs)

dα2
≈

[ d
dα
χ(m+ αs)]α=σ − [ d

dα
χ(m+ αs)]α=0

σ

=
∇mχ(m+ αs) · s−∇mχ(m) · s

σ
. (6.58)

Substituting the Secant approximation in (6.55), we obtain

α ≈ −σ s · ∇mχ(m)

∇mχ(m+ αs) · s−∇mχ(m) · s
(6.59)

which does not require calculation of the Hessian matrix.

Another possibility is to assume that the function χ(α) is a quadratic function which is needs
three points to be found. This process can be iteratively done around the minimum point of
every iteration until the convergence criteria is satisfied.

There is one important thing about line search algorithms in case of FWI problems; the function
χ(α) can very easily be nonlinear. In this case, we try to find figure out the range of α in which
the first minimum of χ(α) locates and treat the function again as a quadratic function. This
strategy is based on nothing else but trying to choose an initial point which is close enough to
the solution.
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Figure 6.3: Minimization (optimization) process

6.3.1 Steepest descent method

The steepest descent (SD) method chooses the steepest descent direction as the search direction.
The algorithm of SD is given in 1. Choosing the most rapid descent direction is effective locally.
However, this strategy is not globally the most effective and it converges very slowly to the
desired model in case of many non-linear inverse problems.

Algorithm 1 SD algorithm
Choose an initial modelm0

i = 0
while convergence criteria not satisfied do

calculate search direction si = −∇χ(mi)
do line search(find αi)mi+1 = mi + αisi
update the model,mi+1

i = i+ 1
end while

6.3.2 Newton’s method

The Newton’s method is based on the first order necessary condition and linear Taylor expansion
of the gradient∇mχ(mmin) around the minimum pointmmin :

0 = ∇mχ(mmin) ≈ ∇mχ(m) +Hχ(mmin) · (mmin −m). (6.60)

From the last equation,mmin is derived as

mmin ≈m−H−1
χ (mmin) · ∇mχ(mmin). (6.61)

The algorithm of Newton’s method is presented in algorithm 2. There is no need to perform a
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Algorithm 2 Newton algorithm
Choose an initial modelm0

i = 0
while convergence criteria not satisfied do

calculate gradient∇χ(mi)
calculate Hessian matrixHχ(mi)
determine the search direction si = −H−1

χ (mi) · ∇χ(mi)
update the model parametermi+1 = mi + si, (αi = 1)
i = i+ 1

end while

line search calculation in case of the pure Newton method. Nevertheless, line search can also be
performed to minimize χ(mi+1) as much as possible. The advantage of the Newton’s method is
its quadratic convergence which is much faster than its counterparts. However, the calculation
of the Hessian matrix is too expensive, especially in case of FWI problems. Moreover, the initial
model has to be more appropriately chosen if Newton’s method is to be used to solve a non-
convex problem. If the initial model is far from the sought minimum point, the Hessian matrix
may have negative eigenvalues or may be singular. In the best case, this can lead to very slow
convergence, and in the worst case, the method can diverge from the minimum point.

There are several variants of Newton’s method. One variant is regularized Newton method
which circumvents inversion of singular Hessian matrix:

mi+1 = mi − (Hχ(mi) + βI)−1 · ∇χ(mi). (6.62)

Gauss-Newton method is another variant of Newton method. It accounts for reducing compu-
tational cost of the calculation of full Hessian matrix which is replaced by the approximate
Hessian matrix. Gauss-Newton also has its regularized form which is called Levenberg me-
thod [Levenberg, 1944]. [Pratt et al., 1998] performs Gauss-Newton and full Newton methods
in frequency-space seismic waveform inversion problems.

Another quasi-Newton method is BFGS, [Shanno, 1970], [Broyden, 1970], [Fletcher, 1970],
which does not require the calculation of the Hessian matrix. [Yong and Dave, 2012] demon-
strate BFGS on a full waveform inversion problem.

6.3.3 Generalized conjugate gradient method

The conjugate gradient method is widely used to solve linear systems and nonlinear optimi-
zation problems. The advantage of CG is that the search directions satisfy the orthogonality
conditions. This fact guarantees the solution at most within n steps where n is the size of the
model parameter m. Unlike SD method, CG searches for the model in an orthogonal direction
to the directions in the previous iterations. This means that the search direction in the current
iteration does not have components in the previous search directions and thus, it does not search
the model in the same direction over and over as SD does. For a detailed information about the
CG method one can refer to [Shewchuk, 1994].

In this work, this method is used for both discrete and continuous approaches in which the
objective χ is mapping from a linear space into real numbers. The linear space is equipped with
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an inner product <,> which is defined as

< u, v >= u · v =
∑

uivi (6.63)

for the discrete case and

< u, v >=

∫
uvdΩ (6.64)

for the continuous case.

Algorithm 3 CG algorithm
Choose an initial model m0

s0 = r0 = −∇χ(m0)
do line search α0, m1 = m0 + α0s0

update the model, m1

i = 1
while convergence criteria not satisfied do

calculate gradient ri+1 = −∇χ(mi+1)
calculate βi+1

calculate search direction si+1 = ri+1 + βi+1si
do line search mi+1 = mi + αisi
update the model, mi+1

i = i+ 1
end while

We use the Polak-Ribiere method [Polak and Ribiere, 1969] for β

βi+1 = max
{< ri+1, ri+1 − ri >

< ri, ri >
, 0
}
. (6.65)

Other possibilities are Fletcher-Reeves method[Fletcher and Reeves, 1964]

βi+1 =
< ri+1, ri+1 >

< ri, ri >
, (6.66)

and Hestenes-Stiefel method[Hestenes and Stiefel, 1952]

βi+1 =
< ri+1, ri+1 − ri >
< si, ri+1 − ri >

. (6.67)

6.3.4 Pre-conditioned conjugate gradient method

Pre-conditioned CG method can be used when we have prior information based on our expe-
rience or intuition about the inverse model. For example, the gradient of the misfit function
is high at source and receiver points due to singularity at those points. One can suppress ar-
tificially high values at sources and receivers by using a pre-conditioning matrix P . Or if we
have information about the distribution of mechanical properties of some part from the whole
domain, we can disregard or decrease the gradient with the help of P matrix. We can also use
pre-conditioning as a form of regularization and force the method choose fastest directions to
the minimum model using the information about the properties of the inverse problem. This can
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happen when we have two or more variables such as λ, µ, and ρ. The gradient is sometimes
sensitive with respect to one of parameters. In such a case, the inversion process will search for
the solution mostly in the direction of the parameter with high sensitivity. Although CG gua-
rantees solution in a finite number of iterations, to run the simulation for too many iterations is
computationally too expensive. We can use the information about the sensitivity of the misfit
function χ with respect to the parameters and build the pre-conditioning matrix P based on this
knowledge.

Algorithm 4 Pre-conditioned CG algorithm
Choose pre-conditioning matrix P
Choose an initial modelm0

m
′
0 = P−1m0

s0 = r
′
0 = −P · ∇χ(m0)

calculate step size α0 m
′
1 = m

′
0 + α0s0

update the model,m′
1

m1 = P ·m′
1

i = 0
while convergence criteria not satisfied do

calculate gradient r′i+1 = −P · ∇χ(mi+1)
calculate βi+1 with r′

calculate search direction si+1 = r
′
i+1 + βi+1si

calculate step sizem′
i+1 = m

′
i + αisi

update the modelm′
i+1

mi+1 = P ·m′
i+1

i = i+ 1
end while
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7 Forward modelling: Numerical experiments and verification

In this chapter, we are presenting forward wave propagation problems. As we use our own code
to solve the wave equations, we need to verify our code. We do it by comparing the numerical
results with analytical results. Moreover, we use Specfem software to prove that our program
solves the wave equations precisely. Apart from the verification of the code, we present some
forward simulation results to see the wave propagation behavior in the ground.

7.1 2D acoustic half-space

The first forward model we present is 2D acoustic half-space. The forward simulation is verified
using a half-space example in which the analytical solution for a homogeneous velocity field is
known. In two-dimensional infinite space, the analytical solution of the acoustic equation (2.25)
for a constant velocity field and a point source fω(x) = δ(x− s) is

ps
ω =

i

4
H

(1)
0 (k|x− s|), (7.1)

where H(1)
0 is the Hankel function of the first kind, k = ω

c
is the wavenumber, and ps

ω is the
pressure field when the source is fired at point s. The analytical solution of the half-space pro-
blem is constructed using the solution of the infinite domain (7.1). If a source is fired at point
s in a half-space, its analytical solution is p(x, s, ω) − p(x, t, ω). The pressure fields p(x, s, ω)
and p(x, t, ω) are calculated using (7.1). The line from point s to point t is bisected by and
perpendicular to the free surface line (see Figure 7.1).
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t

s

∞∞

free surface line

Figure 7.1: Acoustic half-space

Construction of the analytical solution

In this example, the acoustic equation is solved by the high-order finite elements method with
hierarchical shape functions, [Szabó and Babuška, 2011], in a 90 m × 42.5 m domain with a
mesh of 80×40 elements using a polynomial degree p = 4. To verify the code and the absorbing
boundaries, the numerical result is compared to the analytical solution. The result in Figure 7.2
is the finite element solution of the Helmholtz equation with an angular frequency of 2000 Hz
and a constant velocity field c=2000 m/s. The source is a Dirac delta distribution fω(x) = δ(x−s)
and the point s lies directly below the free surface.

x

y

(a) Real part (b) Imaginary part

Figure 7.2: Wavefields in the acoustic half-space with FE

ω = 300 Hz

In Figures 7.3 and 7.4, the analytical and FE solutions are compared over the horizontal line
AB at about y=21.8 m and the vertical line CD at about y=44.4 m. A very good agreement is
observed between the numerical and analytical results. In the numerical results, in the region
close to the edges where there are PMLs, the solution is not correct since it is the part in which
the PMLs are located and absorb the incoming waves. It is obvious that the norm of the pressure
decay to zero in the PML region is very fast. In contrast to the FE result, the difference grows
in PML regions. This is exactly what we expect from the PMLs. In Figure 7.3b, the difference
function becomes larger in the region close to the free surface. However, this difference is
negligible.
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(a) Horizontal line AB, real part (b) Horizontal line AB, imaginary part

(c) Vertical line CD, real part (d) Vertical line CD, imaginary part

Figure 7.3: Comparison of FE and analytical solutions over lines

ω = 2000 Hz
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(a) Horizontal line AB (b) Vertical line CD

Figure 7.4: Norm of FE result and norm of the difference btw. FE and analytical results

ω = 2000 Hz

For a single frequency, it is seen that PML tackles the artificial boundaries perfectly. To see
whether it performs well in a range rather than at a single frequency point, we read values at
receiver points shown in Figure 7.2b for the angular frequency in the range 200-1200 Hz and
compare the FE results to the analytical solution in Figure 7.5. Again, very good agreement is
observed between FE solutions with PML and analytical solutions.
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(a) Receiver R1 at (9.0, 39.3125), real part (b) Receiver R2 at (19.125, 19.125), real part

(c) Receiver R3 at (9.0, 7.4375), real part (d) Receiver R4 at (45.0, 10.625), imaginary part

Figure 7.5: Comparison of FE and analytical solutions over a frequency range

ω =200-1200 Hz
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7.2 2D acoustic tunnel

Our numerical model is represented by the acoustic equation with no attenuation defined for
a tunnel domain whose dimensions and boundary conditions are described in Figure 8.1. The
air-soil interface is modelled with a free surface and artificial boundaries that do not exist in
reality and are mimicked by PML layers. in the first step, a velocity field with a constant va-
lue c=2000 m/s is considered, and simulations are run for the angular frequencies 1000 Hz and
2000 Hz. A Dirac delta function is applied just in front of the tunnel face. The results are shown
in Figure 7.6.

(a) Angular frequency 1000 Hz (b) Angular frequency 2000 Hz

Figure 7.6: Pressure wavefields in the tunnel by FE, homogeneous velocity field

Real part

Figure 7.6 shows that the pressure values are zero on the free surfaces. The waves are fully
reflected back from the free surfaces, whereas the PML layers absorb the waves and act as
though the artificial layers do not exist in the model. It is possible to see that the PML edges
are perpendicular to the directions in which the waves are propagating and that the waves are
efficiently absorbed by the PML layers. The precision of the absorption depends on coefficient
cpml and on damping function γx.

In the second step, an inhomogeneous velocity field is considered. The velocity field used for
the next result is shown in Figure 8.1. The angular frequency is 2000 Hz, and the source is the
same as in the previous example. The result of this simulation is given in Figure 7.7, which
shows that the wavenumbers inside the circles are larger than outside the circles because the
velocity value of the circles is smaller. When the waves hit the interface of the circles, reflection
and refraction are observed.

7.2.1 Verification of the model with Specfem software

The next experiment is another important test for verification of our forward model. The aim is
to simulate waves in time domain when a Ricker wavelet function is applied at a source point:
this is achieved by solving the wave equation in the frequency domain over discrete frequencies
and by transforming the data to the time domain with discrete Fourier transformation. At the
same time, the same model is solved in the time domain by spectral element method in Specfem
which is very well known in the community of geophysics. To have no reflections from the
artificial boundaries in the time domain model, we make the numerical domain big enough
such that we can stop the simulation before the reflected waves arrive at the stations. This gives
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(a) Angular frequency 1000 Hz (b) Angular frequency 2000 Hz

Figure 7.7: Pressure wavefields in the tunnel by FE, homogeneous velocity field

Real parts

us opportunity to understand how effective the absorbing boundaries in the frequency domain
model are.

We choose source and receiver points as illustrated in Figure 7.8. There are 31 receivers each
of which is assigned a number. And there is only one single source point right ahead of tunnel
face. The domain has a homogeneous velocity field of 3000 m/s. The source is a Ricker wavelet
(Equation (4.15), (4.16)) with the peak frequency fp =500 Hz and the temporal delay dr =0 sec.

Source Receiver

1 6
7

11
12

15

16 31

Figure 7.8: Source/receiver configuration

31 receivers, 1 source

We compare the seismograms from the time and frequency domain models in Figure (7.9). It is
clearly observed that seismograms from frequency domain agree quite well with seismograms
from the time domain model in which we avoided the reflected waves from the artificial layers.
It means that the forward model in the frequency domain is precise enough with very robust
absorbing boundaries. Nevertheless, there are some minor differences between the two wave-
fields. The differences can be due to different numerical approaches which are used to solve the
problem, and different absorbing boundaries used for the models. In this case, the time domain
model is chosen too big and the simulation is stopped before the reflections from the absorbing
boundaries arrive at receivers. This lets us say that the error from the absorbing boundaries may
only appear in the frequency domain model.
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Figure 7.9: Comparison between the time and frequency domain models

Next, we choose an inhomogeneous velocity field (Figure 7.10) and compare it to the homo-
geneous case using the same source/receiver configuration in Figure 7.8. Doing so, we can
distinguish the incident waves and reflections from the air-solid interfaces from the reflections
from the geological change which has a circular boundary (Figure 7.11).
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Figure 7.10: Inhomogeneous velocity field

Figure 7.11: Wavefields from homogeneous and inhomogeneous models

7.3 2D viscoacoustic half-space

To have an insight of how attenuation influences the propagation of waves, we start with a
half-space example. We use Kolsky-Futterman model, [Kolsky, 1956], [Futterman, 1962], to
account for the viscosity in the domain. The parameter Q in eqn. (2.27) defines the attenuati-
on. As Q −→ ∞, c̄ −→ c and attenuation dissappears. In contrast, as Q −→ 0 attenuation
affect increases. Figure 7.12 shows the intensity of attenuation as Q decreases. To see how the
attenuation works for different frequencies, more numerical results for the pressure field with
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(a) Q −→∞ (b) Q=50

(c) Q=20 (d) Q=10

Figure 7.12: Attenuation in a half-space example

Real parts, ω = 1000Hz, domain 360m × 170m

Q = 50 is shown in Figure 7.13. The waves are attenuated to big extent till they reach the pml
layers.

(a) ω =500Hz (b) ω =1500Hz

Figure 7.13: Viscoacoustic wavefields in half-space

To investigate the attenuation even closer, we choose 3 receiver points close to the surface and
fire source at the source point which is located at the coordinate (112.5, 167.875) as in the
previous examples. This time, the simulation is carried out in the angular frequency range 100-
1500Hz. As it is seen in Figure 7.14, the waves are attenuated as Q decreases. Especially in
higher frequencies, the waves almost decay to zero with lower Q value.
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(a) Receiver 1 at (173.25, 167.875) (b) Receiver 2 at (234.0, 167.875)

(c) Receiver 3 at (294.75, 167.875)

Figure 7.14: Attenuation at receivers over a frequency interval

Real parts, ω = 100-1500Hz

7.4 2D viscoacoustic tunnel

Next, we make a comparison between the tunnel model in Figure 7.10 and the same model with
a homogeneous attenuationQ = 60. Figure 7.15 illustrates this comparison and it can be clearly
seen in the amplitudes of wavefields that the energy is absorbed. The traveltimes of the incident
and reflected waves do not change as we keep the velocity field the same in both cases.
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Figure 7.15: Viscosity influence on wavefields

In the following experiment, we add density inhomogeneity in the tunnel model. We choose
the density as 1000 kg/m3 everywhere outside the circle in Figure 7.10, where we choose it as
1500 kg/m3. Again the traveltimes remain the same as seen in Figure 7.16. as expected, we ob-
serve that the amplitudes of incident waves are same. However, the amplitudes of the reflected
waves are less in the case of the inhomogeneous density where we have higher value inside the
geological obstacle.
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Figure 7.16: Influence of inhomogeneous density on wavefields

Finally, we consider the attenuation inhomogeneity in the model and try to observe the diffe-
rence due to it. In Figure 7.17, we observe that the traveltimes and the amplitudes of the incident
and first reflected waves remain the same. The density change caused amplitude change in all
reflected waves. However, the attenuation change affected only the amplitudes of the reflected
waves which arrive later than first reflected waves.
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Figure 7.17: Influence of inhomogeneous attenuation on wavefields

7.5 3D acoustic forward simulation results

7.5.1 3D half-space and verification of the code with the analytical solution

In the three-dimensional infinite space, the analytical Green function of the acoustic equation
(2.25) with a constant velocity field is

p(x, s, ω) =
eik|x−s|

4π|x− s|
, (7.2)

where k = ω
c

is the wavenumber and p(x, s, ω) is the pressure field when the source is fired at
point s. First, the Helmholtz equation with homogeneous velocity field in an infinite domain is
solved by FE method and the result is compared to the analytical solution (7.2) in Figure 7.18.
Although there are some minor differences between the results, they overlap to a good extent.
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(a) analytical result, real part (b) analytical result, imaginary part

(c) numerical result, real part (d) numerical result, imaginary part

Figure 7.18: 3D full-space, pressure wavefields

ω = 3000Hz, 8m × 8m × 8m, cut at 2m away from the source

Next, a half-space example is used to verify the forward model. The analytical solution of the
half-space problem can be constructed by using the solution of the infinite domain in (7.2)
as in the 2D acoustic half-space example (Figure 7.1). After solving the Helmholtz equation
with FE method, the real and imaginary parts of the numerical results are compared to the
analytical solutions in order to see whether the code solves the equation correctly in case of
a half-space example, and whether the absorbing boundaries do what they are expected to do.
The result in 7.19 is the solution of the Helmholtz equation with angular frequency 3000 Hz
and constant velocity field 2000 m/s. The analytical result confirms the numerical result although
there might be some minor numerical error which can mainly be caused by the coarse mesh.
In this study, size of 3D numerical problems is kept relatively small as a result of the limited
computer memory and time cost. To handle larger-sized problems, it is necessary to optimize
and to parallelize the code. Another option is to run 3D simulations on computers with larger
memories, where the time cost can still be high. Apart from the limited computer memory,
numerical method itself brings in error too. It has to be considered that there is singularity at the
source point and a numerical method has bigger error in the vicinity of the source point. This
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error can be minimized by refining the mesh near the source point. Another source of the error
can be the absorbing boundaries as every numerical method can produce errors. Although we
try to keep the errors due to numerical methods minimum, they cannot be avoided fully.

(a) analytical result, real part (b) analytical result, imaginary part

(c) numerical result, real part (d) numerical result, imaginary part

Figure 7.19: 3D half-space, pressure wavefields

ω = 3000Hz, 8m × 8m × 8m
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7.5.2 3D acoustic tunnel model

We consider a 3D tunnel model with a homogeneous velocity field of 2000 m/s and we run the
simulations for the angular frequencies 1000 Hz and 2000 Hz. A Dirac delta function is applied
right ahead the front tunnel face. The real parts of the complex wavefields are illustrated in
Figure 7.20. From the figure 7.20, it can be seen that the pressure values are zero on the free
surfaces. The waves are fully reflected back from the free surfaces, whereas the PML layers
absorb the ways and act as though the artificial layers do not exist in the model.

(a) Angular frequency 1200, real part (b) Angular frequency 1200, imaginary part

(c) Angular frequency 800, real part (d) Angular frequency 800, imaginary part

Figure 7.20: 3D tunnel, pressure wavefield

32m × 32m × 60m

7.6 2D elastic forward model

7.6.1 Verification of the 2D elastic tunnel model with Specfem software

To verify our 2D elastic tunnel model, we use a time domain model in Specfem software. We
choose the domain big enough to avoid reflections from absorbing boundaries and we stop the
calculations before the reflected waves arrive at receiver stations. In contrast to the acoustic wa-
ves, the reflected body waves from PMLs are not the only challenge encountered in an infinite



76 7 Forward modelling: Numerical experiments and verification

elastic model. Here, conversion of surface waves into body waves in PMLs parallel to the sur-
face wave propagation direction is another challenge which occurs in case of low frequencies
and shallow depth (Section 3.2). To cope with the body and surface waves at the same time, we
use convolutional PML in elastic models.

The locations of the source and receiver points are shown in Figure 7.21, whereas the seismo-
grams are presented in Figure 7.22 where seismograms from the time and frequency domain
models are compared at each receiver point. The source function is the Ricker function with
a peak frequency of 300 Hz and a temporal delay of 0 s. The seismograms confirm each other
very well. However, this comparison is not very precise because it is not possible to see small
differences. This is why we use single seismograms (Figure 7.23) to see differences between
models. Figure 7.23 zooms in the displacement wavefields in both directions at one of the re-
ceivers to see the differences between the two models better. These differences are sometimes
in the amplitude of body waves which can be caused by course mesh and lower FE basis degree
which is 2 in our frequency domain model. Besides, the source of some part of the error can
theoretically be absorbing layers. To carry out frequency domain analysis, the forward problem
is solved over discrete frequencies and overall computational time of this process is high. Fi-
gure 4.2 is a clear example to see that the Ricker function approaches very fast to zero as the
frequency goes farther from the peak frequency. We consider the frequency range till 1430 Hz
to minimize the Fourier integration error as much as possible. Since the code is not parallelized,
we try to keep the computational time low by using relatively course mesh and low polynomial
degree 2. Although the model can still be improved by using finer mesh and higher FE degree
basis, the model is already precise enough with some subtle errors and PML absorbing layers
perform well in absorbing the incoming waves.

Source Receiver

30 36

23 29

1 22

Figure 7.21: 2D elastic tunnel source/receiver configuration
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(a) Horizontal displacement ux

(b) Vertical displacement uz

Figure 7.22: 2D elastic tunnel seismograms
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(a) ux

(b) uy

Figure 7.23: Seismograms at point 20
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8 Application of Full Waveform Inversion

8.1 Inversion of 2D acoustic waves

8.1.1 Scenario 1

In this section, we present the results of the inversion and discuss the influence of various
parameters. The forward model (boundary conditions, dimensions, etc.) is shown in Figure 8.1).
We use the higher-order finite elements method to solve the acoustic equation; the polynomial
degree of the shape functions is 3, unless stated otherwise.

21,25 m

6,25 m

5 m

10 m

30 m 10 m 20 m 18 m 12 m

17 m

8,5 m

17 m

R 5.0 m

R 5.0 m

R 10.0 m

PML

Free Surface

c = 2000 m/s1 

c = 1633 m/s2 

1
2

3

Figure 8.1: 2D acoustic tunnel forward model

Dimensions, boundaries and synthetic velocity field

The inversion results are verified with a synthetic model (see Figure 8.1), which is used to
calculate the field data. There are three circles in the synthetic model where the velocity value
is 1633 m/s. The velocity value in the rest of the domain is 2000 m/s. The initial model used in
all the results illustrated in this paper is a constant velocity field with a value of 2000 m/s. The
goal of the inversion is to detect the geometry, the locations, and the velocity values of the three
circles.

Certain things must be carried out in order to have a well-posed inverse problem. This includes,
in particular, the choice (position and number) of sender and receiver points. If these points are
too few and the wrong locations are chosen, the inverse problem may become ill-posed because
the data at the receiver points does not have enough information about the velocity field. Con-
versely, if there are too many senders and receivers, the computational cost greatly increases.
The number of the source points, in particular, has a greater effect on the computational cost
because the sources are fired one by one at every sender point. Bearing this in mind, we try
to minimize the number of these points and to set them at reasonable locations. We use two
different sender and receiver configurations in this work (see Figures 8.2a and 8.2b). In inverse
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simulations, the configuration in Figure 8.2a is used, unless stated otherwise. The points of this
configuration are more spread out over the domain, and include points on the front tunnel face
and on the upper surface. The second configuration has points only on the front tunnel face and
they are evenly distributed in the vertical direction, which is very similar to an actual industrial
application, [Kneib et al., 2000].

22,5 m 15 m 15 m 15 m 7,5 m

2,125 m

14,875 m

17 m

15 m

4,25 m

4,25 m

Source Receiver

(a) Configuration A

31,5 m 58,5 m

1,0625 m

Source Receiver

(b) Configuration B, points on the tunnel face

Figure 8.2: Source/receiver configurations

Another very important consideration is selection of the frequency set. The frequency set should
be as small as possible to minimize computational costs. At the same time, it must be large
enough to be able to reflect the real problem and not get stuck at a local minimum point. Two
different angular frequency sets are used: the reduced set

GR = {50, 100, 150, ..., 1200}, (8.1)

and the full set

GF = {{50}, {100}, ..., {600}, {600, 650}, {650, 700}, {700, 750},

{750, 800}, {750, 850}, {550, 900}, {950, 1000}, {1050}, {1100}, {1150, 1200, 900}}. (8.2)

In the reduced set, there is only one frequency in every group. However, the second group is
more mixed up, and some groups contain combinations of frequencies. The second frequency
is always used, unless stated otherwise.

The results of discrete and continuous approaches are compared in Section 8.1.1. In all other
sub-sections, only the discrete approach is used. In case of the discrete approach, we present
results for both discretizations (piecewise linear combination and piecewise constant) of the
velocity field, and compare them in Section 8.1.1.

To be able to see quantitative differences between the reference model and the results of the
inversion, we define a relative error Erel as

Erel =

√∫
Ω

(cinv − csyn)2dΩ∫
Ω
c2
syndΩ

(8.3)

where cinv and csyn are the result of the inversion and the synthetic velocity field, respectively.
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The Inversion results

Table 8.1 shows the relative errors for all the simulation results run in this study and is used
to quantitatively compare the simulation results under different circumstances in the following
sections. We distinguish between the simulations in 5 ways: inversion approach (discrete or
continuous), sought function (c or d = 1

c2
), discretization of the sought function, frequency set,

and combination of senders and receivers.

# Approach Sought func.,deg. Freq. sender/rec. Rel. Error % w.r.t. best %
1 discrete c,piecewise bilinear. Full A 2.543 100.0
2 discrete c,piecewise const. Full A 6.818 268.1
3 discrete c,piecewise comb.,deg.3 Full A 2.783 109.4
4 discrete c,piecewise comb.,deg.6 Full A 2.787 109.6
5 discrete c,piecewise bilinear Reduced A 2.874 113.0
6 discrete c,piecewise bilinear Full B 3.722 146.4
7 discrete d,piecewise bilinear Full A 3.208 126.2
8 discrete d,piecewise comb.,deg.6 Full A 3.254 128.0
9 continuous d,FE degree 1 Full A 3.080 121.1

10 continuous d,FE degree 2 Full A 4.422 173.9
11 continuous d,FE degree 3 Full A 4.856 191.0

Table 8.1: Relative errors in the results of the simulations

Next, we present the reconstructed velocity fields that we obtain from the inversion processes
in Figures 8.3 and 8.4, where the inversion processes are based on the search for c and 1

c2
,

respectively. It is clearly observed that all inversion results are confirmed by the synthetic model.
As expected, all of them have some errors involved in the reconstructed images. In general, we
can see that the results obtained from the inverse simulations where c is searched look similar.
The same thing can be said about the simulations based on the search of 1

c2
. In the next sections,

we discuss the differences amongst them and make conclusions about the influences of different
parameters.
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(a) #1 (b) #2, Piecewise constant vel. field

(c) #3, vel. field with polynomials of deg. 3 (d) #4, vel. field with polynomials of deg. 6

(e) #5, freq. set GR, (f) #6, configuration B

Figure 8.3: Resultant velocity fields; search for c
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(a) #7, search for d = 1
c2

deg. 1 (b) #8, search for d = 1
c2

deg. 6

(c) #9, cont. approach, FE pol. deg. 1 (d) #10, cont. approach, FE pol. deg. 2

(e) #11, cont. approach, FE pol. deg. 3

Figure 8.4: Resultant velocity fields; search for 1
c2

In the end of this section, we highlight the result obtained using the discrete approach with
configuration A in Figure 8.2a and frequency set GF as defined in equation (8.2). To approxi-
mate the velocity field, the piecewise bilinear function is used. This simulation provides the best
result amongst the results acquired from the other simulations performed in this work. The rela-
tive error Erel, defined by (8.3), is 0.02543, which is the smallest error compared to the results
of the other simulations (see Table 8.1). In an inversion simulation, it is interesting to see the
convergences of the misfit function. Since there are 22 groups in set f2, there are 22 inversion
processes. Four representative frequency groups are shown in Figure 8.5.

At a local minimum point, the norm of the gradient is supposed to be zero. Since the inverse
solver is numerical, the norm of the gradient is expected to converge to zero. The graphs in
Figure 8.6 show how the norm of the gradient converges to zero.
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(a) Group 6 (b) Group 10 (c) Group 18

(d) Group 22

Figure 8.5: #1, misfit functional vs iteration, log scale

(a) Group 6 (b) Group 10 (c) Group 18

(d) Group 22

Figure 8.6: #1, norm of the gradient vs iteration, log scale

The final result is illustrated in Figure 8.3a and is in a very good agreement with the synthetic
model in Figure 8.1. The geometry of the circles, their locations, and velocity values are detected
to a good extent. Taking into account that the velocity field was discretized with piecewise
bilinear functions and that the velocity field has no jumps over the domain, the edges of the
circle could not have any severe jumps or drops. There are some fluctuations in the result that
do not appear in the synthetic model. They reflect the error in the result. To see these fluctuations
more clearly and to have a closer view of the result, the velocity field function is plotted against
the vertical cuts passing through the center of each of the circles in Figure 8.7.

It is crucial to know how erroneous the result is in order to interpret the result correctly. The
magnitudes of the fluctuations, which do not exist in the synthetic model, are very small com-
pared to 370 m/s, which is the difference of the velocity value of the circles (1630 m/s) and the
rest of the domain (2000 m/s). Thus, any fluctuation that is not far enough from 2000 m/s may be
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(a) Circle 1 (b) Circle 2 (c) Circle 3

Figure 8.7: #1, velocity distribution over the vertical cuts

Through the centers of the circles

a numerical error.

Investigation of the discretization of the velocity field

To investigate the influence of the higher-order basis on the result, the velocity field is discreti-
zed with basis degree 3 and 6, respectively. The relative errors are slightly larger than the error
of simulation #1, which uses bilinear polynomials to discretize the velocity field. When we
look at the resultant velocity fields in Figures 8.3c and 8.3d, we observe stronger fluctuations
compared to the result of #1. The search space of higher-order basis is larger, and thus the
inverse simulation may need more iterations to converge. The basis with degree 1 flattens out
the spurious fluctuations in the velocity field that occur when the higher-order basis is utilized.

In the discrete approach, the velocity field can also be discretized with a piecewise constant
function, as shown in equation (6.8). Since the synthetic velocity field has rapid changes in
the interfaces with the circles, it is interesting to check whether this discretization better fits
the result. The result illustrated in Figure 8.3b is obtained by using the same conditions as in
Section 8.1.1. In general, the result successfully shows the locations and values of the circle.
The spurious fluctuations overlap with those in its counterparts to a large extent. However its
relative error is quite large when we compare it to other results.

The piecewise linear combination velocity field in Figure 8.3a turns out to be closer to the
expected model than the piecewise constant function in terms of the resolution of the result and
the precision of the geometry of the bodies with different velocity values. Furthermore, there
are more artificial fluctuations in the piecewise constant velocity field. The piecewise bilinear
function provides a smoother result owing to the fact that there cannot be rapid jumps and drops
in this function.
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Frequency set comparison

The frequency setGR in equation (8.1) is chosen and the obtained result is compared to its coun-
terpart with frequency set GF . The result of the inversion of the model over the first frequency
set GR is shown in Figure 8.3e.

The relative error is slightly larger than the result obtained using the other frequency set. It is
obvious that theGF result is closer to the synthetic model in Figure 8.1 in terms of detecting the
geometries of the circles. Furthermore, the result with GF has less artificial fluctuations. As we
go up to higher frequencies, the information about the minimum points of the lower frequencies
is partially lost. For frequency set GR, this loss is more than the loss for the frequency set GF .
In frequency set GR, in every next step, only one higher frequency is considered. However,
in frequency set GF , higher angular frequencies are mixed up with lower ones. As we go up
to higher numbers, in every step, the model is inverted over not only one, but few angular
frequencies. By minimizing the misfit functional over lower frequencies at the same time with
higher frequencies, we guarantee that we do not lose the information of the lower frequencies
as we go to higher frequencies. Inversion over a few frequencies is more reliable than inversion
only over one single frequency at a step.

Sender and receiver points on the front tunnel face

Configuration A in Figure 8.2a is enough to surpass ill-posedness in the inverse problem and to
obtain reasonable results which can predict the geological changes. However, in the industrial
application presented in [Kneib et al., 2000], the source and receiver points are placed on the
front tunnel face only. This makes the inverse problem more challenging. In this section, to
mimic the industrial application, the source and receiver points are located as in Figure 8.2b.
The velocity field is sought in the set of piecewise bilinear functions, and the model is inverted
over the frequency set GF in (8.2) with a discrete approach. In this configuration, the sources
and receivers are very close to each other. Since there are singularities in the pressure fields at
the sender points, the vicinity of the source points must be refined in order to obtain precise
values at the receiver points, which are very close to the sources in the configuration in Figure
8.2b. The result is shown in Figure 8.3f.

The result can be considered to be successful since it could roughly detect all three bodies with
velocities close enough to the expected values. However, there are significant fluctuations that
make the result deviate from the synthetic model. Furthermore, the geometries of two of the
circles, 2 and 3, are not detected very precisely. For excavation purposes, this configuration
could provide enough information about the mechanical properties of the domain in front of the
tunnel boring machine if the result is interpreted correctly by taking its error into account. Two
of the circles, circle 1 and 2, lay in the line of the tunnel. Circle 1 is very well detected. The
velocity value and the location of the circle 2 are detected.

Configuration A in Figure 8.2a has source and receiver points spread over the domain. The
receivers can catch the reflections from the boundaries of the circles much better. That is why
the result obtained with this configuration can show the boundaries of the circles much better.
However, for configuration B, this is not the case. The reflections from the edges of the circles
in every direction cannot be caught well at the receivers, which are all on the front tunnel face.
This becomes more correct as the circles lie further from the front tunnel face. This may be the
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reason why the geometry of circle 3 is badly detected. Its top and bottom edges are not detected
at all which may be due to the lack of information about the reflections from these edges.

Comparison of continuous and discrete approaches

If analytical green functions are given, the continuous approach can calculate the analytical
gradient of the misfit function. However, the discrete approach uses the information to decide
how the velocity field is discretized, and the gradient calculated by the discrete approach is
expected to be less accurate than its counterpart. This is why the aim is to investigate whether
the continuous approach is superior to its counterpart.

The tunnel model with configuration A is inverted over the frequency set GF by using the
continuous approach. According to equation (6.24), the velocity field in case of the continuous
approach depends directly on the finite element basis; the velocity field is a piecewise linear
combination whose basis degree is twice the degree of the finite element basis. If the degree of
the finite element basis is 3, then the degree of the velocity field basis is 6. We run 3 simulations
with FE basis degrees 1, 2, and 3. The mesh becomes finer as the FE basis degree becomes
smaller.

To see whether the basis degree has an effect on the final result, the mesh is refined and the
simulation is carried out with the continuous approach with p = 1, p = 2, and p = 3. The
obtained results are illustrated in Figures 8.4c, 8.4d, and 8.4e: they look almost identical. The
continuous approach successfully detects the circular disturbances inside the tunnel domain
both geometrically and quantitatively up to some good precision. The relative errors are larger
than their discrete counterparts. The error increases with increasing FE degree. This may be
because the search space greatly increases as the FE degree increases.

A comparison of the continuous and discrete approaches shows that both of the approaches are
successful with respect to detection of the geometry, the location, and the velocity values of the
three circles. In both approaches, there are some fluctuations in the velocity field that do not
exist in the synthetic model. However, it can clearly be seen that the result obtained with the
continuous approach has fluctuations with larger amplitudes. It is because, in this case, it is not
correct to compare these approaches because they are not solving the same mathematical pro-
blem. The continuous approach searches for the function d = 1

c2
, whereas the discrete approach

searches directly for c. The derivative of the misfit function χ with respect to d is

∂χ

∂d
=
∂χ

∂c

∂c

∂d
=
−c3

2

∂χ

∂c
. (8.4)

The factor c3 may intensify the artificial fluctuations in the continuous result. To make the two
approaches comparable, we search for d = 1

c2
with the discrete approach too. The velocity field

is discretized with the basis degrees 1 and 6. The results are shown in Figures 8.4a and 8.4b.

Now that the two approaches solve exactly the same mathematical problem, it can be clearly
seen that the results of both approaches look very similar. The differences are due to the different
function sets used to discretize the velocity field. To have a closer look at both approaches, the
convergences of the conjugate gradient method with both approaches are shown in Figures
8.8 and 8.9. The graphs illustrate how the misfit function and norm of the gradient go to zero
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in each frequency group. All of them are quite close. In the continuous approach, d = 1
c2

is
discretized with basis degree 6 since FE basis degree is 3. As already mentioned, as the degree
of the basis of the velocity field increases, the discrete gradient converges to the continuous
gradient. Convergences of the continuous approach and the discrete approach with basis 6 are
usually slightly better than the discrete approach with basis degree 1. This may be because the
gradient is more precisely calculated when the velocity field is discretized in a larger space. In
general, none of them is dominant over the others, and a large difference is not observed in the
convergence graphs and obtained velocity fields.

(a) Group 6 (b) Group 10 (c) Group 18

(d) Group 22

Figure 8.8: Comparison among experiments #7,#8, and #11, misfit function vs iteration
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(a) Group 6 (b) Group 10 (c) Group 18

(d) Group 22

Figure 8.9: Comparison among experiments #7,#8, and #11, norm of gradient vs iteration

8.1.2 Scenario 2

Being able to detect geological bodies with different mechanical properties, a question arises
whether we can detect geological layers along with bodies using FWI. The question is inspi-
red by the Wehrhanlinie subway project in Düsseldorf in which there are different layers and a
triangular shaped body. This question was answered by a civil engineering M.Sc program stu-
dent Seyfettin Oezalp [Oezalp, 2015]. The synthetic model has a triangular geological body and
two different layers (Figure 8.10). His research can be divided into parts: search for an optimal
source/receiver points set up, affect of higher frequencies on inversion, relation between sought
body size and highest frequency, and comparison of steepest descent and conjugate gradient
method. In all cases, the starting model is a homogeneous velocity field of value 2000 m/s.
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17 m

2 m

8.5 m

PML

Free Surface

c1

c2 

c3 

15 m

30 m 19 m 10 m 10 m 21 m

15 m

16 m

1 m

11.5 m

Figure 8.10: Scenario 2, synthetic velocity field

c1 =1500 m/s,c2 =2000 m/s,c3 =2400 m/s

Optimizing source/receiver setup

First, different configurations are investigated to see what kind of advantages each individual
setting has over others. The setting in Figure 8.11a has only one source point and keeps the
computation cost minimum because source points directly influence the computation time. De-
spite the fact that the number of source points is only 5, they are placed roughly all around the
obstacle. Applying FWI, the triangular object and the layer below it are detected (Figure 8.11b),
but with low resolution. It is possible to scan geological structure ahead of tunnel with only one
source point, but with lower resolution. The idea is to increase source points (Figure 8.11c) and
obtain a better picture (Figure 8.11d). In this case, the triangular object and the inclined layer
beneath it ahead of tunnel are very well detected. However, the layer beneath the tunnel is not
detected. One more source and receiver points are added to the last configuration and the new
setup is in Figure 8.11e with which the inversion ends up with the picture in Figure 8.11f. This
result detects the layer well along with the triangular object. There are peaks around the source
and receiver points beneath the tunnel which is theoretically expected due to the formulation
of the gradient of the misfit functional. To reduce the number of source points we replace the
source point beneath the tunnel by a receiver (Figure 8.11g) and the result in Figure 8.11h is a
successful scan of the domain. Finally, again to mimic an industrial application as in the pre-
vious section, we place all points on the tunnel wall (Figure 8.11i). The resultant picture (Figure
8.11j) has roughly the triangular object in it and it can detect some part of the layer in the bot-
tom of the domain. Although the picture is not very clean, in the excavation process it can give
enough information about where the object is and what kind of geological structure it is.
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22.5 m 15 m 15 m 15 m 7.5 m

2.125 m

14.875 m

17 m

15 m

4.25 m

4.25 m

31.5 m 58.5 m

Source Receiver

(a) #1 Configuration (b) #1 Result
22.5 m 15 m 15 m 15 m 7.5 m

2.125 m

14.875 m

17 m

15 m

4.25 m

4.25 m

31.5 m 58.5 m

Source Receiver

(c) #2 Configuration (d) #2 Result
22.5 m 15 m 15 m 15 m 7.5 m

2.125 m

14.875 m

17 m

15 m

4.25 m

4.25 m

15 m 60 m7.5 m7.5 m

Source Receiver

(e) #3 Configuration (f) #3 Result
15 m 15 m 15 m 15 m 7.5 m

2.125 m

14.875 m

17 m

15 m

4.25 m

4.25 m

15 m 60 m7.5 m7.5 m

7.5 m

Source Receiver

(g) #4 Configuration (h) #4 Result

31.5 m 58.5 m

1.0625 m

Source Receiver

(i) #5 Configuration (j) #5 Result

Figure 8.11: Reconstructed velocity fields
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Adding higher frequencies

In this part, we use the configuration in Figure 8.11e because it provides one of the best results
amongst all configurations. The velocity field in Figure 8.11f is taken as the initial model to
carry out inversion over higher frequencies. First, the model is inverted over the frequency set

f2 = {(1250), (1250, 1300), (1350), (1350, 1400),

(1450), (1450, 1500), (1550), (1550, 1600)}. (8.5)

Using its result (8.12a) as a starting model for the inversion over the frequency set

f3 =
{

(1650), (1650, 1700), (1750, 1800)
}

(8.6)

we obtain the result in Figure 8.12b.

(a) Result using f2 (b) Result using f3

Figure 8.12: Resultant velocity fields using higher frequencies

The results by frequency sets with maximum frequencies 1200, 1600, and 1800 are all suc-
cessful inversion results. It is difficult to see significant differences among them. However, it
is clear that the corners and the edges of the triangle look sharper with higher frequencies. To
see the difference more obviously, the resultant velocity fields are plotted over a vertical line
passing through the triangle (Figure 8.13). The largest differences can be seen in the middle part
of the plot which corresponds to the triangle. It is obvious that the plots of lower frequencies
fluctuate with higher amplitudes; result of 1800 fluctuates the least and is closer to the expected
line.

Steepest descent versus conjugate gradient

Search direction of steepest descent is the negative gradient direction. Conjugate gradient search
direction is also related to the gradient. However, its constructed in such a way that search
direction is orthogonal to search directions in previous iterations. It means that CG does search
in a direction only ones and search directions in upcoming iterations have no components in
previous search directions. This property makes the inversion faster with a new direction in
each iteration which is orthagonal to the old search directions. In contrast to CG, SD search
direction may have components in the search directions of previous and upcoming iterations.
This may slow down the algorithm. To investigate how effective both methods are on FWI
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Figure 8.13: Velocity distribution over vertical line passing through the triangle

tunnel problems, we use the configuration in Figure 8.11e with maximum frequency of 1200.
As an indicator of speed of convergence, we use misfit functional and norm of the gradient of
the misfit functional which are supposed to approach zero. Figure 8.14 shows decline of misfit
functional as iterations run with both SD and CG, whereas Figure 8.15 shows decline of the
norm of the gradient. In both cases, it is obvious that CG has a significant advantage over SD.
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(a) Group 1 (b) Group 3 (c) Group 5

(d) Group 7 (e) Group 9 (f) Group 11

(g) Group 13 (h) Group 15 (i) Group 17

(j) Group 19 (k) Group 21 (l) Group 22

Figure 8.14: CG vs SD, misfit function vs iteration
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(a) Group 1 (b) Group 3 (c) Group 5

(d) Group 7 (e) Group 9 (f) Group 11

(g) Group 13 (h) Group 15 (i) Group 17

(j) Group 19 (k) Group 21 (l) Group 22

Figure 8.15: CG vs SD, norm of gradient vs iteration
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Object size versus frequency

In this part, we try to show the relation between the size of the object to be detected and ma-
ximum frequency. We use a simple setup of points which basically surround the object (Figure
8.16). It is important to note than with a different setting the answers would be different. Ano-
ther important issue is that the frequency may be not only dependent on the size of the object for
a given source/receiver setup, but it may also be dependent on the velocity value of the object.
However, in this investigation we use only one single velocity value and do not consider the
affect of the velocity value of the object on the frequency size. To carry out the test, we use
different sized objects with the same source/receiver setup. We need to define a criterion for
the detection of the object because the answer becomes sharper and more precise with higher
frequencies and it has to be stopped at some frequency which is accepted as minimum value for
the maximum frequency. We use rule of thumb and decide on the frequency by looking at the
resultant pictures (Figure 8.17): we say the frequency is the one which we need if its result more
or less fulfill the borders of the object and the velocity value of it. Although this investigation
is not very precise, the results let us say that as the size of the object get smaller, the frequency
required to get a rough picture of the velocity field grows. This can be seen in Table 8.2. The
object with radius 1 m could not be detected with the given source and receiver configuration.
It is likely that we need more receiver points to catch the reflections from the borders of the ob-
ject. It may become problematic to catch reflections from a small surface by very few receivers
placed far from the object.

37.5 m 22.5 m 7.5 m

2.125 m

14.875 m

17 m

15 m

4.25 m

4.25 m

31.5 m 58.5 m

Source Receiver

Figure 8.16: Source/receiver setup

Radius r [m] Frequency ω in [rad/s]
13 100
10 200
7 300
4 400
1 not detected

Table 8.2: Radius r und and minimum required frequency ω to detect the object
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(a) r = 13 m, ω =100 Hz (b) r =7 m, ω =200 Hz

(c) r =4 m, ω =400 Hz

Figure 8.17: Reconstructed velocity fields

8.2 Blind test on the 2D acoustic tunnel model

In the previous tests, we use synthetic model which imitate real models. They are defined exactly
in the same way as the computer model. This causes same kind of errors in both synthetic
and computer models. In the inversion process, the errors can be neutralized when the misfit
functional is calculated based on the difference between the computer and synthetic data; this
can happen because both models have the same sort of numerical errors and they can neutralize
each other when the difference between the two models is calculated. To avoid this, and to have
a more realistic scenario, we conduct a blind test in a tunnel environment. There are two parties
in this test. The first party, Mr. Andre Lamert who is a coworker at the institute of geophysics in
Ruhr-Universitaet Bochum, is responsible to make a precise synthetic model in the time domain
in Specfem software and to read seismograms at the geophones located at certain locations,
whereas we are the second party who is responsible of full waveform inversion and to try to
predict the synthetic model without having completely no information about it except for the
provided seismograms. The time domain model is defined on a very big domain to avoid any
possible spurious reflections from the absorbing layers and the simulation is stopped before
they reach the domain of interest. Apart from this, this model is solved with very fine mesh
and higher order spectral element method to have precise seismograms. The frequency domain
model is modelled in the Java-based program and it is solved by a different method which is a
higher-order finite method based on hierarchical shape functions. This lets us to have different
numerical errors in the models, which are not expected to neutralize each other when the misfit
functional is calculated. It is very interesting to see whether the inversion process works when
we have a synthetic model which is very precisely solved with a different numerical method.
Furthermore, it is a provocative question whether the inversion scheme works in a blind test. The
test is carried out absolutely blindly under 5 different scenarios each of which has a different
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synthetic model.

8.2.1 Scenario 1

In Figure 8.18, we introduce the source/receiver configuration used in the first scenario. We try
to choose them at accessible points such as the surface and the tunnel walls.

1 6
7

11
12

15

16 31

s1

s2 s3

Source Receiver

Figure 8.18: Blind test, source/receiver configuration (scenario 1)

The seismograms provided by the first party are illustrated in Figures 8.19,8.20, and 8.21 when
sources are fired with Ricker wavelet with the peak frequency 500 Hz and the delay 0 s at points
s1, s2, and s3, respectively.
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Figure 8.19: Wavefields at the receivers, source s1 (scenario 1)
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Figure 8.20: Wavefields at the receivers, source s2 (scenario 1)
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Figure 8.21: Wavefields at the receivers, source s3 (scenario 1)

Our starting model is a homogeneous velocity field of value 3000 m/s. From the theoretical point
of view, the starting model has to be close enough to the minimum point because we are using
the conjugate-gradient method, which is a gradient-based method, to minimize the misfit func-
tional. In FWI problems, the misfit functional is defined by the difference between the field
seismograms and computer model seismograms. For the source point s1, one can see the dif-
ference between the starting computer seismograms and the field seismograms by comparing
Figures 8.19 and 7.9. We choose discrete angular frequencies between 400 Hz and 5000 Hz with
50 Hz increment. We do inversion over each single frequency from the low angular frequencies
to the high angular frequencies. At the multiple of 500 Hz, we invert the model over few fre-
quencies distributed evenly between 400 Hz and the current frequency. Doing so, we aim to
remind the inversion about the smaller frequencies because some of the information about the
lower frequency inversions can be lost as we proceed to the higher frequencies. In Figure 8.22,
we present the results after some frequencies.
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(a) Angular frequency 750 Hz (b) Angular frequency 1000 Hz

(c) Angular frequency 1500 Hz (d) Angular frequency 2500 Hz

(e) Angular frequency 3000 Hz (f) Angular frequency 4000 Hz

(g) Angular frequency 4500 Hz (h) Angular frequency 5000 Hz

Figure 8.22: Reconstructed velocity fields after certain frequencies (scenario 1)

We see that even at the angular frequency 750 Hz two objects are emerging ahead of the tunnel.
The smallest object appears in the reconstructed velocity field at 1500 Hz. As the inverse model
is inverted over higher frequencies, the objects obtain clearer geometrical shapes. We, as a
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second party who conducts the inverse simulation in this test, are shown the synthetic velocity
field only after we obtain inversion results. At this point, we present the synthetic model which
is made by the first party in Figure 8.23.

Figure 8.23: Blind test synthetic model (scenario 1)

It is observed that the objects ahead of the tunnel are detected successfully at right locations
after the inversion process. The first two objects are more precisely detected in terms of their
sizes and geometrical shapes. The first object is rotated by 45

◦ in the synthetic model and only
at higher frequencies we see a shape which looks like a small rotated rectangle. However, the
third object is not well detected in terms of its size and shape. One reason can be the distance of
the source/receiver points from the third object because the incidence angle becomes smaller.
Another reason can be that the third object is in the shade of the other two objects. These two
reasons do not allow much reflection information to reach the receiver points.

Apart from the locations, sizes, shapes of the objects, it is important to test whether the velocity
values in the reconstructed images are confirmed by the synthetic model. In Figure 8.24, it is
observed that the velocity values in the objects in the inversion results are very close to the
expected values.
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(a) Leftmost object (1), expected 2000 m/s (b) Midmost object (2), expected 1500 m/s

(c) Rightmost object (3), expected 1200 m/s

Figure 8.24: Vertical velocity distributions through the center of the objects (scenario 1)
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We observe artificial fluctuation behind the second and third objects. Such pollution in the
results is observed in the previous tests too. They appear in the shades of the objects from
where the receivers do not obtain enough reflection data. This can force the inversion process
to end up in a non-unique local minimum.

8.2.2 Scenario 2

This scenario differs from the first one with the source/receiver configuration and the synthetic
model. The number of the source/receiver points is kept almost the same, although their loca-
tions were changed such that they cover more space especially at the surface and at the upper
tunnel wall as shown in Figure 8.25.

1 6

12

s1

7

13

16
17

20

21 33 s3s2

Source Receiver

Figure 8.25: Blind test, source/receiver configuration (scenario 2)

The difference between the synthetic models of the first and second scenarios is only the velocity
values inside the objects as one can see in Figure 8.26a. Apart from the mentioned differences,
everything else is identical in both scenarios in the inversion process. The result of the inver-
sion (Figure 8.26b) is a reasonable prediction of the synthetic model. The new source/receiver
configuration is more spread over the surface and it can catch more of the reflecting waves from
the objects in a wider range of angles. It leads to an improved result compared to the scenario
one with the sharp detection of the geometries of the objects. However, artifacts remain at the
shadow of the objects which are far from the tunnel.

(a) Synthetic model (b) Reconstructed model

Figure 8.26: Scenario 2
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8.2.3 Scenario 3

One question to be answered is whether we can detect faults ahead of a tunnel with FWI.
Scenarios 3, 4, and 5 are dedicated to this question and we use the source/receiver configuration
in Figure 8.25. Except for the synthetic models, everything else is kept identical. In scenario
3, the goal is to predict the synthetic model in Figure 8.27a which has a sudden change in the
velocity field in the horizontal direction ahead of the tunnel. Since the reflective layer change is
looking upwards where there are receivers, it can be expected that we gather enough information
about the reflective layer thanks to the seismograms. The reconstructed model in Figure 8.27b
successfully predicts the location of the fault and guesses the velocity value near the fault with
some little error. However, some artificial peak values are observed on the left side of the fault.
Apart from this, it cannot disclose much about the expected model on the right side of the fault.
One possible reason is that seismograms do not carry information about the right side of the
fault; the refracted waves are moving to infinity and do not bring back any information about
the model on the right side of the fault.

(a) Synthetic model (b) Reconstructed model

Figure 8.27: Scenario 3

8.2.4 Scenario 4

In scenario 3, the fault face is looking upwards and the reflections all along the fault can be
well caught. An interesting question arises: What if the fault face looks downwards? The aim
of this scenario is to try to answer this question with the synthetic model in Figure 8.28a.
The reflections from the fault tend to move in the downward direction. However, there are some
points around the tunnel and it is expected that the reflections from the upper part of the fault can
still be well caught. The result in Figure 8.28b totally agrees with this expectation. Nevertheless,
the reflections from the fault at greater depths are not received well at the receiver points. Thus,
the reconstructed model can only tell us about the upper part of the fault.



8.2 Blind test on the 2D acoustic tunnel model 107

(a) Synthetic model (b) Reconstructed model

Figure 8.28: Scenario 4

8.2.5 Scenario 5

We have investigated the cases where we have a sudden change of the velocity in the horizontal
direction. But what happens if the change of the velocity is smooth? To be able to answer this
question, we try to predict the synthetic model in Figure 8.29a. The region in the middle is
a smooth linear transition zone from 3000 m/s to v=2200 m/s. If enough reflections occur at the
smooth transition zone, it will be possible to record them at the receivers since the face of the
change zone looks upwards. Nevertheless, the reconstructed model in Figure 8.29b is not a good
prediction of the expected model. The reconstructed model tells us a little bit about the face of
the velocity change and that the velocity value is lower at the right side. The first thing which

(a) Synthetic model (b) Reconstructed model

Figure 8.29: Scenario 5

comes to mind is to investigate the seismograms to see whether we are acquiring enough data
about the smooth transition zone. Figures 8.30, 8.31, and 8.32 compare the seismograms of the
model in Figure 8.29a with the seismograms of the homogeneous model with velocity value of
3000 m/s. The seismograms recorded when the source points s1 and s2 are fired differ very little
from the seismograms of the homogeneous case. There are very little reflections only in the first
few receivers. Last 3 receivers deviates much from the homogeneous case. The reason of this
deviation is that the last 3 receiver points are lying in the region with lower velocity field, and
thus the waves arrive a little later. The seismograms recorded when the source point s3 is fired
differs from their homogeneous counterparts again with the amplitude and arrival time. The
waves again arrive later than the homogeneous case. The only reason for the delay is that the
source point s3 itself is lying in the region with lower velocity. To sum up, the most dominant
information in the seismograms about the synthetic model belongs to the points in the lower
velocity region, and we can predict the region around these points thanks to that information.
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Figure 8.30: Wavefields at receivers, source s1 (scenario 5)
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Figure 8.31: Scenario 5, wavefields at receivers, source s2 (scenario 5)
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Figure 8.32: Scenario 5, wavefields at receivers, source s3 (scenario 5)
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8.3 Inversion of 2D viscoacoustic waves

8.3.1 Experiment in a half-space

We start with a half-space example (360m × 170m) with a high attenuation profile Q = 50.
In this case, the waves reflected from the reflectors decay very fast till they reach the receiver
points. The farther the reflectors are from the sender points, the more the waves decay to zero.
Such problems impose more challenge in inversion process because of scarcity of information
about the reflectors. We use full waveform inversion to search for velocity and density fields.
Searching for two fields brings more challenge and imposes more nonlinearity.

We consider synthetic model to imitate field data and to validate the inversion (see Fig. 8.33a).
For synthetic density field, v=1000 kg/m3, v1=1300 kg/m3, and v2=700 kg/m3, whereas for synthetic
velocity field, v=2000 m/s, v1=1600 m/s, and v2=2400 m/s. The problem is investigated in angular
frequency range 100-1500Hz. 3 Source and 3 receiver point are chosen right below the surface
and distributed evenly in vertical direction over the layers.

After deploying conjugate gradient method, the misfit function is minimized and the resultant
velocity and density fields are shown in Figures 8.33b and 8.33c. The layers are seen in the
resultant velocity and density fields. However, the velocity field is closer to the synthetic field.
There are some peak points close to the surface especially in the density field. These peaks arise
near the sender and receiver points. The gradient is expected to have peaks near the sender and
receiver points. The result can be improved by using a more optimal combination of source and
receiver points. We used very few receiver points, and with the effect of high attenuation, the
reflections cannot be caught at receivers good enough. Another key to better results is frequency.
Adding even higher frequencies to the set can end up with better results.
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(a) Synthetic field (b) Result, velocity field

(c) Result, density field

Figure 8.33: Inversion of viscoacoustic waves, half-space example

8.3.2 Experiment in a tunnel model

Next, we investigate a tunnel model (360m × 170m) with high attenuation profile (Q=50). The
density field is constant and we search only for the velocity field. The synthetic model is shown
in Figure 8.34a. There are 5 circles evenly distributed on the tunnel track. We use two source
points on the front tunnel face and 23 receivers on the surface. With high attenuation, reflections
from circles far from the tunnel face weaken a lot. Apart from this, reflection angle becomes
smaller. By this example, we investigate how attenuation and distance from the tunnel face
influences the result. We again use conjugate gradient method to minimize the misfit function
over the angular frequency range 100-1200Hz and the resultant velocity is shown in Figures
8.34b. All five circles are successfully located. However, the shapes of circles farther from the
front tunnel face are not well detected and they seem to be stretching in vertical direction. Since
the waves start from the front tunnel face, they are attenuated as they move forward. The circles
far from the tunnel face reflect weak waves to the receivers. Apart from this, the reflection angle
also becomes too small. Circles seem to be stretching in vertical direction because of the small
reflection angle. It is also obvious that spurious fluctuations are in the resultant figure. However,
the fluctuations are weak compared to the detected objects.



8.4 Inversion of 3D acoustic waves 113

(a) Synthetic field (b) Result, velocity field

Figure 8.34: Inversion of viscoacoustic waves, tunnel model

8.4 Inversion of 3D acoustic waves

8.4.1 3D acoustic half-space experiment

A real-world problem can be reduced down to a 2-dimensional problem with some mathematical
tricks. However, it is more realistic to carry out 3-dimensional experiments. The forward model
is solved by FE and the pressure field is discretized with basis of degree 1. In one inverse
simulation, considerably many forward simulations are run. And since the code is not optimized
for very big problems, such simulations may take very long. For this reason, the size of the
problems is restricted due to time constraint. This, in return, might have brought some numerical
errors. In this section, the results of some 3-dimensional experiments are illustrated. In the first
3-dimensional experiment, a half-space model is examined. The synthetic velocity field has 3
different layers as shown in the figure 8.35. To mimic a half space, the surface is modelled as free
surface and PML layers are put at the artificial boundaries. It means the domain is surrounded
by absorbing boundaries except at the upper surface. Before running the inverse simulation, it is
necessary to place source and receiver points in the domain. It is important to make the inverse
problem well-posed. Too few these points may make the problem ill-posed and too many of
them may increase the computation time. Number of source points is more crucial since gradient
calculation needs to solve system of linear equations as many times as the number of source
points. In this simulation, the points were chosen a bit far from the absorbing boundaries in
order to reduce the numerical errors due reflected waves from PMLs which in reality would not
exist. 7 source and 8 receiver points are evenly located near the surface. Another important issue
here is to keep the receiver points far enough from the source points. Since FE basis degree is
one and no mesh refinement is applied around the source points, the singularity near the source
points brings numerical errors to the pressure value at the receivers if they are not far enough
from sources. For inversion in frequency domain, it is important to choose discrete frequency
set which, in this case, is chosen as f1 = {50i}, i = 2, . . . , 13. Conjugate gradient method does
the inversion in each frequency group separately. The initial model for the first frequency is a
constant velocity field with value 2000 m/s. The initial model for any other frequency is the result
of the preceding frequency group. After running the inverse simulations, to see how CG method
minimized the misfit function, the graphs 8.36 and 8.37 are plotted. These graphs show how the
misfit function is minimized and the norm of the gradient go to zero in every frequency group,
respectively. Misfit functions follow a strictly decreasing path towards zero. However, norm of
gradients follow fluctuating path towards zero. In few frequency groups, such as group 6, the
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Figure 8.35: 3D half-space synthetic velocity field

norm of the gradient decreases very slightly and its consequence can be seen in misfit graph
where the misfit function also decreases very little over many frequencies.
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(a) Group 1 (b) Group 2 (c) Group 3

(d) Group 4 (e) Group 5 (f) Group 6

(g) Group 7 (h) Group 8 (i) Group 9

(j) Group 10 (k) Group 11 (l) Group 12

Figure 8.36: Misfit Function vs Iteration
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(a) Group 1 (b) Group 2 (c) Group 3

(d) Group 4 (e) Group 5 (f) Group 6

(g) Group 7 (h) Group 8 (i) Group 9

(j) Group 10 (k) Group 11 (l) Group 12

Figure 8.37: Norm of gradient vs iteration

The final velocity field obtained by the inverse simulation is illustrated in the figure 8.38. The
velocity field is cut in x and z directions in order to have a better view of the vertical cross
section of the domain. It can clearly be seen that the inversion method successfully detected
the layers to some good extent. The velocity field has peak at the points where there are source
and receiver points. This is due to the gradient calculation; according to (6.17), the gradient
has singularities at the source and receiver points. Considering this theoretical information in
the interpretation of the result, the peaks around the source and receiver points can be ignored.
The inversion result can be improved by using higher frequencies, and mixing up frequency
groups with higher and lower frequencies. As aforementioned, since it takes too much time
and space with the current software, it was not further investigated. The forward model can be
improved by solving the partial differential equation using higher-order FE basis and refining
the mesh around the source points. To use higher frequencies, it is necessary to refine the mesh
and use higher-order basis functions as well. However, this increases the inverse simulation time
tremendously.
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(a) Cut in z direction

(b) Cut in x direction

Figure 8.38: Reconstructed velocity field

8.4.2 3D acoustic tunnel experiment

A 3D acoustic tunnel model is inverted over the velocity field of the domain. Source and receiver
points are again chosen on the front tunnel face and on the upper edge of the domain which is
ground in reality. There are 6 source and 9 receiver points on the upper edge, and 2 source and
2 receiver points on the front tunnel face. The angular frequency range is between 50 and 750.
The synthetic model is chosen as constant everywhere except a disturbance in the tunnel track.
There is a triangular disturbance which extends perpendicular to the tunnel track and parallel to
the ground (Figure 8.39). The initial model is a homogeneous velocity field with value c = 2000
m/s everywhere. The dimension of the domain is 32× 32× 60.

The results of the inversion are illustrated in the Figure 8.40. The disturbance in the velocity
field can be seen in the result. It has a triangular shape (8.40a) and it is perpendicular to the
tunnel extension (8.40b) as in the synthetic model.
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Figure 8.39: 3D acoustic tunnel, synthetic velocity field

1150 2120

(a) Horizontal cut

1660 2180

(b) Vertical cut

Figure 8.40: Reconstructed velocity field

8.5 Inversion of 2D elastic waves

Results from inversion of acoustic waves are presented till now. However, solids are not repre-
sented well enough with the acoustic model because it takes only pressure waves into consi-
derations. In contrast to it, shear waves propagate in solids along with pressure waves. Besides
this, body wave energy can be partly converted to surface waves at interfaces when the rest of
the energy is reflected and refracted. Elastic wave model is capable to deal with pressure, she-
ar, and surface waves. It is crucial to mention that it has been proven that in some application
acoustic inversion can be used by separating pressure waves from the whole seismogram. As
an example to this application, one can refer to [Fichtner, 2011]. In the first experiment, elastic
parameter λ (synthetic model is in Figure 8.41) is sought where the µ and ρ are constant. The
model is inverted over the frequency set
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f2 = {(200), (300), (400), (500), (600), (700),

(800), (900), (1000), (250, 550, 750, 1000)}. (8.7)

Figure 8.41: Synthetic λ model

The results after each frequency group (Figure 8.42) show how the object becomes clearer
after each frequency group. In the end, the location of the object and its velocity value is fairly
detected. However, the geometry of the object not precisely figured out. The fact that there is
only one source point in front of the tunnel front face may be the reason why the geometry is not
sharp enough. We turn two of the receivers near the surface into sources and run the inversion
simulation after which we get the result in Figure 8.43. It is clear that the geometry of the object
is better detected although we use 25 iterations per frequency whereas it is 40 iterations in the
previous simulation.
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(a) ω = 200 Hz (b) ω = 300 Hz (c) ω = 400 Hz

(d) ω = 500 Hz (e) ω = 600 Hz (f) ω = 700 Hz

(g) ω = 800 Hz (h) ω = 900 Hz (i) ω = 1000 Hz

(j) ω = 250,550,750,1000 Hz

Figure 8.42: λ after inversion over each frequency group
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Figure 8.43: Reconstructed λ with the second configuration

In this test, we assume that parameters µ and ρ are constant and we search for only λ. However,
searching for λ and µ simultaneously makes the inverse problem more realistic. In the next test,
we search for λ, which is the same synthetic model as in the previous test, and µ, which is
1.5E10 N/m2 inside the box and 1.08E10 N/m2 elsewhere. The same frequency set and the second
source/receiver setup of the previous test are used in this test too. After the last frequency group
we obtain λ and µ which are shown in Figure 8.44. Although the object is well detected in both
λ and µ, the square in µ is much clearer with edges and shape.

(a) λ (b) µ

Figure 8.44: Reconstructed λ and µ

However, this test is still not the most realistic test that can be carried out for elastic waves
because density is never homogeneous in soil. Homogeneity effect of density can be neglected in
a lot of cases. Nevertheless, in some special cases, e.g. when the density change is very sudden,
the heterogeneity of the soil is not negligible. To investigate whether all three parameters λ, µ,
and ρ can be detected at the same time, we carry out such an experiment where all parameters are
heterogeneous and are sought. We use same synthetic models for λ and µ as in the previous test,
whereas we choose ρ such that its value is 1700 inside the box and 2700 elsewhere. Applying
same conditions to the experiment as in the previous experiments, after the last frequency group,
it is observed that λ and µ did not deviate from their starting models. In contrast to ρ, λ and µ are
not detected and surprisingly the inversion almost did not change initial λ and µ fields, which
are homogeneous fields, at all. However, although the shape of the box is not perfect, ρ result
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looks quite precise with value of the density in the box, its location and size (see Figure 8.45).
To investigate why the other two parameters are not affected at all by the inversion, we have a
look at the norm of gradients of the misfit functional with respect to the parameters. The range
of the gradients with respect to the parameters are as follows:

∣∣∂χ
∂λ

∣∣ ∼ 10−11,
∣∣∣∂χ∂µ ∣∣∣ ∼ 10−10,

and
∣∣∣∂χ∂ρ ∣∣∣ ∼ 10−2.

∣∣∣∂χ∂ρ ∣∣∣ is too high compared to the others. On the other hand, ρ itself is in the

range 103, whereas the others are in the range 1010. In each iteration of the optimization, all
three parameters are updated by the same steplength. Since ρ itself is much smaller than the
others and at the same time, its sensitivity is much higher than the others, the change in ρ is
enormously bigger than the change in other two parameters in each iteration. High sensitivity
of ρ takes the solution probably to a local minimum by almost not considering the effects of λ
and µ. This is the reason why λ and µ do not differ from its initial model, whereas the box is
well detected in resultant ρ. Preconditioned conjugate-gradient method can help to equalize the
sensitivities of the parameters. However, we do not include it within the context of this work.

Figure 8.45: Search for λ, µ, and ρ; reconstructed ρ
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9 Conclusions and Outlook

In a tunneling application, imaging the domain and detecting the irregularity of the structure of
the domain are becoming very important in the excavation process. This information is useful
because it can make the excavation process proceed more smoothly, more quickly, and with
lower cost. Furthermore, the anomalies in the tunnel domain, depending on their geometry and
mechanical properties, may lead to significantly large settlements on the surface after the tunnel
has been excavated. If these anomalies are detected prior to excavation, preventative measures
can be taken to avoid large settlements.

Main goal of this work is to investigate full waveform inversion approach in tunneling appli-
cations. For this reason, we address forward and inverse acoustic and elastic modelling of a
tunnel. Furthermore, frequency domain is preferred because any single frequency can be inve-
stigated for both forward and inverse problems. However, frequency domain forward modelling
is computationally cumbersome compared to the time domain. For the forward modelling, it is
inevitable to implement certain boundary conditions that play a very crucial role in defining a
realistic problem. These boundaries are the absorbing boundaries, which come into play from
the fact that the domain is theoretically infinite, and the free surface, which mimics the air-soil
interface. Perfectly-matched layers play a crucial role in completing the forward modelling part
successfully.

Full waveform inversion is now becoming a very popular method used by geophysicists and
earth scientists to explore the structure of the ground. However, it is not widely used in tunneling
applications. In most cases, only the traveltime information of waves is used for the inversion.
FWI provides more information about the model than the traveltimes. This is the motivation
behind applying full waveform inversion to our inverse problems.

Moreover, we investigate the factors that influence the inversion result. The results with dif-
ferent frequency sets and different configurations of source and receiver points are compared.
The source/receiver configuration is a crucial point in defining the inverse problem. The wrong
configuration may lead to an ill-posed inverse problem. The size of the frequency set should be
as small as possible to reduce the computation time, but it must not be too small at the same
time. A very small frequency set size does not provide a good representation of the frequency
range and the problem deviates from the real problem. It also becomes more difficult to find the
global minimum of the misfit function. We conduct different experiments with different settings
and investigate how each factor influence the final result.

Another aim of this work is to utilize the full acoustic waveform inversion technique using two
similar, but different approaches: discrete and continuous approaches. The results obtained by
both of them are compared and commented upon. We answer the question how the search for
different functions, c and 1

c2
, may end up with different results. It is concluded that a more

appropriate discretization can decrease the relative error.

In general, we conduct successful numerical experiments which confirm that FWI can be used
in tunneling applications. It is numerically more expensive than most of the migration tech-
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niques. However, with an exponential growth of the computer technology, FWI may soon be
a preferable technique to predict the geological structure ahead of a tunnel. Apart from two-
dimensional problems, we extend the simulations to 3-dimensional cases to be closer to the
realistic problems.

One of the biggest highlights of this work is blind test experiment. What makes it so interesting
is the fact that we did not have any prior information about the synthetic model except for the
seismograms. Furthermore, the synthetic model is very precisely modelled to have minimum
possible numerical errors. This problem poses challenge for both forward and inverse models.
We took the status of this work one step further by overcoming the challenge.

There are still many things that must be done in order to have better forward and inverse models.
The plan is to have three-dimensional full elastic waves with attenuation and other factors, such
as dispersion, if necessary. The code is already able to solve 3D problems. However, it has to
be optimized and parallelized for big scale problems. At the same time, the lab experiments
are being carried out for this project. It is a crucial step to have numerical models which can
imitate the experiments in the lab. Moreover, the plan is to conduct inversion experiments with
the laboratory data. The most important challenge would be to have data from a real tunnel
construction site and apply FWI to that data. Such an experiment can be the ultimate aim of
the project. FWI is applied to figure out the geological structure of the earth and some seismic
companies are using the method in some cases. It looks very probable that FWI can provide
some interesting result in tunneling as well.
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