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Summary

The scope of this thesis is the development of probabilistic models of dynamic recrystal-
lization in polycrystalline materials. The goal is to predict the distribution of grain size and
dislocation density as a function of the thermo-mechanical history of the material as well as
the behavior of entire macroscopic bodies.

In the first part of the thesis, a probability distribution function is introduced in order to
characterize the state of individual grains. The mean values of all relevant state variables are
defined based on this function. By specifying free energy and dissipation within the poly-
crystalline aggregate we are able to derive an evolution equation for the probability density
function via a thermodynamic extremum principle. Moreover, for distribution functions
which are constant in time, describing a state of dynamic equilibrium, we obtain a partial
differential equation in parameter space which can be solved using a marching algorithm.
The results for the macroscopic stresses obtained this way are then compared to those from
phenomenological models. As next step, a nucleation theory is introduced into the model
for completion. Three different versions of that one are investigated.

The main objective of the second part of the thesis is to describe the behavior of macro-
scopic specimens. For this purpose, a two-scale scheme is developed involving a finite
element scheme at the macroscale and the model based on the probability distribution func-
tion at the microscale implemented at the Gauss point level. For verification, the model is
compared with an existing implementation in Abaqus as well.



Kurzfassung

Im Rahmen dieser Arbeit wurde ein probabilistisches Modell der dynamischen Rekristalli-
sation von polykristallinen Materialien entwickelt. Ziel war, die Verteilung von Korngröße
und Versetzungsdichte in Abhängigkeit von der thermomechanischen Behandlung des Ma-
terials sowie das Verhalten von makroskopischen Bauteilen vorherzusagen.

Im ersten Teil der Arbeit wird eine Wahrscheinlichkeitsverteilungsfunktion eingeführt, um
den Zustand individueller Körner zu charakterisieren. Die Mittelwerte aller relevanten Zus-
tandsvariablen können über diese Funktion definiert werden. Durch Spezifikation von freier
Energie und Dissipation des polykristallinen Gefüges, konnte eine Evolutionsgleichung
für die Wahrscheinlichkeitsverteilungsfunktion mittels eines thermodynamischen Extremal-
prinzips hergeleitet werden. Darüber hinaus erhalten wir für zeitlich konstante Verteilungs-
funktionen, welche ein Fließgleichgewicht beschreiben, eine partielle Differentialgleichung
im Parameterraum, welche durch einen Marching-Algorithmus gelöst wurde. Die auf diese
Weise erhaltenen Ergebnisse für die makroskopischen Spannungen wurden dann mit jenen
verglichen, die sich aus phänomenologischen Modellen ergaben. Als nächster Schritt wurde
dann eine Nukleationstheorie zum Modell hinzugefügt, um es zu vervollständigen. Drei
unterschiedliche Versionen dieser Theorie wurden studiert.

Ziel des zweiten Teils der Arbeit war dann die Modellierung makroskopischer Bauteile. Zu
diesem Zweck wurde ein zweiskaliger Algorithmus entwickelt, welcher auf einem Finite
Elemente Zugang auf der Makroskale basierte, sowie auf dem Modell unter Verwendung
der Wahrscheinlichkeitsverteilungsfunktion auf der Mikroskale. Letzteres wurde auf der
Gausspunktebene eingebunden. Zur Verifikation wurde das Zweiskalenmodell wiederum
mit einem in Abaqus implementierten phänomenologischen Modell verglichen.
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Nomenclature

The next list describes several symbols that will be later used within this thesis:

Latin notations

D0 Nucleation parameter

C Elastic tensor

D Stiffness matrix, tangent matrix

b Burger’s vector

ei Cartesian unit vectors

N Shape function

n Unit normal vector

t Traction force

u Displacement field

V , Ẋ External variable’s time derivative

v, ẋ Internal variable’s time derivative

X External variables

x Internal variables

x,X Coordinates in the deformed and in the reference configuration

z Combination of internal variables and external variables

L Lagrange functional

A Area of the needle point

Ad Flow law multiplier for diffusion creep

Ap Flow law multiplier for dislocation creep

ap Dislocation density evolution

D Grain size

E Young’s modulus

g0 Nucleation parameter
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kp Material parameter related to the generation of dislocations

m Material parameter

m Number of discretized points in the horizontal direction

M⊥ Diffusion mobility

Mnuc Nucleation mobility

n Number of discretized points in the vertical direction

p Average dislocation density

r Rescaled dislocation velocity

t,∆t Time and time increment

vdis Dislocation velocity

x1, x2, x3 Cartesian coordinates

Greek notations

∆ Dissipation potential

δ Width of grain boundary

∆d Diffusion-related dissipation

∆p Dissipation related to plastic deformation

∆ρ Dissipation associated with a change in dislocation density

∆D Dissipation associated with grain coarsening

δij Kronecker delta

ρ̇ε̇e Change in dislocation density caused by deformation

ρ̇T Change in dislocation density for thermal process by deformation

ε̇d Time derivative of diffusion strain tensor

ε̇e Time derivative of elastic strain tensor

ε̇i Time derivative of inelastic strain tensor

ε̇p Time derivative of plastic strain tensor

εd Effective strain of diffusion strain

εp Effective strain of plastic strain

εijk Permutation symbol

γ Specific grain boundary energy

γi Kuhn-Tucker multiplier



∆̂i Dissipation’s assumption

µ̂, λ̂ Elastic Lame’s moduli

λ Lagrange multiplier

λi Lagrange parameter

µ Shear modulus

∇ Nabla operator

Ω Body’s volume

∂Ω Body’s surface

∂Ωt Body’s boundary for given tractions

∂Ωu Body’s boundary for given displacements

∂ (Partial) derivative

Ψ Helmholtz free energy density

ψdis Dislocation energy

ψe Linear elastic energy

ψgb Grain boundary energy

ρ Dislocation density

σ Cauchy stress tensor

ε Linear strain tensor

εd Diffusion strain tensor

εe Elastic strain tensor

εi Inelastic strain tensor

εp Plastic strain tensor
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1 Introduction

1.1 Motivation

When homogeneous materials are under a load that exceeds the melting temperature, the
microstructure of these material will be rearranged to build a new microstructure [Dmitrieva
et al., 2009]. As a result, with the connection to the macroscopic, its behavior will be im-
pacted. Moreover, Hall-Petch relationship indicates that grain size will strongly influence
the yield stress. Consequently, the study of microstructure modification is very significant.
One trendy method to see the mechanical properties and structure is material modelling.
This method in continuum mechanics is to find a consistent set of evolution equations to
exhibit the response of materials. One common model is called micromechanical models.
When these models are derived successfully, in order to verify these models, a comparison
by numerical results with an another believable result, for example, experiments should be
carried out. Actually, a general material model is ability to predict material responses, espe-
cially, for complex materials.

Polycrystalline materials are the most widely used group of structural materials nowadays.
At microscopic scale polycrystalline materials consist of many grains, which have differ-
ent sizes and arrange in random crystallographic orientations, making the deformation in
these materials complicated. Recrystallization occurs when the net of the grain bound-
aries in a polycrystalline material is rearranged. Dynamic recrystallization (DRX), which is
associated with high temperature plastic deformation [Ding and Guo, 2001], happens dur-
ing thermal and mechanical processes [Bernacki et al., 2009], and characterize mechanical
properties of minerals and metallic materials. DRX can be observed in different materi-
als such as minerals (olivine, sodium and potassium chlorides) [Poirier and Nicolas, 1975;
Guillope and Poirier, 1979; Urai et al., 1986], metals (aluminium, ferritic steels, LiF, ferritic
stainless) [Gourdet and Montheillet, 2003; Kim et al., 2001; Sitdikov and Kaibyshev, 2002],
superalloys [Huber et al., 2008]. The recrystallization forms a new grain microstrutures and
indicated by the formation and migration of high angle grain boundaries driven by the stored
energy of deformation [Doherty et al., 1997]. Therefore, investigating of DRX plays an im-
portant role to control microstructure evolution and mechanical properties of materials.

Modeling DRX can be based on phenomenological and semi-empirical models [Sandström
and Lagneborg, 1975; Roberts and Ahlblom, 1978; Luton and Sellars, 1969] and reviewed
details [Ding and Guo, 2001]. To simulate microstructure evolution during DRX, several
studies base on the Monte Carlo model [Rollett et al., 1992; Peczak and Luton, 1993b,a,
1994; Peczak, 1995] and the cellular automaton method coupling fundamental metallur-
gical principles [Qian and Guo, 2004; Chen et al., 2009]. Very limited works attempt to
relate macroscopic and microscopic behaviour, for example, Lui et al. [Liu et al., 2008].
They introduced a model of flow stress as the function of the peak stress and the strain and
considered recrystallized volume fraction as the function of strain. Recently, K. Hackl and
J. Renner [Hackl and Renner, 2013] proposed a variational approach for DRX to analyse
microstructure evolution during a high temperature deformation. Their model is based on
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an introduction of a distribution function to characterize the state of individual grains by
grain size and dislocation density and can predict mechanical behaviours on macroscopic
and microscopic scale. Different physical mechanisms such as dislocation mechanisms and
diffusive mass transport are coupled to investigate DRX. Evolutions of grain size and dislo-
cation density as well as flow laws for dislocation and diffusion creep were derived by the
constrained minimization [Hackl and Fischer, 2008]. Continuing their work we will explore
algorithms and numerical aspects to solve DRX problem at the microscopic scale. Then,
mechanical behaviours of materials in microscopic scale will be linked to the macroscopic
scale by two-scale modeling in Abaqus. Our model can apply for metallurgy and, espe-
cially, minerals in geology. We expect that numerical examples with the realistic parameters
are shown to perform the theoretical formulation [Hackl and Renner, 2013]. Our aim is to
construct a variational approach to study dynamic recrystallization of pollycrystals at high
temperatures. Basing on the mechanism of nucleation, the thoery of nucleation is proposal
in this work as well. This theory is essential as the initial guess for the distribution func-
tion on the numerical implementation. In order to deal with this problem numerically, a
two-scale modelling (including a micro scale and a macro scale) is introduced. Marching
algorithm is established to solve the microscale problem. The evolution of the microstruc-
ture on the material’s rheology is captured via this result of the evolution of the distribution
function. From the microscale problem, the required average quantities are calculated for
the macroscale problem. Mechanical behaviours of materials in microscopic scale will be
linked to macroscopic scale by two-scale modeling.

1.2 Methodology and organization of the thesis

In continuum mechanics, the purpose to model materials, the equations which show the re-
action of materials during a test will be found. The entire framework to describe the behavior
of a certain material will be called material modeling. Based on different principles, there
are many directions to build a model. There are two kinds of models in material model-
ing, phenomenological models and micromechanical models. By fitting a set of parameters,
engineers try to exhibit the material behavior via phenomenological models. Micromechan-
ical models are obtained from understanding the real processes under loading. With the
micromechanical models, these models will be validated by comparing the simulation re-
sults with experiments.

A brief introduction of mathematical fundamentals will be explained in Section 2. Then
with these notations of mathematical knowledge, discussing related continuum mechanics
is essential since we develop a model basing on it. The next topic of Section 2 will be
about polycrystalline materials, dynamic recrystallization and some phenomena concerning
dynamic recrystallization and polycrystalline materials.

Section 3 is dedicated to the mathematical model in detail. Since the model will be a multi-
scale model then it will be convenient to discuss two smaller problems separately. Section
3.1 will deal with the variational approach which will be the root of the following math-
ematical model. In Section 3.2, some different version of the distribution function, which
specifies each grain by grain size and dislocation density, will be presented. In this section,
the new form of the distribution function will be discussed as wel. Within this form, the
distribution function characterizing a grain by a compound of three components: grain size,
dislocation density and neighboring dislocation density. Next section in Chapter 3 will be
the description of the problem at the macroscale. Moreover, the progress in generating the
nucleation theory will be presented in Section 3.3.
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The main duty of Section 4 is how to solve our mathematical model numerically. Section
4.1 will talk about the approximatedly numerical methods. These methods will be used in
our numerical treatment. Section 4.2 will be spent on pointing out the marching algorithm.
With this algorithm, the solution of the problem at the microscale will be found. How this
algorithm is applied in each type version of the distribution function will be clarified in Sec-
tion 4.2.1, Section 4.2.2 and Section 4.2.3. The last part of Section 4 is for the numerical
implementation of the problem at the macroscale.

Section 5 will show the results after implementing our models numerically. The outcome of
the microscale problem will be analyzed by comparing them with existing phenomenologi-
cal ones. This is the main content of Section 5.2. After linking two problems in two scales
will be compared with existing models in Abaqus. We will combine different kinds of dis-
tribution function and various nucleation theory. Section 5.4.1 discusses about the result of
the first model where the first theory of nucleation and the distribution function f(s, r) are
applied. Section 5.4.2 and section 5.4.3 talk about the outcome of the second model and
the third model, respectively. While within the second model, the distribution function is a
function of s and r and the second nucleation theory is used, the third model is the com-
bination of the standard distribution function and the third term concerning the nucleation
process.
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2 Mathematical and mechanical fundamentals

This part is devoted to some basic knowledge of mathematics and mechanics. The funda-
mentals will help to develop the mathematical model for dynamic recrystallization in poly-
crystals. Before introducing the fundamentals of mechanics concerning this thesis, the short
review of basicalmathematical concepts is considered. For more details relating to vector
and tensor terms, readers can refer to [Holzapfel, 2000; E. A. de Souza Neto and Owen,
2008; R. B. Hetnarski, 2010; Chou and Pagano, 1992; Chadwick, 1999].

2.1 Vector and tensor analysis

2.1.1 Vector and tensor definition

This part introduces shortly mathematical fundamentals concerning vectors and tensors. It
is just sufficient for the following parts. The definitions of scalars, vectors, and tensors
will be discussed. This definition will be restricted to an open region Ω of a n-dimensional
Euclidean space Rn. Not only their definitions but also their operations are shown here.

Scalars

A function f is called a scalar field on Ω, for each x, we have a corresponding value of
a scalar f(x). A scalar is understood as a tensor of zero order. Small letters will denote
scalars, for example, the scalar a is written as a.

Vectors

A set of scalars in a one dimensional array is a vector. A vector is a tensor of the first order.
It has its length and direction in a geometric interpretation. Some physical quantities, e.g.
position, velocity, acceleration, force are vectors. Bold letters are used to denote a vector
field. For example, if n = 3, a vector x is defined as

x =

x1

x2

x3

 or x = (x1, x2, x3)T. (2.1)

In general, a vector is a collection of n elements, we have

x =


x1

x2
...
xn

 or x = (x1, x2, · · · , xn)T. (2.2)

The magnitude or the length of vector x, denoted by ‖x‖, is calculated as

‖x‖ =
√
x2

1 + x2
2 + · · ·+ x2

n. (2.3)
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Definitions including multiplication, addition, and orthogonality are defined in the vector
spaces. First multiplication by a scalar quantity λ is equal to

λx = λ


x1

x2
...
xn

 =


λx1

λx2
...

λxn

 . (2.4)

The summation of 2 vectors x and y on Ω, which we denote x+y, is a scalar calculated by

x+ y =


x1

x2
...
xn

+


y1

y2
...
yn

 =


x1 + y1

x2 + y2
...

xn + yn

 . (2.5)

We don’t discuss all properties of commutative in this thesis. Only the below property is
required that

x+ y = y + x. (2.6)

Furthermore, a dot product (or an inner product) of vector x and vector y, denoted by x · y,
assigns to this pair of vectors in Ω a scalar as follows

x · y = x1y1 + x2y2 + · · ·+ xnyn. (2.7)

One property of the dot product is

x · y = ‖x‖‖y‖ cosφ, (2.8)

here φ is the angle enclosed by the two vectors.

Orthogonality

If the inner product of vector x and vector y is zero, they are called orthogonal. In the
mathematical expression, we have

x ⊥ y = 0⇔ x · y = 0. (2.9)

Orthonormality

Two vectors x and y in Ω are called orthogonal if the two following conditions are fulfilled,{
x · y = 0,

‖ x ‖ =‖ y ‖= 1.
(2.10)

Tensors

In accordance to [R. B. Hetnarski, 2010], a linear transformation T from a vector x into a
vector y is a second-order tensor in a vector space V ⊂ Rn as below

y = Tx, (2.11)
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where y = (y1, y2, · · · , yn)T, x = (x1, x2, · · · , xn)T and

T =


T11 T12 · · · T1n

T21 T22 · · · T2n
...

...
...

...
Tn1 Tn2 · · · Tnn

 .

(2.12)

Some physical quantities in continuum mechanics are second-order tensors, such as the
stress tensor, the strain tensor, and the conductivity tensor. This scheme can be extended
to the definition of a tensor of arbitrary order. Based on the definition of the second order
tensor, the third order tensor is similarly defined as a linear mapping transforming each
vector into a second order tensor. Then a fourth order tensor is a linear mapping which
converts a vector into a third order tensor. A tensor of the fourth order, for instance, can
be represented as a matrix having matrices themselves as components. One familiar tensor
of the fourth order is the elasticity tensor. The fourth order tensors is indicated by double
stroke symbols, for example C.

Mechanical and physical phenomena take place in the physical space R3. Then let us limit
our review here to the physical space R3. In some literature, one useful way to represent a
tensor is to use index-notation. Index-notation is a powerful tool to express tensors and their
actions as well. To illustrate how this tool works, the orthogonal triad e.g. {e1, e2, e3}, the
Cartesian basis, is introduced in a three-dimensional space. The unit basis {e1, e2, e3} is
indicated by

e1 =

1
0
0

 , e2 =

0
1
0

 , and e3

0
0
1

 . (2.13)

Thus, an arbitrary vector v in R3 is expressed uniquely in terms of the components vi in the
given basis as

v = v1e1 + v2e2 + v3e3 =
3∑
i=1

viei. (2.14)

By using the summation convention of Einstein, we have

v =
3∑
i=1

viei = viei. (2.15)

A second-order tensor can be expressed in terms of its components Aij and the basis vectors
ei as

A =
∑
i,j

Aijei ⊗ ej = Aijeiej, (2.16)

where ⊗ is a dyadic product. The trace of a tensor A is defined as tr(A) =
∑
i

Aii. In the

similar way, a fourth-order tensor is also written as

C =
∑
i,j,k,l

Cijklei ⊗ ej ⊗ ek ⊗ el = Cijkleiejekel, (2.17)

where i, j, k, l = (1, 2, 3).



8 2 Mathematical and mechanical fundamentals

2.1.2 Vector and tensor calculus

Transpose, symmetric and skew tensors

The transpose tensor of a tensor field T = Tijeiej , denoted by T T, is a tensor, its compo-
nents are determined by Tji. We have

T T = Tjieiej. (2.18)

Tensor, T fulfills the following rule

Tu · v = u · T Tv, (2.19)

where u and v are vectors belonging to Ω ⊂ R3.

The tensor T is called a symmetric tensor when T = T T. When the condition Tij = −Tji
is satisfied, the tensor T is called as a skew tensor.

Products

A second-order tensor T multiplied by a scalar α gives a second-order tensor, whose com-
ponents are computed by multiplying every single component of the tensor T with the scalar

αT =


αT11 αT12 · · · αT1n

αT21 αT22 · · · αT2n
...

...
...

...
αTn1 αTn2 · · · αTnn

 .

(2.20)

The dyadic product

The dyadic product between two vectors x and y is defined as

x⊗ y =

x1

x2

x3

⊗
y1

y2

y3

 =

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

 .

Gradient Operators

In R3, the Nabla operator is defined as

∇ =
∂

∂x1

e1 +
∂

∂x2

e2 +
∂

∂x3

e3 =
∂

∂xi
ei, (2.21)

In general, the Nabla operator is∇ = (∂/∂x1, ∂/∂x2, · · · , ∂/∂xn)T. Then gradient operator
of a scalar function f is denoted as∇f or gradf . Applying the gradient definition to a scalar
field f = f(x1, x2, · · · , xn) reads

∇f =
∂f

∂x1

e1 +
∂f

∂x2

e2 + · · ·+ ∂f

∂xn
en. (2.22)
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With a vector field F , F = Fiei, and Fi = Fi(x1, · · · , xn), where i = 1, · · · , n, its gradient
is a second-order tensor as

∇F =


∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn
∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn
...

... · · · ...
∂Fm

∂x1
∂Fm

∂x2
· · · ∂Fm

∂xn

 .
In index-notation, the gradient of a vector F has the following ansatz

∇F = Fi,jeiej, (2.23)

where Fi,j is the derivative of the components Fi with respect to xj , i.e. Fi,j = ∂Fi/∂xj .
The gradient of a tensor T is defined as

∇T = Tij,keiejek, (2.24)

where Tij,k is the derivative of the components Tij with respect to xk.

Divergence Operators

The divergence of a vector field F , denoted as∇ · F or divF is calculated as

∇ · F = divF =
∂F1

∂x1

+
∂F2

∂x2

+ · · ·+ ∂Fn
∂xn

. (2.25)

This operator is rewritten as

∇ · F = divF = Fi,i =
∂Fi
∂xi

. (2.26)

In general, the divergence of an arbitrary tensor T , ∇ · T , is defined as a dot product of a
Nabla operator and the tensor by

∇ · T = divT = Tij,jei. (2.27)

Special Tensors

Here some special tensors are introduced. Let us assume to work in the n-dimensional space
Rn. The basis is composed of n orthogonal vectors, ei = {e1, · · · , en}. This set also fulfills
the condition

ei · ej = δij, (2.28)

where

δij =

{
1 if i = j

0 if i 6= j

δij is the Kronecker delta. The unit second-order tensor has its components given by the
Kronecker delta δij .
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Lagrange Method

The Lagrange multipliers method is a strong tool which helps us to solve a problem to max-
imize or minimize objective function with constraints. This method is based on considering
critical points. Some examples are now discussed to clarify and understand this method. For
example, in Rn, we need to maximize (or minimize) a function F (x) subject to the equality
constraints gi(x) = 0, where x = {x1, x2, · · · , xn}T. Here the number of constraints is m.
Then the problem is written as

F (x)→ min
x
, (2.29)

s.t gi(x) = 0. (2.30)

The following steps should be done to obtain the solution after establishing the problem,

1. Construct the Lagrange function L,

2. Calculate the gradient of the Lagrange function, ∇L,

3. Solve the equations∇L = 0 to get the stationary points.

The Lagrange function is defined as follows

L(x,λ) = F (x) +
m∑
1

λigi(x), (2.31)

where λi are called Lagrange multipliers. The points satisfying the condition ∇L = 0 are
called critical points.

The Karush Kuhn Tucker (KKT) conditions (the Kuhn Tucker conditions)

In the Lagrange method, only equality constraints are considered, Karush Kuhn Tucker
(KKT) conditions are used to deal with inequality constraints. Let us consider the following
problem which minimizes a function F (x) subject to gi(x) ≤ 0 and hj(x) = 0, the number
of constraints of g and h are m and l, respectively. The problem is built as

F (x)→ min
x
, (2.32)

s.t gi(x) ≤ 0, (2.33)
hj(x) = 0. (2.34)

The Lagrange function has the following form

L(x,λ,µ) = F (x) +
l∑
1

λjhj +
m∑
1

µigi, (2.35)

where the Kuhn Tucker conditions are given as

µi ≥ 0 for all i = 1, · · · ,m, (2.36)
µigi = 0 for all i = 1, · · · ,m. (2.37)
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The chain rule

Let us consider a functional F depending on a function f . The function f itself is controlled
by x ∈ Ω in the vector space V ⊂ R.

dF

dx
=
dF

df

df

dx
. (2.38)

In general, in Rn with x = (x1, x2, · · · , xn)T, we have

dF

dx
=
dF

df

∂f

∂x1

+
dF

df

∂f

∂x2

+ · · ·+ dF

df

∂f

∂xn
. (2.39)

The divergence theorem

This theory is known as Gauss’s theorem. Let us consider a closed region B with its surface
or its boundary ∂B. A scalar field λ, a vector field v, and a tensor field T are considered
in this region. The divergence theorem shows the relationship between the volume integral
over B,

∫
B dV , and the surface integral on the boundary ∂B,

∫
∂B dA, divergence theorem

are given by∫
B
∇λdV =

∫
∂B
λndA, (2.40)∫

B
∇ · vdV =

∫
∂B
vndA, and (2.41)∫

B
∇ · TdV =

∫
∂B
TndA, (2.42)

where n is the outward unit normal vector of the boundary ∂B.

2.2 Continuum mechanics

In modelling materials, continuum mechanics mainly considers continuous masses. When
materials are under certain loads, physical behaviors of materials can be observed. Contin-
uum mechanics will help engineers to understand these behaviors by mathematical models.
Moreover, to predict the material responses is a huge interest in the field of engineering. As
we already knew, continuum mechanics deals with the dynamics of materials. Therefore,
first let us introduce the displacement of an object as a continuum. Then the definition of
strain tensor and stress tensor as well as their relationship are given. The next important part
in continuum mechanics are the mass conservation and the constitutive law. More detailed
information can be found in [Chadwick, 1999; Chou and Pagano, 1992].

2.2.1 Displacement and strain

In order to understand the mechanical behavior of materials, we need to build a mathematical
model from the physical phenomenon. Basing on the classical continuum theory [Chadwick,
1999], a material body is considered as a continuum body. This body is an ensemble points,
distributed continuously in space. Let us consider a body Ω0 in R3 and its surface ∂Ω0. We
will discuss about its particles. The motion of this body is also characterized by the motion
of particles. In order to discuss the motion of every material point, we define a Cartesian
coordinate system, constructed by a basis {e1, e2, e3} and the fixed origin 0. Therefore,
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the position of a point P, given by x in space, in the undeformed (original) configuration is
expressed in terms of the components of the basis as

x = x1e1 + x2e2 + x3e3. (2.43)

Under the external actions, e.g. forces, heating, the body is deformed. The deformed body
is denoted as Ω. In the deformed (current) configuration, the position of the material point
Q is determined by the vector x̄ as

x̄ = x̄1e1 + x̄2e2 + x̄3e3. (2.44)

The difference between the vector x and x̄ is

ui = x̄i − xi, i = 1, 2, 3. (2.45)

Collection of all ui will be defined as u. This vector is called the displacement vector. As
can be seen in Figure 2.13, a mapping illustrates the deformation mapping, φ : Ω0(R3) →
Ω(R3). This mapping transfers x to φ(x). In an another expression, x̄ = φ(x). Then the
displacement is rewritten in terms of φ and x as

u = x̄− x = φ(x)− x. (2.46)

Figure 2.1: Deformed and undeformed configuration.

An infinitesimal line segment dx is transferred into dx̄ by

dx =
∂x̄

∂x
· dx̄ = F · dx̄, (2.47)

where F is called the deformation gradient tensor and F = ∇φ. The symmetric small
strains is defined as

ε :=
1

2
(∇u+ u∇) =

1

2
(∇u+ (∇u)T ). (2.48)
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2.2.2 Force and stress

This part is devoted to discussing the forces which cause bodies to deform. Let us consider
an arbitrary body Ω with the surface ∂Ω. This surface is divided into two parts as

∂Ω = ∂Ωu ∪ ∂Ωt,

where ∂Ωu and ∂Ωt are the surfaces on which surface forces and prescribed displacements
are applied, respectively. These surfaces will be discussed later. In general, external forces,
which will make this body to move, consist of two specific types, body forces and surface
forces. The body forces are denoted by q, q(x) = qi(x)ei, x ∈ Ω.
These forces (e.g. gravitational forces, electromagnetic forces) are continuously distributed
in the whole body Ω. Surface forces are denoted by p, these forces are applied on ∂Ωt,

p(x,n) = pi(x,n)ei, x ∈ ∂Ωt. (2.49)

When the body is moved, reactions in the body will be created. These reactions are called
internal forces. Now let us cut a body, an infinitesimal cube around the material point,
we see an internal stress tensor or vector t. As depicted in Figure 2.3, this force acts on
an infinitesimal area element dA. With the geometry in the form of a cube, there are six
normal vectors corresponding to six cut areas. Thus we also have six traction vectors ti. By
collecting all terms ti, a second-order tensor t is obtained. Then the Cauchy stress tensor σ
is defined as

σ · n = t, (2.50)

where n = (n1,n2,n3,−n1,−n2,−n3)T, here ni is the unit normal vector to the plan i
which is created by two basic vectors ej and ek subject to the condition i 6= j 6= k. Based
on Cauchy theorem which postulates of a traction vector t on an arbitrary cross section of
a material body. The traction vector is defined as the ratio of the force ∆f acting on the
section and the cross-sectional area dA, when the area approaches zero. Thus the traction
vector is

t := limdA−>0
∆f

dA
. (2.51)

In the index notation, traction vector’s component is

tj = tji .ei, (2.52)

where tj is the traction vector for the plane j. Thus, the index form of the stress tensor is
given

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (2.53)
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Figure 2.2: Stress response.

Figure 2.3: Relationship between traction and stress.
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2.2.3 Conservation of mass

In the undeformed configuration, the mass of a body Ω0 ⊂ R3 is denoted as m. The conser-
vation of mass postulates that mass can neither be created nor destroyed. Mass is a constant
during deformation in the absence of sinks and source for mass. As mathematical expres-
sion, this law has the following form

m =

∫
Ω0

ρ(x, t)dv = const, (2.54)

where ρ(x, t) is the mass density in the original configuration and x is an arbitrary point of
the body Ω0. This law yields that the rate of the mass (the evolution of the mass) is zero as

ṁ = 0. (2.55)

This rule also indicates that∫
Ω0

ρ(x, t)dv =

∫
Ω

ρ̄(x̄, t)dv̄, (2.56)

with ρ̄(x̄, t) representing the mass density of the deformed body in the current configuration.
The relationship between dv and dv̄ is given as

dv̄ = dvJ, (2.57)

here J is calculated by J = delF . Equation (2.56) is rewritten as∫
Ω

(ρ̄(x̄, t)− ρ(x, t)J−1)dv̄ = 0 ∀x, (2.58)

therefore,

ρ̄ = ρJ−1. (2.59)

Because the mass density in the original configuration is a function of the space, independent
of time, this law is expressed as follows

˙̄ρ+ ρ̄div ˙̄x = 0. (2.60)

This equation will be used in our model in the next part.

2.2.4 Constitutive equations

The link or the relationship between the strain tensor and the stress tensor is called a consti-
tutive law which is expressed by a mathematical equation. It is also the aim of a mathemat-
ical model to describe the physical behavior of the material body. In this part, first of all,
the general definitions concerning the constitutive equations will be discussed, then some
simple examples of rheological models for elasticity, plasticity, and viscoplasticity will be
introduced.

By observing a tensile experiment, the change in stress-strain relationship will be investi-
gated step by step. Let us consider a simple uniaxial test for steel, a stress-strain relationship
is depicted in Figure 2.4. As can be seen in Figure 2.4, this test is load-controlled. It can be
illustrated in this Figure 2.4, from point O to point A, this is an elastic part and is a linear
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curve. When we increase the load in this part, the stress-strain curve behaves linearly with
the proportional factor E (Young’s modulus). In this part, if a material body is unloaded, the
body will return to point O or the train is vanished. This part is also called the reversible
part. In another expression, the initial state can be recovered by unloading. After the point
A, if the load is continuously loaded, the linear relationship doesn’t exist anymore. The
plastic flow starts to occur. Then, we call A the yield point and the stress at point A is called
the yield stress σy. After point A, the material is continued to exhibit the plastic flow before
fracture. Before the fracture part, if the load is unloaded at point B, the stress-strain curve
will be the line BC. This line is parallel to the line OA. In contrast to point O, the strain of
point C is different from zero. Here let us remind again that in our work, only infinitesimal
strains or small strains are considered. We still have the irreversible plastic strain εp. It
means that the plastic deformation is considered as the permanent deformation. As can be
seen in Figure 2.4, the total strain has two components, including elastic strain and plastic
strain by

ε = εe + εp. (2.61)

In the elastic theory, the constitutive equation for linear elasticity is characterized by Hooke’s
law as

σ = C : εe. (2.62)

where C is the elasticity tensor. The fourth-order elasticity tensor is given by

C = Cijklei ⊗ ej ⊗ ek ⊗ el. (2.63)

For isotropic materials, by using two independent material parameters, e.g. the Lame’ elastic
moduli µ and λ, the elasticity tensor can be expressed as follows

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.64)

as a result, the constitutive law for linear elasticity reduces to

σ = λtr(ε)I + 2µε. (2.65)

In index-notation, this law reads

σij = λεkkδij + 2µεij. (2.66)

Instead of using two parameters, the Lame’ constants µ and λ, we employ other parameters,
for example, the Young’s modulus E and the Poisson's ration ν. Three terms, Young’s
modulus E, Poisson’s ratio ν and the bulk modulus, K are related to others by

E = ν
3λ+ 2ν

λ+ ν
, ν =

λ

2(λ+ ν)
, K = λ+

2

3
ν. (2.67)
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Figure 2.4: Stress strain curve.

In many engineering applications, it is easier to use these quantities (the stress tensor and
the strain tensor) as vectors than as tensors. Let us introduce the Voigt notation for stresses
and strains, then two terms are given by

σ̄ = (σ11, σ22, σ33, σ12, σ23, σ31)T, (2.68)

ε̄e = (εe
11, ε

e
22, ε

e
33, ε

e
12, ε

e
23, ε

e
31)T. (2.69)

Then the constitutive equation for linear elasticity is expressed as

σ̄ = C · ε̄e, (2.70)

the elasticity tensor has the following form

C =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2v

v
0 0

0 0 0 0 0 1−2v
v

0
0 0 0 0 0 0 1−2v

v

 (2.71)
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Another direction to obtain a constitutive law indirectly from an elastic energy potential.
The free energy for an elastic material is

Ψ(ε) =
1

2
εT

e : C : εT
e . (2.72)

One possibility of the energy potential Ψ is the Helmholtz free energy, the stored elastic
energy at a given point of the material body. This energy can be derived from experimental
results, other phenomenological approaches. Since the restrict of this work is only for small
deformation, then the derivative of the energy potential with respect to elastic strain εe is
stress tensor as follows Moreover, the free energy Ψ for elastic materials can be derived in
terms of ε. The evaluation of the second derivative of the free energy at ε = 0 is obviously
a constant which is called elasticity tensor and denoted as

C =
∂2Ψ

∂ε2
|ε=0 . (2.73)

Since stress σ and strain ε are both symmetric, respectively, the elastic constant C is also a
symmetry tensor as

Cijkl = Cijlk and Cijkl = Cjikl. (2.74)

Now the rheological models for some specific cases will be discussed.

Elasticity

The most simple case is elasticity (linear stress-strain dependence), the rheological model
composes of a spring, as illustrated in Figure 2.5. When the spring is loaded with an in-
creasing load, the strain increases as well. If the device is unloaded, the strain vanishes
completely.

Figure 2.5: Rheological model for elasticity.

In this case, the total strain ε is equal to εe. Then the constitutive law for the most simple
case is computed as

σ = λtr(ε)I + 2µε. (2.75)

In many texts, this case is called an ideal material behavior.
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Plasticity

Figure 2.6: Rheological model for plasticity.

A system includes a friction device and a spring is the rheological model for elasto-plasticity,
as can be seen in Figure 2.6. When the load is small and doesn’t reach σy, strains only occur
in the spring.

Viscoelasticity

When materials behave viscous as well as elastic characteristics under deformation, it will
be called viscoelasticity. The viscous components can be modeled as dashpots. The stress
and strain rate relationship can be given as

σ = µ
dε

dt
(2.76)

where µ is the viscosity of the material. The Maxwell model is a rheological model for
viscoelasticity. This model composes of a spring and a dashpot.

Figure 2.7: Rheological model for viscoelasticity.

Viscoplasticity

In continuum mechanics, a theory explaining the rate-dependent behavior of solid materials
is considered as viscoplasticity. It means that the deformation of solids is dependent on the
rate of the load which is applied on materials. As discussed above, the behavior of solids
in viscoplasticity is also plastic deformation. The material experiences unrecoverable de-
formations when a load level is reached. Moreover, under the applied load, the viscoplastic
material models has not only permanent deformations but also a creep flow as a function of
time. Hookean spring elements are used to demonstrate the elastic response of viscoplastic
materials in one-dimension. As same as in viscoelasticity, to illustrate the rate-dependence,
a nonlinear dashpot element is utilized. By adding a sliding frictional element, plasticity can
be taken into account as depicted in Figure 2.8.
While plasticity and elasticity are often used for solid materials, viscosity is deployed in flu-
ids. Similar to plasticity, viscosity is hold in materials whose behaviors are time dependent.
As can be seen in Figure 2.9, an example of the rheological model for viscosity can be a
compose of a damper. As same as in the rheological model for plasticity, the damper will
need the coefficient corresponding to the viscosity.



20 2 Mathematical and mechanical fundamentals

Figure 2.8: Rheological model for viscoplasticity.

Viscosity

Figure 2.9: Rheological model for viscosity.

2.3 Polycrystalline materials

The previous parts were concerned primarily with the mathematical fundamentals and me-
chanical fundamentals. The present discussion is devoted to the structure of materials.
Specifically, in the solid state, metals are formed by an assemble of atoms. As a result,
first how atoms are arranged in materials will be discussed. Within this framework, con-
cepts of crystallinity and noncrystallinity are introduced. Single crystals, polycrystalline
materials, and noncrystalline materials are considered. Moreover, grain boundaries and de-
fects are components of polycrystals are presented. The final section of this chapter briefly
describes the phenomena for which we will build the mathematical models for polycrys-
talline materials. This is dynamic recrystallization. In order to get better understanding
about this phenomena, some additive concepts are discussed as well. These concepts are
recrystallization, static recrystallization and creep.

2.3.1 Crystals

The arrangement of atoms forms metals. Now let us define a crystalline solid or a crystal.
In the microscopic structure, a crystal composes of constituents (such as atoms, molecules,
or ions) which are arranged in a periodic way or structure way. These constituents will
be situated in a repeating pattern. This repeating group creates a unit cell, the smallest
structure block. The unit cell also defines the crystal structure by virtue of its geometry



2.3 Polycrystalline materials 21

and the atom positions within. Crystalline materials have different properties since they
have different the unit cells, or the crystal structures. Based on the organization of atoms,
the metallic crystal structure will be classified into three most common groups. They are the
face-centered cubic crystal structure (FCC), the body-centered cubic crystal structure (BCC)
and hexagonal chose-packed crystal structure (HCP). The below figures will illustrate these
different types of crystal structures. As can be seen in Figure 2.10, in an (FCC) crystal
structure, the atoms are located at each of the corners as well as the centers of all the cube
faces while in a (BCC) structure, atoms are located at all eight corners and a single atom
at the cube center. Besides the unit cell with a cubic symmetry, a hexagonal is also used
as a unit cell. In Figure 2.10, an (HCP) unit cell is shown. Each face on the top and at the
bottom has six atoms. Another plane that provides three additional atoms to the unit cell is
situated between the top and bottom planes. The atoms in this midplane have the nearest
neighbors atoms in both of the two adjacent planes. The equivalent of six atoms is contained
in each unit cell; one-sixth of each of the 12 top and bottom face corner atoms, one-half of
each of the 2 center face atoms, and all 3 midplane interior atoms. Six lattice parameters:
the three edge lengths a1, a2, and a3, and the three angles between three edges α, β, and
γ will provide the geometry of the unit cell geometry completely. These parameters can
be illustrated in Figure 2.12. These are considered as the lattice parameters of a crystal
structure. As a result, it exists 14 types of called lattices. The detailed information of this
lattices, the readers can refer to [Callister, 2007]. A crystallite is a small or even microscopic
crystal which forms. Crystallites are also referred to as grains. In Figure 2.12, amorphous
materials, such as glass and many polymers, are non-crystalline and do not display any
structures as their constituents are not arranged in an ordered manner. The process of crystal
formation via mechanisms of crystal growth is called crystallization or solidification. Each
crystal has its crystallographic orientation.

(a) BCC (b) FCC (c) HCP
Figure 2.10: Metallic crystal structures.
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2.3.2 Polycrystals

Polycrystalline material are comprised of many small crystals or grains with different ori-
entations joined at interfaces called grain boundaries. The term crystallography is used
to discuss or research about crystals and crystal formation. Crystals have random crystal-
lographic orientations, as indicated by the square grids which are represented by ”balls”.
Microstructures have both geometric and crystallographic characteristics which influence
their properties.

Figure 2.11: Lattice parameters.

(a) Crystalline (b) Polycrystalline (c) Amorphous
Figure 2.12: Different degrees of ordered structures.

2.3.3 Defects

In the reality, it is impossible to have perfect crystalline materials. Actually, materials always
contain a huge number of defects. Experiments also show this problem. The purpose of this



2.3 Polycrystalline materials 23

part is to investigate defects. As we maybe know, defects will make a difference to the
relationship between stress rate and strain rate as well as deformation mechanisms. Due to
this affect, now let us classify the defects. Three groups of defects exist. They are point
defects, line defects, and two-dimensional defects. Then the details and examples of these
defects will be discussed.

(*) Point defects: the simplest point defects are vacancies. This defect is because of a
missing atom. Vacancies exist in all crystalline solids. Deformation by transport of
vacancies, ions or atoms in the crystal structure is known as diffusion creep.

(**) Line defects: lines along which the arrangement of atoms at the whole row in a solid
is abnormal. As a result, the irregularity in spacing is most severe along a line called
the line of dislocation. An example of line defects is a dislocation. This defect can
weaken or strengthen solids. The phenomena when the dislocations are propagated
via the crystal structure is known as dislocation glide and dislocation creep.

(***) Two-dimensional defects: or surface defects, these defects occur at the boundary be-
tween two grains, or small crystals, within a polycrystal. Therefore, grain boundaries
are two-dimensional defects. At certain conditions, grain centers exhibit relative mo-
tion. This deformation mechanism is known as grain boundary sliding. Other types
of boundaries, along which the transport can occur, are phase boundaries, pores and
particularly for calcite twin boundaries.

All three types of defects will affect microstructural characteristics, such as dynamic recrys-
tallization which will be discussed in the following parts as well. Some of these defects are
illustrated in Figure 2.13.

(a) Vacancies (b) Dislocations (c) Boundaries
Figure 2.13: Three types of defects.

2.3.4 Grain boundaries

As discussed in the previous parts, an assemble of many grains or many crystals is poly-
crystalline material. Therefore, the interaction among grains plays an important role in
understanding the microstructure. Thus, now the study of grain boundaries is conducted
in this part. First, the definition of grain boundaries is presented. A grain boundary is an
interfacial defect. Two grains or crystals with two different crystallographic orientations are
separated by the interface which is called the grain boundary [Callister, 2007]. Moreover, if
the grain size is smaller and finer, more grain boundaries are constructed. Grain boundaries
also prevent the motion of dislocations in a material, so reducing crystallite size is a com-
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mon way to improve mechanical strength. This can be seen from the Hall-Petch equation, a
general relationship between mechanical properties and grain size is given by

σy = σ0 + kd−1/2, (2.77)

where σy, k, and d are the yield strength, proportionality factor and grain size, respectively.
σ0 is material dependent intrinsic strength [Hirth, 1972].

Single crystal, only one grain, there is no grain boundaries. Deformation in metals stems
mainly from dislocation motion and grain boundaries. However, grain boundaries stop dis-
locations from moving. Hence, the presence of more grain boundaries (finer grain size) will
increase the resistance to deformation and enhance the strength. They are also important to
many mechanisms of creep. Within the boundary region, each grain has its own crystallo-
graphic orientation, then there is some atomic mismatch in a transition from the crystalline
orientation of one grain to that of an adjacent one. As a result, between two neighboring
grains, there will be different degrees of crystallographic misalignment. Based on how large
these degrees are, the grain boundaries will be sorted into two smaller groups: high angle
grain boundaries (HAGBs) and low angle grain boundaries (LAGBs). LAGBs are used for
boundaries with a mis-orientation smaller than around 15 degrees, in contrast to LAGBs,
HAGBs are counterparts with the mis-orientation between the two grains larger than around
11 degrees. However, there are ’special boundaries’ at particular orientations whose interfa-
cial energies are notably lower than those of general HAGBs.

Figure 2.14: Tilt boundary.
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They are special boundaries such as a tilt boundary and a twist boundary which are part of
the low angle grain boundaries. As illustrated in Figure 2.14, the tilt boundary is depicted.
This is the simplest boundary. Employing external force makes a single grain bent. This
phenomenon will form the tilt boundary. The energy associated with the elastic bending of
the lattice can be reduced by inserting a dislocation. This is essentially a half-plane of atoms
acting like a wedge, which creates a permanent misorientation between the two sides. As
the grain is bent further, more and more dislocations must be introduced to accommodate
the deformation resulting in a growing wall of dislocations a low-angle boundary. The grain
can now is divided into two sub-grains with different orientation. However, two grains are
still related together crystallography. An alternative is a twist boundary where the mis-
orientation occurs around an axis, perpendicular to the boundary plane. Two groups of
screw dislocation incorporating each other creates the twist boundary. These concepts of
tilt and twist boundaries represent somewhat idealized cases. In reality, to create the best
fit between the adjacent grains, the majority of boundaries are formed by the mixture of
various type of boundaries. An another special boundary is twin boundary as in Figure
2.15. If the dislocations in the boundary remain isolated and distinct, the boundary can
be considered to be low-angle. If deformation continues, there is an increase in density
of dislocations, then the space between neighboring dislocations is decreased. Eventually,
the cores of the dislocations will begin to overlap and the ordered nature of the boundary
will begin to break down. At this point, the boundary can be considered to be high-angle
and the original grain to have separated into two entirely separate grains. In comparison to
LAGBs, high-angle boundaries are considerably more disordered, with large areas of poor
fit and a comparatively open structure. Indeed, they were originally thought to be some
form of an amorphous or even liquid layer between the grains. Recovery can be defined
as all annealing processes occurring in deformed materials that occur without the migration
of a high angle grain boundary. Grain coarsening can, in turn, be defined as processes
involving the migration of grain boundaries when the driving force for migration is solely
the reduction of the grain boundary area itself [Callister, 2007].

Figure 2.15: Twin boundary.
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2.4 Recrystallization

In material science, the aim of the engineers is to find the properties of metallic materials.
However, some properties are dependent largely on the structure of grain of microstructure
in materials. Based on the grain microstructure, it is possible to predict the material prop-
erties by controlling and getting benefits of designed microstructures. Thus, it is vital to
control advantage aspects of the grain microstructure in practical applications. Properties
influenced by the grain structure contain strength, ductility, and resistance to creep defor-
mation which are important quantities. Let us mention again that grain boundaries are one
of the most important aspects of the grain microstructure. The reduction of the grain size
yields an increasing amount of grain boundaries in the microstructure. The internally stored
energy in the material will be increased by plastic deformation which is mostly because of
the dislocation creation and dislocation rearrangement. Grain boundaries prevent the mo-
tion of dislocation motion and the accumulation of dislocation at the grain boundaries. This
problem also affects the macroscopic deformation hardening of the material. Reducing the
weight of products as well as controlling, these jobs can be done by customizing material
properties reasonably. One of the main processes to develop or adjust the structure of grains
at the micro is recrystallization. Firstly let us define recrystallization. Recrystallization is a
process which rearranges grain boundaries in polycrystalline aggregates [Hackl and Renner,
2013]. In recrystallization, in order to reduce the stored energy in the material, a new grain
can be grown up by comsuming the surrounding cold-worked microstructure. The tem-
perature as well as the rate of deformation will impact on the progress of recrystallization
[material]. Static recrystallization and dynamic recrystallization are two different kinds of
recrystallization. As mentioned before, recrystallization stems from effect of high tempera-
ture and plastic deformation. Therefore, static recrystallization is defined as a process which
can be taken place by only high temperature without any deformation. At high temperature,
it is a good condition for grain boundaries to migrate; this will reduce the internal energy.
On the contrary, when the recrystallization happens together with an inelastic deformation,
it is called dynamic or syntectonic recrystallization [Hackl and Renner, 2013].

2.4.1 Static recrystallization

Modifying the microstructure without deformation is known as static recrystallization. Now
let us discuss more static recrystallization. Static recrystallization consists mainly of two
processes: grain boundary migration (GBM) and grain boundary area reduction (GBAR).
The minimum value of internal energy of the system obtained by the migration process of
grain boundaries is called as grain boundary migration. It is handled by defect density gra-
dients. Grain boundary migration refers to the movement of the boundary separating two
grains. The second term is controlled by the boundary energy. Static (GBM) recrystal-
lization occurs in a similar way as (GBM) during deformation. It produces irregular grain
boundaries and some grains will be consumed whereas others will grow. During (GBAR)
the surface area of grain boundaries is reduced. This also reduces the internal free energy.
According to the theory, (GBAR) can happen during deformation, however, in the reality, it
is more dominant after deformation terminated. Static recrystallization induced by heating
of a previously deformed rock is known as annealing. It involves both (GBM) and (GBAR)
reduction [Barnhoorn, 2003]. For more information regarding this term, readers can have a
look [Humphreys and Hatherly, 2004].
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High temperature

Figure 2.16: Recovery.

Deformation

Figure 2.17: Dynamic recrystallization.

2.4.2 Dynamic recrystallization

At low to intermediate temperature, grain size is strongly effected by the kinetics of inelas-
tic deformation. The organization of partial individual are dependent on stationary grain
boundaries. Consequently, when sinks, sources, or obstacles are employed, boundaries
make dislocation move. After that, gradients in dislocation density may trigger off grain
boundary migration. Then the nucleation process of new grains takes place at the area of
very high dislocation density, which leads to recovery.

In [Barnhoorn, 2003], dislocation creep is the dominant mechanism making the number of
dislocation in materials raise. This progressive makes dislocations tangle. It prevents grains
form moving and deforming and the internal energy increases as well. As mentioned before,
boundary is the place where two grains contact with each other. The part of grains belongs to
boundary is called subgrain boundaries. Each subgrain boundary has small misorientation.
During deformation, the dislocations are increased, this leads to an increase of dislocations
entering subgrain boundaries. This makes misorientation larger. When the misorientation
reaches between 10-15 degree, a new grain boundary is formed. The process of the for-

Figure 2.18: Grain size reduction by dynamic recrystallization (from Barnhoorn, 2003). Im-
ages reprinted by permission.
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Figure 2.19: Dynamic recrystallization.

mation of these new grains from the old grains is called subgrain rotation recrystallization
(SR). SR recrystallization is active when sufficient climb of dislocations occurs so that they
can enter the subgrain boundary.

Another process reducing the number of dislocations in a crystal is the migration of grain
boundaries. When differences in dislocation densities exist between neighbouring grains,
there is a difference in internal energy. The system tries to reach a minimum internal energy
by reorganizing free dislocations in the high-energy grain into lower energy configurations
within the grain boundary. The result is that the boundary moves from the low energy grain
(low dislocation density) towards the high energy grain (high dislocation density). In this
way, the grain boundary migrates slightly at the expense of the highest dislocation density
grain. In accordance with [Humphreys and Hatherly, 2004], dynamic recrystallization is
defined as a combine grain boundary migration and subgrain rotation recrystallization (SR).
Two mechanisms can happen simultaneously or one can dominate than the other. GBM may
also take over from (SR) when a large number of subgrains are formed during deformation.
In [Hackl and Renner, 2013], two significant mechanisms of dynamic recrystallization are
nucleation and grain growth. We call the grains with small dislocation density are the young
grains, and those with large dislocation density are old grains. Young grains have small
energy while old grains have large energy. The details of two mechanisms will be discussed
later. Now let brief introduce three steps of dynamic recrystallization. The first step is an
increase of dislocations from few dislocations to many dislocations by plastic deformation.
The increase of dislocations forces more dislocations move to the grain boundary. At the
grain boundary, a new grain is nucleated by accumulating the dislocation with high energy.
Nucleation process is the second step. Lastly, the new grains are formed and then grow up.
These steps can be shown in Figure 2.19.

2.4.3 Nucleation mechanisms

Plastic deformation increases dislocation density. At a certain time, the number of dislo-
cations can not be larger. At that time, the nucleation process is the next step to from a
new grain by accumulating high energy dislocations and as a result, the material will have
a new structure by self-organization. Nucleation is typically defined to be the process that
calculates the time until a new phase or a new microstructure which is established. Nucle-
ation is dependent mainly on the impurities of the system. This is the criteria to distinguish
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different kinds of nucleation. Nucleation process is categorized into two groups: hetero-
geneous nucleation and homogeneous nucleation. The distinction between them is made
according to the site at which nucleating events occur. If new grains of the new phase nu-
cleate uniformly throughout the parent grains, the nucleation is defined as the homogeneous
nucleation. When new grains are formed at structural inhomogeneities, for example, grain
boundaries, dislocations, and container surfaces, the nucleation process is considered as the
heterogeneous one.

2.4.4 Grain growth

Grain growth is the increase in size of grains (crystallites) in a material at high temperature.
This further reduces the internal energy as well as the total area of the grain boundary. At
high temperatures, the opposite is true since the open, disordered nature of grain boundaries
means that vacancies can diffuse more rapidly down boundaries leading to more rapid Coble
creep. It will be an advantage to have a good knowledge of grain growth to control the mi-
crostructures and then properties of materials in macroscale during deformation. According
to [Humphreys and Hatherly, 2004], grain growth can be categorized into two types: normal
grain growth and abnormal grain growth. The first item is defined when the microstructure
coarsens uniformly. This is a continuous process. Contrary to the normal grain growth,
abnormal grain growth is a discontinuous process, only some grains in the microstructure
increase in length and consume smaller grains. After an initial transient period of growth,
the microstructure reaches a quasi-stationary state in which the grain size distribution has an
invariant form when expressed in terms of the grain size scaled by its mean value, and only
the scale varies with some power of time. Such self-similarity is found for several growth
processes such as particle coarsening or bubble growth (Mullins 1986), making this a chal-
lenging problem for modelers, who are often attracted more by the mathematical intricacies
than the intrinsic importance of grain growth. During abnormal grain growth, which is a
discontinuous process, a few grains in the microstructure grow and consume the matrix of
smaller grains and a bimodal grain size distribution develops. However, eventually, these
large grains impinge and normal grain growth may then resume. picture With a steel bar is
applied by a small strain at high temperatures, then modelling materials by using the lin-
ear elasticity theory is no longer accurate. Then the introduction of time-dependent effects
(creep/relaxation) may be reasonably considered to have a better result.

2.4.5 Creep

Creep is the plastic deformation, time-dependent deformation under a certain applied load.
This deformation often occurs at high temperature. This is the reason why discussing creep
is also important and relevant to this dissertation. The curve of classical creep showing the
dependence of the creep on time is illustrated in Figure ??. This curve is for a tensile test of a
steel bar. The test is controlled by the applied stress. There creep stages are displayed. They
are primary creep, secondary creep, and tertiary creep. Now let us present creep stages. The
primary creep firstly begins at a high strain rate and then reduces the rate with an increasing
time. The strain rate then reaches a minimum and almost considers to be constant. This is
because of work hardening. On the contrary, the secondary creep has a relatively uniform
rate. In some literature, it is called a steady-state creep. In the end, this is tertiary creep
which is accelerated with the creep rate and stops at the same time the material breaks.
Fracture always occurs at the tertiary stage.
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Figure 2.20: Creep strain vs. time.
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Figure 2.21: Applied stress in creep test.
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Figure 2.22: Strain v.s time in creep test.
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Creep mechanisms

There are some creep mechanisms as follows

1. Diffusion creep: for instance, Nabarro-Herring creep.

2. Dislocation creep: this mechanism is managed by the motion of dislocations, it de-
pends more on the applied stress.

The details of each mechanisms are discussed later.

Diffusion creep

The movement of defects through the lattice of a crystal in polycrystalline materials is
caused by applying a large load. This movement will lead the migration of crystalline
defects at the crystal faces along the direction of compression. This migration is called
diffusion creep or the diffusion of vacancies through their crystal lattice. This also yields a
net mass transfer of particles, for instance, atoms, ions or molecules, that shortens the crys-
tal in the direction of maximum compression. This kind of creep leads plastic deformation.
The diffusion creep is more dependent on temperature than on other deformation mecha-
nisms. As a result, at high temperature, this phenomenon usually occurs. Let us mention
two kinds of diffusion mechanisms. They are substitutional diffusion (or vacancy diffusion)
and interstitial diffusion [Callister, 2007]. The previous one occurs at the place where where
atoms can move from one atomic site to another. Once the lattice has any vacancy, the
substitutional diffusion will occur. The interstitial diffusion is the process when this is a
movement of atoms through the atomic sites of the lattice. Another way to categorize the
diffusion creeps, by using how the vacancies are diffused through a crystal. Due to the ex-
istence of grain boundaries in polycrystals, particles may move through the grains and also
along the boundaries. If vacancies move through the crystal (in the material sciences often
called a grain), this is called Herring-Nabarro Creep. Vacancies can move along the grain
boundaries, a mechanism called Coble creep.

• Nabarro-Herring creep: Diffusion through Grain Volume

Transport of atoms through the crystal structure by intracrystalline diffusion is called
Nabarro-Herring creep. Material is transported from high stress to low stresses by
solid-state diffusion through the crystal. Nabarro-Herring creep rate equations typi-
cally have grain size exponents m of 2:

ε̇ =
ADGB

kT

δ

b
(
b

d
)3σ

G
, (2.78)

whereA, D, G, B, K, T, b, G are parameter material, d is grain size and σ is stress
tensor.

• Coble creep: accommodation of strain by diffusion of atoms along the grain bound-
aries is called Coble creep, as illustrated in Figure ??. When the mean grain size is
reduced, diffusion increase due to increases in internal interfaces. Transport of mate-
rial by diffusion from high stress sites to low stress sites occurs not only inside of the
crystals as in Nabarro-Herring creep, but can also occur along the grain boundaries of
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Figure 2.23: Nabarro-Herring creep.

grains. Coble creep can be described by a slightly different constitutive rate equation
from that of Nabarro-Herring creep. Thus, Coble creep is expected to be more dom-
inant with smaller grain sizes. As the stress increases and the temperature decreases,
the rate of solid state diffusion along grain boundaries becomes more intense than in
the bulk of the grains and hence it becomes the determinant of the creep strain. The
following relationship for the creep rate was first obtained by Coble

ε̇ =
ADGB

kT
(
b

d
)2σ

G
, (2.79)

where A, D, G, B, K, T, δ, b, G are parameter material, d is grain size and σ is
stress tensor. To illustrate the creep, the typical creep rate equation is introduced.

Dislocation creep

From the name, dislocation creep, we can guess that this mechanism relates to disloca-
tions. However, the more information how this mechanism depends on dislocation will be
reviewed here. Firstly, dislocation creep is naturally a deformation mechanism in polycrys-
talline materials. Moreover, it connects with the movement of dislocations the crystal lattice
of the material. Thus, dislocation creep is defined as the migration of dislocations within
the lattice generating dissipation, which results in more stability of the microstructure. Dis-
locations migrate with a specific velocity which was estimated by Orowan:

‖ε̇p‖ = χpbρvdis, (2.80)
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Figure 2.24: Coble creep.

here εp, χp and b are the plastic strain, a proportionality constant concerning the fraction
of mobile dislocations, and the Burgers vector, respectively. Let us denote ρ one of the
internal variables, called the dislocation density. Moreover, vdis is the dislocation velocity
which is determined by internal variables. As same as in diffusion creep, this creep leads
plastic deformation as well. However, while diffusion creep is highly sensitive to the high
temperature, the dislocation creep is hugely affected by the differential stress on the ma-
terial. This mechanism will be the dominant mechanism when materials are deformed at
relatively low temperatures. At high temperatures, material experiences mostly migration
of dislocations instead of an increase in dislocation density [Hackl and Renner, 2013]. Some
specific mechanisms belong to dislocation creep are introduced shortly as below. They are
dislocation climb and dislocation glide.

• Dislocation climb
Because of the microstructure of polycrystalline materials, dislocations move out of
the barriers easily to climb to another glide plane to avoid other dislocations. This
phenomena is called dislocation climb. This phenomena is caused by self-spreading
in the lattice at high temperature.

• Dislocation glide
When dislocations move, if the slip plane does not go up or down, the process is
called dislocation glide. Dislocation glide is driven by the shear stress, which should
be higher than a critical value so that dislocations can move.
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Figure 2.25: Applied strain in relaxation
test.
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Figure 2.26: Stress v.s time in relaxation

test.

2.4.6 Relaxation

Relaxation is the stress response due to a strain constant over a long range of time. In vis-
coplastic materials, relaxation tests demonstrate the stress relaxation in uniaxial loading at
a constant strain. In fact, these tests characterize the viscosity and can be used to determine
the relation which exists between the stress and the rate of viscoplastic strain. Therefore, the
relaxation curve can be used to determine the rate of viscoplastic strain and hence the vis-
cosity of the dashpot in a one-dimensional viscoplastic material model. The residual value
that is reached when the stress has plateaued at the end of a relaxation test corresponds to
the upper limit of elasticity. For some materials such as rock salt, such an upper limit of
elasticity occurs at a very small value of stress and relaxation tests can be continued for
more than a year without any observable plateau in the stress.

2.5 General variational approach

The success of a constitutive model describing the behaviour of a particular material depends
critically on the choice of an appropriate set of internal variables. No plausible model will
be general enough to describe the response of a material for all processes. If strain becomes
larger, however, linear elasticity may no longer capture the observed response satisfactorily.
In this case, a plasticity theory may be more appropriate. The main key of the constitu-
tive model is the specific constitutive equation which characterizes the relationship between
stress and strain. In reality, this equation will be more complicated than in the theory of
elasticity where Hooke’s law is employed. This complication is due to the large deforma-
tion and the range of materials in which the change in physical properties will affect the
macroscopic material behavior. The purpose of this research is to simulate the dynamic re-
crystallization in polycrystalline materials, a general discussion of mechanical modelling of
inelastic materials will be presented in this part. Since the importance of internal variables,
first of all, let us introduce the set of internal variables as

x = {xk}, (2.81)
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where k = 1, · · · , n, n is the number of internal variables. The external variables of the
system are denoted as

X = {Xk}. (2.82)

Internal variables and external variables might be scalars, vectors, and tensors. In our case,
external variable is ε, the total strain. The combination of internal variables and external
variables is addressed by

z = z(X,x). (2.83)

Taking the derivative of internal variables and external variables with respect to time pro-
vides information of the evolution of variables by

V = Ẋ, v = ẋ. (2.84)

Then the next step is define the specific Helmholtz free energy ψ(z). The derivative of this
energy will yield

ψ̇ =
∂ψ

∂X
· ∂X
∂t

+
∂ψ

∂x
· ∂x
∂t
. (2.85)

This equation is rewritten by using V , and dissipation function ∆

ψ̇ =
∂ψ

∂X
· V −∆, (2.86)

where the specific dissipation ∆ has the following ansatz

∆ =
n∑
i=1

(− ∂ψ
∂xi

) · vi =
n∑
i=1

∆i(z,vi). (2.87)

From this equation, the dissipation of the system is split into different dissipation process
corresponding to each internal variable. Moreover, assumptions concerning the constraints
of different kinds of dissipation are given by

∆i(z,vi) = ∆̂i(z,vi).

Using the variational principle, the optimization problem is now formulated as

ψ̇ → min
vi
, (2.88)

s.t ∆i = ∆̂i. (2.89)

Employing the principle of maximum dissipation (PMD) for the problem (2.88) [Hackl and
Fischer, 2008], Lagrange function with Lagrange multipliers λi, i = 1, · · · , n is built as

L = ψ̇ +
n∑
i=1

λi(∆i − ∆̂i), (2.90)

using the stationarity conditions, ∂L/∂vi = 0 yields

∆̂i =
λi

1− λi
∂∆̂

∂vi
· vi. (2.91)
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Lastly, the implicit evolution equations for vi in terms of the observable variables z is

vi = f(X,v). (2.92)

We then have the general constitutive law
ψ = ψ(X,x),

σ = ∂ψ
∂ε

= σ(X,x),

vi = f(X,v).

(2.93)

The time is discretized into [t0, t1, · · · , tn]. The general constitutive law will be performed
implicitly. Let us consider a general interval [tk, tk+1]. The values of xk,Xk are given, the
prescribed incremental external variables ∆X for internal variables are given as well. The
main requirement of modeling a physical phenomena is to build a mathematical model by
introducing the constitutive equation for inelastic materials. As a result, that the incremental
stress-strain function reads

σn+1 = σ(Xn+1,xn+1). (2.94)

Consequently, consistent tangent modulus for numerical integration algorithms is derived as

D =
∂σ

∂εn+1

. (2.95)

For more information relating the numerical treatment for plasticity, readers can refer to
[E. A. de Souza Neto and Owen, 2008].
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3 Mathematical model

The aim of this part is to derive a mathematical model for dynamic recrystallization of poly-
crytalline materials. From the variational framework for deriving microstructure evolution
during inelastic high-temperature deformation, a summary of Hackl-Renner (H-R) model
proposed in [Hackl and Renner, 2013] is first described. From this framework, we estab-
lish the problem at the microscale with the volume constraint. In dynamic recrystallization,
nucleation is the initial process to create a new microstructure. Thus, theories for the nucle-
ation process also need to be discussed in this chapter. Three suggested theories relating to
this term will be derived. At the beginning, only a simple ansatz for this theory is applied.
Deriving from phenomenology, two extended theories are proposed and are then employed
in our problem. For the problem description at the microscale, there models: the original
distribution function, f(D, ρ), the modified distribution function, f̄(D, r), and the extended
counterpart, f̃(s, r), are here investigated. To investigate the reaction of materials in a test,
the problem at the microscale should be linked to the problem at the macroscale. This
chapter will end with the mathematical model of the macroscale. The basic thermodynamic
problem, a general viscoplastic problem, is used at the macroscale in our model.

3.1 Variational approach for dynamic recrystallization

To derive the mathematical framework for dynamic recrystallization, the observable vari-
ables are proposed. To describe the system, the state variables z = z(X,x), where X is
a set of external variables and x collects internal variables. The thermodynamic fluxes are
defined by

V = Ẋ, v = ẋ, (3.1)

where Ẋ , and ẋ are the material time derivative of X , and x, respectively. In our ap-
proach, the set of external variables is X = ε, the total strain, and internal variables are
x = {ρ,D, εp, εd}, where ρ is dislocation density, D is grain size, εp is plastic strain and
εd is dislocation strain. For a polycrystalline aggregate, Hackl and Renner introduced a dis-
tribution function, f(z, t), characterizing individual grains by observable variables. Then
f(z, t)dΩ gives the probability to locate a grain in the subset dΩ ⊂ Ω. The representative
value of a property g (denoted as 〈·〉) is defined as

〈g〉 =

∫
Ω

gf dΩ. (3.2)

Assuming spherical grains with diameter D, the average or representative volume 〈ΠD3/6〉
is calculated as

V =
Π

6

∫
Ω

D3fdΩ. (3.3)

Consequently, the total amount of grains is calculated by

N =

∫
Ω

fdΩ. (3.4)
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The rate of this total amount is determined by the subtraction of the source function h, the
number of grains in nucleation process, and the surface integral amount which goes into or
leaves its boundary ∂Ω. We obtain

Ṅ =

∫
Ω

ḟdΩ =

∫
Ω

hdΩ−
∫
∂Ω

f ż · dA. (3.5)

Employing Gauss’ theorem and the localization theorem yields

ḟ +∇ · (f ż) = h. (3.6)

This equation plays an important role in our research since this differential equation is the
main equation of the microscale problem solved numerically. Within our variational ap-
proach, the evolution equations are obtained by applying and adopting the principle of the
minimum of the dissipation potential (PMDP), so that energy is minimized as well as dis-
sipation is maximized. The formulations of free energy and dissipation are listed. The free
energy of dynamic recrystallization process is obtained from

Ψ =
Π

6
〈D3ψ〉, (3.7)

where ψ is the specific free energy separating as

ψ(D, ρ, εe) = ψe(εe) + ψdis(D, ρ) + ψgb(D). (3.8)

The member energies are given by
ψe(εe) = 1

2
εe : D : εe,

ψdis(D, ρ) = 6γ
D
,

ψgb(D) = µb2ρ,

(3.9)

where ψe is the linear elastic energy, ψgb is the grain boundary energy, and ψdis is the dislo-
cation energy. Other parameters are mentioned in Table 3.1. The total strain of a grain, ε,
is decomposed into the elastic part εe and the inelastic part εi. Then the total strain rate, ε̇,
equals the summation

ε̇ = ε̇i + ε̇e. (3.10)

Moreover, the inelastic strain is also split into two components, one for crystal plasticity, εp,
and one due to transport of matter, εd. Taking the time derivative of the inelastic strain, we
have

ε̇i = ε̇p + ε̇d. (3.11)

The volume conservation requires

tr(ε̇p) = tr(ε̇d) = 0. (3.12)

The change in dislocation density is divided into the change caused by deformation and the
change for thermal process by deformation as follows

ρ̇ = ρ̇ε̇e + ρ̇T . (3.13)
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The dissipation ∆ has there constituents: the dissipation ∆p related to plastic deformation,
the diffusion-related dissipation ∆d, the dissipation ∆D associated with grain coarsening,
and the dissipation ∆ρ associated with a change in dislocation density:

∆ = ∆p + ∆d + ∆D + ∆ρ. (3.14)

The detail of dissipation associated with the internal variables vi, derived for a spherical
grain are

∆D = −Π

6

∫
Ω

3D2ψDḊfdΩ, (3.15)

∆ρ = −Π

6

∫
Ω

D3∂ψdis

∂ρ
ρ̇TfdΩ, (3.16)

∆p =
Π

6

∫
Ω

D3

(
σd · ε̇p −

∂ψdis

∂ρ
Qp

)
fdΩ, (3.17)

∆d =
Π

6

∫
Ω

D3σd · ε̇dfdΩ, (3.18)

where the deviatoric part of stress is defined as

σd := σ − 1

3
Itrσ. (3.19)

Moreover, in accordance to [Hackl and Renner, 2013], ψD = ψe+ψdis+ψgb+D/3∂(ψdis + ψgb)/∂D
is the energy contributing to the total driving force for grain boundary migration. As men-
tioned in the principle of the minimum of the dissipation potential (PMDP), the next step,
we need to discuss about the constraints concerning the dissipation. These constraints were
proposed as

∆̂p =
Π

6

∫
Ω

Rp(D, ρ, ε̇p)D3fdΩ, (3.20)

∆̂ρ =
Π

6

∫
Ω

ν2
dis

Mdis(D, ρ)
D3fdΩ or ∆̂p =

Π

6

∫
Ω

ρ̇2
T

Bdis(D, ρ)
D3fdΩ, (3.21)

∆̂d =
Π

6

∫
Ω

1

Meff

D5 ‖ ε̇d ‖2 fdΩ, and (3.22)

∆̂D =
Πw

4M⊥

∫
Ω

D2Ḋ2fdΩ, (3.23)

where QP represents activation of dislocation sources by deviatoric stresses but also annihi-
lation events when dislocations with opposite signs encounter each other on the same glide
plane [Hackl and Renner, 2013]. T he specific dissipation due to dislocation motion is Rp,
and Mdis(D, ρ) denotes the dislocation mobility. Bdis is the mobility function for disloca-
tions. Furthermore, one more assumption concerning the representative or control volume
kept to be constant during dynamic recrystallization. Let us assume to take the volume
which is large enough. Then it is possible to neglect the travel of grains across the boundary
of the control volume. The volume conservation is given by

V = const. (3.24)

Consequently, the rate form of this conservation law has the form

V̇ = 0. (3.25)
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The optimization problem of the recrystallization model, subject to the above constraints, is
summarized as follows

Ψ̇→ min
ż
, (3.26)

s.t ∆i = ∆̂i,

V̇ = 0,

where i = {p,D, d, ρ}. Thus, the Lagrange functional for the optimization problem (3.26)
can reads

L = Ψ̇ +
k∑
i=1

λi(∆i − ∆̂i) + λV V̇ , (3.27)

where λi and λV are Lagrange multipliers. Dealing with the stationarity condition helps us
to obtain the critical points. Before doing this task, let us expanse the Lagrange functional
as well as the volume constraint. Using Eqs. (3.5) and (3.6), the rate form of the volume
constraint is

V̇ =

∫
Ω

V ḟdΩ =

∫
Ω

V h(z)dΩ−
∫

Ω

V∇ · (f ż)dΩ. (3.28)

The divergence theorem for the term
∫

Ω
V∇ · (f ż)dΩ reads

V̇ =

∫
Ω

V h(z)dΩ−
∫
∂Ω

V (f ż) · dA+

∫
Ω

∇V · (fz)dΩ. (3.29)

For spherical grains, the specific form of the time derivative of the volume conservation is
rewritten as follows

V̇ =

∫
Ω

π

6
D3h dΩ +

∫
Ω

π

6

∂D3

∂X
· V f dΩ +

∫
Ω

π

6

∂D3

∂x
· vf dΩ

−
∫
∂Ω

π

6
D3f

(
∂z

∂X
· V
)
· dA−

∫
∂Ω

π

6
D3f

(
∂z

∂x
· v
)
· dA. (3.30)

In a similar way, the derivative of Helmholz free energy with respect to time is

Ψ̇ =

∫
Ω

π

6

(
D3ψ

)
h dΩ +

∫
Ω

π

6

∂ (D3ψ)

∂X
· V f dΩ +

∫
Ω

π

6

∂ (D3ψ)

∂x
· vf dΩ

−
∫
∂Ω

π

6

(
D3ψ

)
f

(
∂z

∂X
· V
)
· dA−

∫
∂Ω

π

6

(
D3ψ

)
f

(
∂z

∂x
· v
)
· dA, (3.31)

By defining ∆ = (−∂Ψ/∂x) ·v, the following terms of Eq. (3.31) are the dissipation of the
free energy’s rate

∆ = −
∫

Ω

π

6

∂(D3ψ)

∂x
· vf dΩ +

∫
∂Ω

π

6
D3ψf

(
∂z

∂x
· v
)
· dA = ∆1 + ∆2, (3.32)

where ∆1 and ∆2 are the dissipative terms within the control volume and the dissipation
at the boundary, respectively. Substituting Eq. (3.31) into Eq. (3.27) yields the Lagrange
functional for the recrystallization model as

L =
π

6

(∫
Ω

∂D3 (ψ + λV )

∂X
· V f dΩ +

∫
Ω

D3 (ψ + λV ) r dΩ

−
∫
∂Ω

D3 (ψ + λV ) f

(
∂z

∂X
· V
)
· dA−

∫
∂Ω

D3 (ψ + λV ) f

(
∂z

∂x
· v
)
· dA

+
k∑
i=1

[
(1− λi)

∫
Ω

∂(D3ψ)

∂xi
· vif dΩ− λi∆̂i

]
+

∫
Ω

∂D3

∂x
· vf dΩ

)
. (3.33)
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Basing on the steps of the principle of the minimum of the dissipation potential (PMDP),
the next step is necessary to obtain the stationary points by taking the derivative of L with
respect to v = {ε̇d, ε̇p, Ḋ, ρ̇}. Then the evolution equations are obtained as

Ḋ = M⊥
λV + (1− λD)ψD

λDw
, (3.34)

σd =
π

6V

〈
D3

(
λp

λp − 1

∂Rp

∂ε̇p
+

1

1− λp
∂ψdis
∂ρ

∂Qp

∂ε̇p

)〉
, (3.35)

ε̇d =
V〈

D5

M eff

〉σd, (3.36)

ρ̇ = Qp −
λp
2λp

Bdis
∂ψdis

∂ρ
. (3.37)

Equation (3.36) is called the flow law for diffusion creep, which will be used later in the
mathematical model at the macroscale. Actually, for the grain boundaries, the diffusion of
defects (e.g. vacancies) is the main mechanism. Generally, matter is actually transported
in the opposite direction, for example, vacancies will transfer from low to high (compres-
sive) stresses. When matter is transported, the shape of the crystal is changed and then the
crystal will deform. For smaller grains, the length of diffusion paths is smaller than for the
larger grains. After obtaining the evolution equations for internal variables, the Lagrange
multipliers are calculated by using the dissipation constraints

λ2
D =1, (3.38)

λp =

〈
D3 ∂ψdis

∂ρ

∂Qp

∂ε̇p

〉
· ε̇p − 〈D3Rp〉〈

D3 ∂Rp

∂ε̇p

〉
· ε̇p − 〈D3Rp〉

, (3.39)

λd =− 1, (3.40)

λV =
(λD − 1) 〈D2ψD〉

〈D2〉
= −2

〈D2ψD〉
〈D2〉

for λD = −1. (3.41)

Upon insertion of the result for the Lagrangian multipliers, the formulation of the evolution
for grain size is

Ḋ =
2M⊥
w

(
〈D2ψD〉
〈D2〉

− ψD
)

for λD = −1. (3.42)

Since at high temperatures, migration of dislocations (creep) is the main mechanism caus-
ing deformation, the change in dislocation density is assumed to be neglected. With this
assumption, the deviator stress σd and λp are approximated as below

σd ≈ π

6V

〈
D3

(
λp

λp − 1

∂Rp

∂ε̇p

)〉
, (3.43)

λp ≈
−〈D3Rp〉〈

D3 ∂Rp

∂ε̇p
· ε̇p

〉
− 〈D3Rp〉

. (3.44)

Substituting Eq. (3.44) into Eq. (3.43) and employing Orowan’s relation, we arrive at

σd =
π

6V

〈D3Rp〉〈
D3 ∂Rp

∂ε̇p

〉
· ε̇p

〈
D3∂Rp

∂ε̇p

〉
=

π

6V

〈
D3

ρm

〉
‖ε̇p‖m−1

kmp
ε̇p. (3.45)
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The evolution equation relating, i.e the flow law for dislocation creep, is formulated by

ε̇p =

6V

π

1〈
D3

ρm

〉
 1

m

kp
∥∥σd

∥∥ 1−m
m σd. (3.46)

In our variational approach, the evolution equations for grain size and dislocation density
are needed, ingredients for calculation of the distribution function. Now let us discuss how
to get the evolution of the grain size. We call an aggregate quasi-homogeneous aggregate
when new grains are nucleated with the grain size which is small enough to be neglected to
compare the average grain size of aggregate. In addition, it is assumed that all the grains with
the same dislocation density have identical grain size, i.e. D = D̄(ρ). There is an decrease
in the grain size if the assemble energy is larger than the energy of the grain. According
to [Urai et al., 1986; Hackl and Renner, 2013], small grains are mainly influenced by the
grain boundary energy, the impacted dislocation density can be neglected. It also means
that large grains are not affected by the grain boundary energy. Large grains with a higher
dislocation density will make the grain to shrink. Let us consider the case with ψdis = µb2ρ
and ψgb = 6γ/D, then the below result will be obtained

Ḋ

ρ̇
=

2M⊥
wQp

[
µb2

(
〈D2ρ〉
〈D2〉

− ρ
)

+ 4γ

(
〈D〉
〈D2〉

− 1

D

)
+
〈D2ψe〉
〈D2〉

− ψe
]

=
2M⊥
w

(
λ− µb2ρ− 4γ

D

)
, (3.47)

with

λ =
〈D2ψi〉
〈D2〉

− ψe. (3.48)

The full description of how to derive of this relation can be referred to [Hackl and Renner,
2013]. Here λ could be understood the average values which are constant at steady state.
This is elastic strain energy at the macroscale. The energy of grain boundary is mainly used
for driving force in the nucleation process of new grains. When dislocation density raises,
this energy is locally negligible. As discussed above, in polycrystal, many new grains are
formed, then the grain boundary energy becomes larger than dislocation energy. Conse-
quently, the interfacial energy γ is able to be neglected. From this condition, we have

Ḋ =
2M⊥
w

(
λ− µb2ρ

)
. (3.49)

ρ̇ =
ap
b

√
ρ‖ε̇p‖, (3.50)

Solving Eq. (3.49) analytically by using initial condition D̄(0) = 0, then we arrive at

D̄(ρ) =
4bM⊥

3apw ‖ε̇p‖
√
ρ
(
3λ− µb2ρ

)
. (3.51)

This relationship between grain size and dislocation density is depicted in Figure 3.1.
Clearly, the aggregate of all grains is characterized by a life cycle of grains. Let us call
it the life cycle or age of grains. A grain, having zero dislocation density, will nucleate. Its
grain size will be larger to reach maximum value by accumulating dislocation density. As
based on Eq. (3.51), the maximum value of dislocation density and grain size

ρmax =
3λ

µb2
, (3.52)
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Figure 3.1: Evolution of a nucleated grain.

Dmax =
8bM⊥µb

2

3apw ‖ε̇p‖

(
λ

µb2

)3/2

, (3.53)

which occurs at

ρDmax =

√
λ

µb2
. (3.54)

3.2 Microscale

The generally consistent set of microstructural evolution equations for inelastic materials
for dynamic recrystallization was discussed in the previous part. We also introduced the
distribution function in polycrytalline aggregate. This part is devoted to deriving the math-
ematical framework for the problem at the microscale.

3.2.1 The original model for the distribution function f(D, ρ)

An assumption is made in our model, the elastic strain, εe, is assumed to be a constant during
dynamic recrystallization. Then the variation in elastic strain is neglected. At this time, a
grain of body B, its distribution function is characterized by only grain size and dislocation
density as in Figure 3.1. Let us consider a subset dΩ = dDdρ. Being above introduced,
the continuity condition has to be fulfilled by the probability distribution function f(D, ρ)
as below

ḟ +∇ · (f ẋ) = h, (3.55)

where the state variable x = {D, ρ} and h is grain production. Since h is for the nucleation
process, then h is only different from 0 in small area dA. As illustrated in Figure 3.1, this
region is around of the boundary ρ = 0 or r = 0. Consequently, in a large domain of D− r,
let us assume h = 0. In dynamic recrystallization, the rate of f is equal to zero, i.e. ḟ = 0.
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Figure 3.2: Subset dΩ of the entire space, Ω.

Employing these assumptions and making an expansion for the continuity equation, we have
the continuity equation (or the mass conservation) as follows

∂

∂D
(Ḋf) +

∂

∂ρ
(ρ̇f) = 0. (3.56)

Moreover, the aggregate volume has to be preserved, yielding for spherical grains of diam-
eter D the constraint results to

V =
π

6

∫∫
Ω

D3f(D, ρ) dDdρ = const. (3.57)

Parameter Unit Physical meaning
γ J m−2 Specific grain boundary energy
δ m Width of grain boundary
µ N m−2 Shear modulus
b m Norm of the Burger’s vector
ap - Material parameter related to the generation of dislocations
M⊥ m3 s kg−1 Diffusion mobility
λ - Undetermined constant related to the Lagrange multiplier

Table 3.1: Material parameters information

Inserting evolution equations Eq. (3.49) and Eq. (3.50) into the continuity equation gives us

∂

∂D

[
2M⊥
δ

(
λ− µb2ρ− 4γ

D

)
f

]
+

∂

∂ρ

[(ap
b

√
ρ‖ε̇p‖

)
f
]

= 0. (3.58)

Then the mass conservation is reformulated as

2M⊥
δ

∂

∂D

[(
λ− µb2ρ− 4γ

D

)
f

]
+
ap
b
‖ε̇p‖

∂

∂ρ
(
√
ρf) = 0. (3.59)

Introducing β = µb2, η = 4γ and v = apδ‖ε̇p‖/4bM⊥, the continuity equation of the
original model can be reduced as follows

∂

∂D

[(
λ− βρ− η

D

)
f
]

+ 2v
∂

∂ρ
(
√
ρf) = 0. (3.60)
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We already considered that all grains are born with the dislocation-free nucleis. Thus, the
nucleation condition is very important in modelling dynamic recrystallization in polycrys-
talline materials. For this model, we only use the nucleation condition or initial condition as
follows

f(D, 0) = g(D) = De−kD, (3.61)

where k is a new material parameter. More information about the nucleation will be made
clearly in Section 2.3. Lastly, the original form of our problem has the ansatz as follows

∂

∂D

[(
λ− βρ− η

D

)
f
]

+ 2v
∂

∂ρ
(
√
ρf) = 0,

Π

6

∫
D3f(D, ρ)dDdρ = const,

f(D, 0) = De−kD

(3.62)

3.2.2 The standard model for the distribution function f̄(D, r)

As can be observed that equation (3.62) can face the singularity problem because of the
term ∂(

√
ρf)/∂ρ. Let us introduce a new variable, rescaled dislocation density, r in order

to avoid this problem as

r =
√
ρ. (3.63)

In parallel with proposing the new variable r, an introduction of the new distribution function
f̄ corresponding to r, the volume conservation is employed as∫

Ω

fdDdρ =

∫
Ω

f̄dDdr (3.64)

Since this equation is correct for the whole body B, then we obtain f̄dr = fdρ. The
continuity equation is rewritten as

∂

∂D

[(
λ− βr2 − η

D

) f̄

2r

]
+ 2v

∂r

∂ρ

∂

∂r

(
√
ρ
f̄

2
√
ρ

)
= 0, (3.65)

By inserting λ̄ = λ/β, µ̄ = µ/β, v̄ = v/β into equation (3.59), this equation can be simpli-
fied

1

2r

∂

∂D

[(
λ̄− β̄r2 − η̄

D

)
f̄
]

+ 2v̄
1

2r

∂

∂r

(
f̄

2

)
= 0. (3.66)

Lastly, the distribution function is determined by solving the new continuity equation which
is given by

∂

∂D

[(
λ̄− r2 − η̄

D

)
f̄
]

+ v̄
∂f̄

∂r
= 0. (3.67)

The initial condition or the nucleation is reformulated by the variables transformation

g(D) = ṙf̄(D, 0) =
ap
2b
‖ε̇p‖f̄(D, 0). (3.68)

The summary of the new system of the mathematical problem at the microscale which in-
cludes the volume conservation and the continuity equation is

∂

∂D

[(
λ̄− r2 − η̄

D

)
f̄
]

+ v̄
∂f̄

∂r
= 0,

π

6

∫∫
Ω

D3f̄(D, r) dDdr = const.
(3.69)



46 3 Mathematical model

Figure 3.3: Evolution of a nucleated grain in r −D domain.

3.2.3 The modified model for the distribution function f̃(s, r)

The curve created by D = 1/v̄
(
λ̄r − 1/3r3

)
is called the characteristic curve. Actually, the

dynamic recrystallization takes place not only along this curve but also in its neighbor as
plotted in Figure 3.1. We suspect that distribution function f will have larger values only in
the neighborhood of the characteristic curve. Let us therefore introduce a new variable s by

D = s+
1

v̄

(
λ̄r − 1

3
r3

)
. (3.70)

This leads dD = ds. Let us transfer from f̄(D, r) to f̃(s, r) by

∂f̄(D, r)

∂r
=
∂f̃(s, r)

∂r
+
∂f̃(s, r)

∂s
=
∂f̃(s, r)

∂r
− 1

v̄

(
λ̄− r2

) ∂f̃(s, r)

∂s
. (3.71)

Inserting this equation into the mass conservation, we obtain

∂

∂s

[(
λ̄− r2 − η̄

s+ 1
v̄

(
λ̄r − 1

3
r3
)) f̃]+ v̄

∂f̃

∂r
−
(
λ̄− r2

) ∂f̃
∂s

= 0. (3.72)

Expanding this equation gives us the result

(
λ̄− r2

) ∂f̃
∂s
− ∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄r − 1

3
r3
)) f̃]+ v̄

∂f̃

∂r
−
(
λ̄− r2

) ∂f̃
∂s

= 0. (3.73)

By simplifying, we finally obtain

∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄r − 1

3
r3
)) f̃] = v̄

∂f̃

∂r
. (3.74)
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ρi

ρ big grain

Figure 3.4: Grain and its surrounding for the distribution function f(p,D, r).

The volume conservation is reformulated as

Π

6

∫ ∞
0

∫ ∞
smin

D3fdsdr = 1, (3.75)

where smin < 0 is an appropriate bound. The variational problem for dynamic recrystalliza-
tion is rewritten as



∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄r − 1

3
r3
)) f̃] = v̄ ∂f̃

∂r
,

ḡ(s) = v̄f(s, 0),

Π

6

∫ ∞
0

∫ ∞
smin

D3fdsdr = 1.

(3.76)

From here, many versions of distribution function will make us feel confused. Therefore,
we only care the dependent variables of distribution function in stead of f or f̄ or f̃ . Then,
in this thesis, f sometimes will be used for f̄ and f̃ .

3.2.4 The extended model with the distribution function f(p,D, r)

We will consider the surrounding region of grains. A grain with its dislocation density ρ has
some neighboring grains. These grains will have different dislocation density ρi as can be
seen in Figure 3.4.

Extended energy for small grains

Within this theory, we assume that grains are nucleated on triple lines with cylindrical shape
having a characteristic diameterD0 as in Figure 3.5. Thus, we have formulations for volume
V and surfaces S as follows

(1) Large grains: V = Π
6
D3, S = Π

2
D2.

(2) Small grains: V = Π
4
D2

0D, S = Π
2
D0D + Π

8
D2

0.
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Figure 3.5: Nucleation on triple lines.

The surface S has the above forms since the surface of one new grain is formed from two
grains. The right limiting behavior we get by first summing up the expressions as

V =
Π

6
D3 +

Π

4
D2

0D, (3.77)

S =
Π

2
D2 +

Π

2
D0D +

Π

8
D2

0. (3.78)

Let’s denote by p the average dislocation density onside the grain, then the Gibbs energy of
the grain is

G = γS − µb2(p− r2)V. (3.79)

Evolution equations

We assume a dissipation potential of the form

Q =
1

2Mgb

SḊ2, (3.80)

where Mgb = 2M⊥/δ, and make use of the minimum principle

argmin
{
Ġ+Q|Ḋ

}
. (3.81)

Then the Lagrange function is built as L = Ġ+Q. The evolution equation for Ḋ is obtained
by taking derivative of the Lagrange function with respect to Ḋ.

∂L
∂Ḋ

=
∂Ġ

∂Ḋ
+
∂Q

∂Ḋ
. (3.82)

We obtain the evolution of grain size

Ḋ = −Mgb

S

∂G

∂D
. (3.83)

As usual, we assume

ṙ =
ap

2b
‖ ε̇p ‖= v = const. (3.84)

After inserting the derivative of G with respect to D, the evolution of grain size is rewritten
as

Ḋ = −Mgb

[
4γ

2D +D0

− µb2(p− r2)
4D2 + 2D2

0

(2D +D0)2

]
. (3.85)
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Consequently, we have the ratio between the evolution of grain size and the evolution of
dislocation density

Ḋ

ṙ
= −Mgb

v

[
4γ

2D +D0

− µb2(p− r2)
4D2 + 2D2

0

(2D +D0)2

]
. (3.86)

Let us denote h = Ḋ/ṙ. The neighboring dislocation density p is probability distributed.
However, large grains will experience an average value p̄. This effect can be taken into
account by postulating an evolution equation

ṗ = −k(p− p̄)Ḋ, (3.87)

which can be integrated up to

p = p̄+ (p0 − p̄)e−kD, (3.88)

where p0 = p |D=0 .

Evolution of distribution function

We assume that grains are nucleated with D = 0, r = 0 with a distribution function g(p0).
This means we are looking for a distribution function F (p,D, r) satisfying

∂

∂p
(ṗF ) +

∂

∂D
(ḊF ) +

∂

∂r
(ṙF ) = 0,

F (p0, 0, 0) = g(p0),

Π

6

∫
D3F (p,D, r)dpdDdr = 1.

(3.89)

The initial distribution g can be computed in different ways. For simplicity, we assume a
surface average which is created by r =

√
p0. Then the distribution g(p0) is computed by

g(p0) = C
Π

2

∫
D2p0F (p,D,

√
p0)dDdp, (3.90)

where C is given by the normalization

v

∫
g(p0)dp0 = α. (3.91)

α is the rate of grain nucleation per unit volume. Of course, eventually we will be interested
in

f(D, r) =

∫
F (p,D, r)dp. (3.92)

Rescaling

It’s better to use the constant concerning initial values p0 instead of p. Thus, we define an
alternative distribution function by

F̄ (p0, D, r)dp0 = F (p,D, r)dp, (3.93)
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and get

F̄ (p0, D, r) = F (p,D, r)
dp

dp0

= e−kDF (p,D, r). (3.94)

These equations Eqs. (3.90)-(3.94) just undergo the replacement p 7→ p0, F 7→ F̄

F (p0, 0, 0) = g(p0) = F̄ (p0, D, r), (3.95)

F̄ (p0, 0) = e−k.0F (p0, 0, 0), (3.96)

Π

6

∫
D3F̄ (p0, D, r)dp0dDdr = 1, (3.97)

g(p0) =
Π

2

∫
CD2p0F̄ (p0, D,

√
p0)dp0dD, (3.98)

f(D, r) =

∫
F̄ (p0, D, r)dp0. (3.99)

Solution using characteristic

Using Eq. (3.84), we can introduce r as a new independent variable. Substitution of Eq.
(3.83) into Eq. (3.88) then gives an evolution equation of the form

dD

dr
= h(p0, D, r), (3.100)

which using the initial condition D = 0 for r = 0, can be numerically solved for

D = D̂(p0, r). (3.101)

Let us assume that there is a similar function F̂ (p0, r) such that F̄ can be represented by

F̄ (p0, D, r) = F̂ (p0, r), (3.102)

where D = D̂(p0, r), we will call the patch (D̂(p0, r), F̂ (p0, r)) a characteristic. F̂ can be
calculated via the following argument∫

F̂ (p0, r)dD =

∫
F̂ (p0, r)

dD̂

dp0

dp0. (3.103)

An assumption is made as follows∫
F̂ (p0, r)dD =

∫
g(p0)dp0 = const in r. (3.104)

Hence, we get

F̂ (p0, r) =
g(p0)

dD̂
dp0(p0,r)

. (3.105)

The function dD̂/dp0 can be found by numerically integrating the

d

dr

dD̂

dp0

=
d

dr
h(D̂(p0, r), r). (3.106)
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Finally, we get

f(D, r) = F̂ (p0, r), (3.107)

where D = D̂(p0, r). The volume conservation integral now becomes

Π

6

∫
D̂(p0, r)

3
+F̂ (p0, r)

dD̂

dp0

dp0dr = 1, (3.108)

where + denotes the positive part, i.e.

D̂(p0, r)+ =

{
D̂(p0, r) if D̂(p0, r) ≥ 0,

0 else .
(3.109)

Using (3.102) and (3.108) simplifies to

Π

6

∫
D̂(p0, r)

3
+g(p0)dp0dr = 1. (3.110)

The distribution g(p0) of grains when they are nucleated is reformulated as

g(p0) = C
Π

2

∫
D̂(p,

√
p0)2

+p0g(p)dp. (3.111)

3.3 Macroscale

The general viscoplastic problem without the yield function

(i) With the displacement vector u = (u1, u2, u3)T, the infinitesimal strain tensor is given

ε = ∆su =
1

2

(
∇u+ (∇u)T

)
. (3.112)

As mentioned above, the total strain is divided into three parts

ε = εe + εp + εd. (3.113)

(ii) Here we use Hook′s law for an elastic material. According to the classic theory of
small strains elasticity, the basic constitutive assumption is given as

σ = C : εe = C : (ε− εd − εp), (3.114)

where C is the 4th-order tensor of elastic moduli, e.g. (linear isotropic elasticity).
This is known as the linear elastic relationship. For isotropic material, we get

σ = 2µ̂ε+ λ̂(trε)I, (3.115)

where µ̂ and λ̂ denote material constants known as the Lame′ coefficients and trε =∑
i=1,3 εii. In matrix form, we have

σ11

σ22

σ33

σ12

σ23

σ13

 =



2µ̂+ λ̂ λ̂ λ̂ 0 0 0

λ̂ 2µ̂+ λ̂ λ̂ 0 0 0

λ̂ λ̂ 2µ̂+ λ̂ 0 0 0
0 0 0 µ̂ 0 0
0 0 0 0 µ̂ 0
0 0 0 0 0 µ̂




ε11
e

ε22
e

ε33
e

ε12
e

ε23
e

ε13
e

 . (3.116)
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(iii) Based on the result of Hackl and Renner [Hackl and Renner, 2013], we have the flow
rules as

ε̇d =
V

〈D5/Meff〉
σd, (3.117)

ε̇p =
[6V

Π

1

〈D3/ρm〉

] 1
m
kp

∥∥σd
∥∥ 1−m

m σd. (3.118)

The total energy is calculated as follows

Π =

∫
Ω

Ψ(ε, εp, εd)−
∫

Ω

u · bdV −
∫

Ω

u · tdΓ, (3.119)

with the boundary condition

u = ū on Γu, (3.120)
t = t̄ on Γt. (3.121)

3.4 Nucleation

The ability to predict the onset of nucleation is important for the arrangement of the grain
structure. The rate of homogeneous nucleation is determined by the rate of formation of
nuclei which maximizes the free energy. After a nucleus reaches this point, further growth
becomes energetically. Due to the importance of nucleation in dynamic recrystallization,
the nucleation theory should be proposed to predict the initial structure of grains at the
microstructure.

3.4.1 A global nucleation theory

Let us look at grain nucleation more closely. We assume that grains are nucleated at ρ = 0,
i.e, we have

h(D, ρ) = g(D)δ(0), (3.122)

Moreover, the mass conservation for dynamic recrystallization gives

∇ · (ẋf) = h. (3.123)

We look at a small test region w around x = (D, 0)T (Figure 3.6) and find the source term
(nucleation production) as∫

w

hdV = g(D)∆D. (3.124)

From Eqs. (3.6) and (3.55), we obtain∫
w

hdV =

∫
w

∇ · (ẋf)dV. (3.125)

Employing Gauss’s theorem leads to∫
w

hdV =

∫
∂w

n · ẋfdA = ρ̇(0)f(D, 0)∆D. (3.126)
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Figure 3.6: Nucleation test.

Eqs. (3.124) and (3.126) give

g(D) = ρ̇(0)f(D, 0) or g(D) =
ap

b
‖ ε̇p ‖

√
ρf(D, 0). (3.127)

However, this means that the initial-value problem is ill-posed because for ρ → 0 we have
f →∞. Now let’s look at the transformation

r =
√
ρ, dr =

1

2
√
ρ

dρ. (3.128)

The volume conservation gives the relation between the distribution functions

f(D, ρ)dρ = f̄(D, r)dr, or f̄(D, r) = 2
√
ρf(D, ρ). (3.129)

Consequently, the initial condition becomes well-posed as

ḡ(D) =
ap

2b
‖ ε̇p ‖ f̄(D, 0), or ḡ(D) = vf̄(D, 0). (3.130)

Within the standard form, f̄(D, r) the initial condition is given as follows

ḡ(D) = v̄f̄(D, 0). (3.131)

After shifting the variable from D to s and doing the derivation as the variables transforma-
tion variables from D to s, the initial condition is changed to

g̃(s) = v̄f̃(s, 0). (3.132)

Since we will link the problem at the macroscale to the counterpart at the microscale, where
the distribution function f̃(s, 0) or f̄(D, 0) is used, it is essential to define the initial guess
for this distribution function as

f̃(s, 0) = v̄g(s) . (3.133)

From this equation, we can easily see that this initial distribution function is proportional to
v̄, depending on the plastic strain rate at the macroscale. Let us define the simple ansatz of
the function g as below

g(s) = g0s exp(−5/D0) , (3.134)

here, g0, D0 are a material parameter and the initial grain size, respectively. Let us illustrate
an example of this function g(s) by Figure 3.7.
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Figure 3.7: Nucleation function depending on s.

3.4.2 The production based nucleation theory

In the previous theory, h(z) is assumed to be equal to zero. An alternative way to calcu-
late the nucleation function g, we develop a theory to calculate the source term h or the
nucleation rate. Let us recall the full continuity equation with the nucleation rate

∂

∂D

[(
λ̄− r2 +

η̄

D

)
f
]

+ v̄
∂f

∂r
= h̄, (3.135)

where

h̄ =
hδ

4M⊥β
. (3.136)

The nucleation rate is determined by using the principle of the minimum of dissipations. Let
us compute h by the variational principle. The rate of free energy as well as the dissipation
concerning h are built. The rate of potential energy is given by

ψ̇h =
π

6

∫
Ω

D3ψhdΩ, (3.137)

where ψ = µb2r2 + 4γ/D is the Helmholtz free energy. The dissipation potential for the
source function takes the form

∆̂h =
k

2

π

2

∫
Ω

D2h2dΩ, (3.138)

where k is a material parameter. Moreover, we have the constraint∫
Ω

D3hdΩ = 0. (3.139)

Via this integral, the balance of spontaneous appearances are represented. Grains having
a specific set of observable variables are disappeared in contrast to slow evolution of grain
having one set of observable variables to a neighboring set due to diffusive processes. For
example, a nucleus spontaneously occurring in a large strain also requires the spontaneous
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Figure 3.8: Arc curve.

disappearance of a large grain and the appearance of a grain with an intermediate size.
These linked spontaneous processes are required to preserve volume. Then the minimization
problem is given as

argmin
{
ψ̇h + ∆̂h|h :

Π

6

∫
Ω

D3hdΩ = 0

}
. (3.140)

We have the Lagrangian functional for the optimized problem (3.140) in the following form

L =
Π

6

∫
Ω

D3ψhdΩ +
k

2

Π

2

∫
Ω

D2h2dΩ− λΠ

6

∫
Ω

D3hdΩ. (3.141)

Applying the stationary conditions by solving ∂L/∂h = 0, we arrive at

Π

6
D3ψ + k

Π

4
D2h− λΠ

6
D3 = 0, (3.142)

therefore

h =
2

3k
D(λ−Ψ). (3.143)

However, from this result, we realize that this is not realistic because it allows processes
of the form. Actually, grains can not spontaneously get larger or loose dislocations. Thus,
let us postulate that grains can only decompose into smaller ones and loose some of their
dislocations this way. Let us suppose that this happens along axes r = p(r0, D) = r0D

α

as in Figure 3.8 . Then our variational problem has to be formulated on every arc curve
separately; and we have the constraints∫ ∞

0

D3hdx,

∫ x

0

hdx ≥ 0, (3.144)

where x is arclength, dx =
√

1 + (dp/dD)2dD. This formulation can be simplified using

D3h = −dw

dx
. (3.145)
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Then the constraints become:

w(0) = 0, lim
x→∞

w(x) = 0, w(x) ≤ 0. (3.146)

Two beginning terms are obtained from the first term of Eq.(3.144). Moreover, we have the
constraint h ≥ 0 for f = 0. Our variational problem has to be reformulated by introducing
Kuhn-Tucker parameters κ, θ. The Lagrangian functional can be written in the following
form

L = −Π

6

∫ ∞
0

ψ
dw

dx
dx+

k

2

Π

2

∫ ∞
0

1

D4
(
dw

dx
)2dx+

Π

6

∫ ∞
0

κwdx+
Π

6

∫
f=0

θ
dw

dx
dx, (3.147)

with Kuhn-Tucker conditions

κ ≥ 0, w ≤ 0, κw = 0 for all x, (3.148)

θ ≥ 0,
dw

dx
≤ 0, θ

dw

dx
= 0 for all f(x) = 0. (3.149)

Then one solution of the minimization problem can be written as follows

h =
2D

3k
(C − ψ), (3.150)

where C is the unknown Lagrange parameter.

3.4.3 The geometry based nucleation theory

As mentioned above, the sphere grain with the diameter D yields its volume and its change
of volume with respect to time, respectively, as follows

V =
Π

6
D3, (3.151)

V̇ =
Π

2
D2Ḋnuc, (3.152)

where Dnuc and Ḋnuc are the grain size when it is nucleated and its material time derivative,
respectively.

Dinf

Dnuc

a)

surface

nucleated grain

b)

Figure 3.9: Size of nucleated grain
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A new nucleated grain is formed by assembling of many other grains. Then we define an
influence diameter Dinf , grains’ diameter around one grain with size D. Moreover, basing
in Figure ??, half of a newly nucleated grain belongs to the old grain, another half belongs
to other grains. Half of the newly nucleated grain is created by accumulating dislocations
of the old grains. Then the new grain is created by consuming dislocation at the interface or
the surface. Therefore, the volume for the newly created grain is calculated by

Vnuc = −1

2

Π

6
D3

nucΠD
2g, (3.153)

where g is the source function or the nucleation rate, presenting the density of nucleation
sites at the neighbor of one grain. Since the change of volume in the nucleation process is
caused by formation of the new grain, V̇ = Vnuc, Ḋnuc = −Π

6
D3

nucg. Phenomena indicates
that the change of surface area, including the new surface created by nucleation processes
and vanished dislocations

Ṡ =
1

2
(
Π

2
D2

nucΠD
2g + 2ΠDḊnuc). (3.154)

The area of surface (the change of surface’s area) is given as

δS = αbδR, (3.155)

where δR is the change of dislocation’s length. In addition, since dislocations are lost,
then we have Ṙ = − 1

αb
Ṡ. Let us specific the rate of Helmholtz free energy relating to the

nucleation process

ψ̇nuc =

∫
Ω

[γṠ + µb2Ṙ]fdΩ. (3.156)

These formulations above yield the detailed form of ψ̇nuc as follows

ψ̇nuc = (γ − µb2

αb
)

∫
Ω

(
Π

4
D2

nuc −
Π

6

D3
nuc

D
)ΠD2gfdΩ. (3.157)

Moreover, the velocity of dislocation can be approximated (see Figure. ??) by

Vdis ≈
1

4
Dinfg, (3.158)

where Dinf is calculated

Dinf = (
6

αb
)
1
3D

2
3
nuc. (3.159)

The velocity of dislocation is approximated as

Vdis ≈
1

4
Dinfg. (3.160)

Inserting (3.159) into (3.160), we obtain

Vdis =
1

4
(

6

αb
)
1
3
D

2
3
nuc

ρ
1
3

g. (3.161)

Moreover, in accordance to [Hackl and Renner, 2013], the dissipation for dislocation is
given by

∆dis =
1

(m+ 1)Mdis

Vdism+1 , (3.162)
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where Mdis is the mobility of dislocations. The result of Hackl and Renner [Hackl and
Renner, 2013] also provided

∆dis = Mdisρv
m+1
dis , Mdis =

χm+1
p

Km
p

bm+1. (3.163)

The dissipation for the whole nucleation process is reformulated as

∆nuc =

∫
Ω

∆disΠD
2fdΩ (3.164)

It becomes

∆nuc =
1

(m+ 1)Mnuc

∫
Ω

D
2(m+1)

3
nuc

r
2(m−2)

3

gm+1ΠD2fdΩ, (3.165)

where Mnuc is nucleation mobility. Consequently, we have the minimization problem for g
as follows

argmin{ψ̇nuc + ∆nuc|g}. (3.166)

Thermodynamic principle PMD leads

gm = Mnuc(
µb

α
− γ)

r
2(m−2)

3

D
2(m+1)

3
nuc

Π

6
(
3

2
D2

nuc −
D3

nuc

D
). (3.167)

Comparing to the nucleation theory which considers the source function h, dealing with the
nucleation processes we already proposed, the benefits of this new direction are as follows

• The new approach is derived from physical phenomena.

• Its numerical algorithm is simpler than in the second theory regarding the nucleation
process because the differential equation is now

∂

∂D

[(
λ− r2 − η̄

D

)
f
]

+ v̄
∂f

∂r
= 0, (3.168)

where the previous counterpart was

∂

∂D

[(
λ− r2 − η̄

D

)
f
]

+ v̄
∂f

∂r
= h̄. (3.169)

Furthermore, in this new approach, it is not necessary to introduce the new rescaled
variable s

D = s+
1

v̄
(λr − 1

3
r3) (3.170)

• With the source function h̄ in the second nucleation theory, as mentioned before, the
result is not compatible with the physical phenomena since grains can not sponta-
neously get larger and loose dislocation. Solving the nucleation process by the new
theory can prevent this problem.
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The mathematical model for dynamic recrystallization in polycrystalline materials was es-
tablished in the previous chapter. In this chapter, a numerical treatment for this problem
shall be discussed in detail. Since the problem is divided into two problems of a two-
scale problem, two numerical methods are developed to solve two smaller problems. Firstly
some numerical tools supporting us to deal numerically with our problems will be reviewed.
These tools include a Simpson’s rule and Newton-Raphson. We will implement numeri-
cal approach with finite element method (FEM) in Abaqus. Therefore, a short summary of
FEM will be presented. The next part is a marching algorithm which is employed at the
microscale. We utilize the return mapping at the macroscale. These are the components of
a two-scale scheme which is employed to solve our model numerically.

4.1 Numerical scheme

4.1.1 Simpson’s rule

In numerical analyses, Simpson’s rule is a method to approximate a definite integral numer-
ically. In the following part, we will use Simpson’s rule to compute the numerical integrals
over the domain. To get the approximated result of a definite integral, let us define integra-
tion points and then evaluate the integral at these points. For example, in one-dimensional
space, the domain [a, b] is divided into 2 small intervals. Consequently, the integral of the
function f in [a, b] is approximated as∫ b

a

f(x)dx ≈ b− a
6

[
f(a) + 4f(

a+ b

2
) + f(b)

]
. (4.1)

Instead of two integration points, we use (n + 1) points. Let us divide [a, b] into n small
intervals, the integral is approximately computed by∫ b

a

f(x)dx ≈ b− a
3n

f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
2j

f(x2j−1) + f(xn)

 , (4.2)

where xj = a + jh for j = 0, · · · , n, h = (b − a)/n and x0 = a, xn = b. In shorter
expression, we have∫ b

a

f(x)dx ≈ h

3

∑
i

f(xi)wi. (4.3)

In two-dimensional space R2, in general, two domains [a, b] and [c, d] are separated into
points, xi and yj , respectively. The vector, ω = (1, 4, 2, 4, 2, · · · , 2, 4, 2, 4, 1), is the vec-
tor collecting the weighting factors of Simpson’s rule. Then the integral

∫ b
a

∫ d
c
f(x, y)dxdy

is calculated approximately as∫ b

a

∫ d

c

f(x, y)dxdy ≈ h

3

k

3

∑
ij

f(xi, yj)wiwj, (4.4)
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where k = (d− c)/n.

4.1.2 Newton-Raphson scheme

In the numerical analysis, Newton-Raphson scheme is a method to obtain a good approxi-
mation to the exact solution of the root finding problem. In one-dimensional space R, we
need to find an approximated solution of the equation f(y) = 0. We assume that an initial
guess, y0, is provided. This scheme will create an array y0, y1, y2, · · · , yn, that converges to
the root solution. At an iterative step k, where k = 1, · · · , n, the value of the current step yk
is based on the counterpart of the previous step , yk−1, as

yk = yk−1 −
f(yk−1)

f ′(yk−1)
. (4.5)

In Rn, we need to solve f(y) = 0 with y = (y1, y2, · · · , yn)T. Let us assume that y0 is an
initial guess, then at step k

yk = yk−1 − (∇f(yk−1))−1 · f(yk−1). (4.6)

In this scheme, the algorithm will end when the tolerance or the convergence criteria is
reached. There are two kinds of convergence conditions: the absolute error is defined as
‖yk − yk−1‖, and the absolute error is ‖(yk − yk−1)/yk−1‖.

4.2 Finite element method

4.2.1 FEM background

The equilibrium condition is obtained by minimizing the local form of conservation of linear
momentum as

∇ · σ + f = 0, (4.7)

where f is external force vector. The detailed information how to derive this equation can
be found in [Junker, 2011]. Hooke’s law is used as the constitutive equation

σ = C : ε, (4.8)

the unknown variable of this problem is the displacement vector u. This displacement is
linked to the strain strain by the following relationship

ε =
1

2
(∇u+ u∇). (4.9)

Normally we have two kinds of boundaries. For every physical body, displacements are
known at some surfaces, for example, through supports or other prescribed non-zero dis-
placements termed u∗. The boundary where the displacements are known is indicated as
∂Ωu. Then we have

u(x) = u∗ on ∂Ωu. (4.10)

Furthermore, the another constraint is satisfied

σ · n = t. (4.11)
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Figure 4.1: Discretized body.

This is Cauchy relation for surface force density. Actually, for an arbitrary body in three-
dimensional space R3, solving the problem with the differential equation as Eq. (4.7) ac-
companied by boundary conditions and Cauchy equation, to get the analytical solution is
impossible, as a result, the proposal of a numerical method is offered. Let us first do some
derivation from the equilibrium equation. After multiplying the equilibrium equation (4.7)
by δu and integrating this equation over the domain, we gain∫

Ω

∇ · σδudΩ +

∫
Ω

fδudΩ = 0. (4.12)

Moreover, we have

∇ · (σ · δu) = (∇ · σ) · δu+ σ : ∇δu. (4.13)

Eqs. (4.13), (4.12), and applying the divergence theorem lead∫
Ω

σ : ∇δudV =

∫
Ω

f · δudV +

∫
∂Ω

t · δudA ∀δu, (4.14)

this equation is obtained because of the symmetry of σ. The next step is to compare two
equations, (4.7) and (4.14). Eq. (4.14) is an integral form. Comparing to Eq. (4.7), the
divergence term∇ ·σ should be given, i.e, the second derivative of the displacement vector
u. Because the two equations ((4.7), (4.14)) are equivalent, the advantage of first derivative
in Eq. (4.14) is a centre point. Now the purpose is to find an approximated solution of
Eq. (4.14). Let us divide the entire body, its volume Ω, into a certain number of smaller
elements Ωm (Figure 4.1). The elements are constructed by nodes. By interpolating the
shape functions with the nodal values, the approximation foru(x) and δu, can be calculated.
Depending on the chosen kind of the shape functions, the accuracy of the approximated
solution will be determined. The approximated solution can be obtained by using

u(x) ≈Nu(x) · û = Nu · û, or δu(x) ≈Nu(x) · δû = Nu · δû, (4.15)

where Nu, û are shape functions, nodal values, respectively. Hence, the gradient of the
solution function can be found according to

∇u ≈ ∇Nu · û or ∇δu ≈ ∇Nu · δû. (4.16)
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In the small deformation theory, we have the relationship between strain and deformation as
shown in Eq. (4.10). By defining a tensorB in the three dimensional space R3 as follows

B :=



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

0 1
2
∂
∂z

1
2
∂
∂y

1
2
∂
∂z

0 1
2
∂
∂x

1
2
∂
∂y

1
2
∂
∂x

0


, (4.17)

this relation can be expressed as

ε = B · u⇔ ε ≈ B ·Nu · û. (4.18)

By denoting B̂ := B ·Nu, Eq. (4.14) is rewritten as∫
Ω

B̂T · σdV −
∫

Ω

Nu · fdV −
∫
∂Ω

Nu · tdA = 0, (4.19)

this equation should be solved numerically to get the unknown displacements. Furthermore,
we knew how stress tensor is expressed in term of displacement

σ = C · ε⇔ σ = C · B̂ · û (4.20)

By discretization, we arrive at∑
m

∫
Ωm

B̂T · σdV =
∑
m

∫
Ωm

Nu · fdV +
∑
m

∫
∂Ωm

Nu · tdA (4.21)

⇐⇒
∑
m

∫
Ωm

B̂T · C · B̂dV û =
∑
m

∫
Ωm

Nu · fdV +
∑
m

∫
∂Ωm

Nu · tdA (4.22)

Let us define new tensors

K =
∑
m

∫
Ωm

B̂T · C · B̂dV, (4.23)

ff =
∑
m

∫
Ωm

Nu · fdV, (4.24)

ft =
∑
m

∫
∂Ωm

Nu · tdA. (4.25)

Consequently, this leads to the result

K · û = ff + ft (4.26)

where K is called stiffness matrix, ff and ft denote internal force and external force, re-
spectively. The volume of the element m is Ωm and ∂Ωm is its surface. The only remaining
unknowns in Eq. (4.26) are the displacements at the nodes. Thus, the system of differential
equations of Eq. (4.7) with the second derivative of displacements can be transformed to an
algebraic system. Clearly, this system is easier to solve. For elastic materials, this system of
equations is a linear one. Now to solve this system, the inverse tensor ofK is calculated.
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4.2.2 FEM for non-linear materials

The non-linear term arises from two main reasons: a non-linear constitutive equations and a
non-linear relation between displacements and strains due to large deformation. Now let us
discuss the first cause of non-linearity. The constitutive equation is called non-linear when

σ = D(ε) : ε, (4.27)

where D(ε) is not the elasticity tensor. Considering a potential as

Π =

∫
Ω

ΨdV −
∫

Ω

f · udV −
∫
∂Ω

t · udA→ min, (4.28)

the finite element method (FEM) is applied in the problem to minimize this potential for lin-
ear elastic materials calculate the deformation of the physical system under external forces.
According to the second law, the principle states that by applying forces on a system, the
direction of deformation will be towards an state with the minimum potential energy along
with the maximum wasting energy, i.e. dissipation. Then the next step is only to insert the
corresponding energy into Eq. (4.28) and then to solve the equilibrium equations for every
arbitrary material. In general, the variational form of Eq. (4.28) to obtain the optimized
solutions has the form of∫

Ω

∂Ψ

∂ε
: δεdV −−

∫
Ω

f · δudV −
∫
∂Ω

t · δudA = 0. (4.29)

Furthermore, the constitutive equation for stress is given by

σ =
∂Ψ

∂ε
. (4.30)

Substituting Eq. (4.30) into Eq. (4.29) yields∫
Ω

σ : δεdV −
∫

Ω

f · δudV −
∫
∂Ω

t · δudA = 0. (4.31)

In some literature, they define an internal energy and an external energy as below

fint =

∫
Ω

σ : εdV, (4.32)

fout = −
∫

Ω

f · udV −
∫
∂Ω

t · udA. (4.33)

While fint is the energy which is stored in the material and belongs to the total free energy
in the system, fout is the energy caused by a force through the displacement of a material
point. Total potential energy only consists of the potential stored in the material, therefore,
we have

Π = fint + fout. (4.34)

With these definition, Eq. (4.31) is rewritten as

δfint + δfout = 0 (4.35)
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After discretization, by assembling all the elements, we have

δF int =

nel⋃
i=1

δfint, (4.36)

δF out =

nel⋃
i=1

δfout, (4.37)

here nel is the total number of elements. The requirement is now to solve the equation,
Ru = δF int−δF out = 0, by an iteration method. In each time step, we change the external
load δF out based on its evolution over time, and the time increment ∆tn. the well known
Newton-Raphson Method can be applied to find the solution ofRu. Thus, we have

Rk+1
u = Rk

u +
∂Rk

u

∂u
·∆uk+1 = 0 (4.38)

where k is an iterator. The displacement increment is computed by the below equation

4uk+1 = −[
∂Rk

u

∂u
]−1 ·Rk

u. (4.39)

Then, the displacements are updated as

uk+1 = uk + ∆uk+1. (4.40)
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The full description of finite element method is summarized in algorithm 1.

Algorithm 1 Finite Element Method Algorithm

Specify the initial value u

u0
n+1 = un. (4.41)

while convergence criterion is not satisfied do
1. Calculate of initial displacement and Update u

∆u0
n+1 = −

(
Ru

u

)−1

Ru

(
u0
n+1

)
, (4.42)

um+1
n+1 = umn+1 + ∆um. (4.43)

2. Compute the strain tensor

εp = Bm+1
n+1 · um+1

n+1 . (4.44)

3.Determine σm+1
n+1 and tangent matrixDr

4. Calculate δF int and δF ext

5. Calculate ∆um+1
n+1

∆um+1
n+1 = −Ke,m+1

n+1 ·Ru

(
um+1
n+1

)
, (4.45)

whereKe,m+1
n+1 = ∂Ru

∂u

∣∣
u=um+1

n+1
.

end while

If the converged condition is reached, we need to update the values as

un+1 =um+1
n+1 , (4.46)

σn+1 =σm+1
n+1 . (4.47)

Let us now deriveKe,m+1
n+1

Ke,m+1
n+1 =

∂

∂u

(
δF int − δF ext

)
=

∫
Ω

BTDrBδudV, (4.48)

whereDr andB are calculated as follows

Dr =
∂σm+1

n+1

∂εm+1
p,n+1

, and B =
∂εm+1

p,n+1

∂um+1
n+1

. (4.49)
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Figure 4.2: Uniformly meshed domain.

4.3 Marching algorithm

All the versions of the distribution function as well as of nucleation theory established for
the problem at the microscale, discussed in Chapter 2, will need to be solved numerically.
Hence, the discussion about the numerical approach to solve the differential equation as well
as the volume conservation will be the main duty of this chapter. The algorithm which is
applied to solve the problem at the microscale is called a marching algorithm. It is based
on the Zienkiewicz-Zhu estimator. This algorithm is a mixture of finite element method,
Euler-Backward method, Newton-Raphson method and integral approximations. Let us
first discuss generally the marching algorithm and then the detailed algorithm with respect
to each specific model will be presented. Since the distribution function is a function of two
variables, we will consider a domain x× y. This domain will be discretized uniformly. Let
us implement the marching algorithm with non-uniform domain. If the readers are interested
in this topic, please have a look at [Khai, 2014]. The maximum length in x direction and
y direction are denoted lx and ly, respectively. The purpose of this algorithm is to find the
numerically approximated solution of a function f(x, y). The numerical solution is created
step by step. With the initial value f 0(x, 0), the value of f at the current step, corresponding
to the line yk, is computed from the previous value fk−1. As can be seen in Figure 4.2, the
domain is divided into m and n equal intervals, respectively. ∆x and ∆y are denoted as
interval lengths of x and y, respectively. The discretization is defined as follows

xi+1 = xi + ∆x = x0 + i∆x (i = 0,m), (4.50)
yj+1 = yj + ∆y = y0 + i∆y (j = 0, n). (4.51)

The value of fk(xi, yk), where i = {0, · · · ,m} and k = {0, · · · , n}, is its value at the line
yk. The initial function is as bellow

f 0(xi, y0) = g(xi), (4.52)
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where the value of g(xi) is required.

4.3.1 Marching algorithm for the distribution function f̄(D, r)

Figure 4.3: Uniformly meshed domain in D × r.

Within this model, the domain x × y is D × r as can be seen in Figure ??. The maximum
lengths of D and r are Dmax and rmax, respectively. The differential equation as well as the
volume constraint is reviewed again

∂

∂D

[(
−λ̄+ r2 +

η̄

D

)
f̄
]

= v̄
∂f̄

∂r
, (4.53)

π

6

∫∫
D3f̄(D, r) dDdr = const, (4.54)

where v̄ depends on εp from the problem at the macroscale. Now it is in turn that the detailed
steps of the marching algorithm are established. Firstly, for the right-hand side of Eq. (4.53),
the implicit Euler is employed. Consequently, the continuity equation can be recast into

∂

∂D

[(
−λ̄+ r2

k +
η̄

D

)
f̄k
]

= v̄
f̄k − f̄k−1

∆r
. (4.55)

Secondly, FEM with respect to D, f̄k(D, rk) ≈ fk · ϕ is used in the left-hand side of Eq.
(4.54), this leads

∂

∂D

[(
−λ̄+ r2

k +
η̄

Di

)
fk ·ϕ

]
= v̄

fk ·ϕ− fk−1 ·ϕ
∆r

. (4.56)

By multiplying both sides of this equation by the shape function vector ϕ and then integrat-
ing this over the domain, the newly algebraic equation has the form of∫

∂

∂D

[(
−λ̄+ r2

k +
η̄

D

)
fk ·ϕ

]
⊗ϕdD =

∫
(v̄
fk ·ϕ− fk−1 ·ϕ

∆r
)⊗ϕdD. (4.57)
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After simplification, the differential equation is rewritten as

fk(−A ·H +
v̄

∆r
.B) =

v̄

∆
fk−1 ·B, (4.58)

where A, Aij =
∫
ϕi(ϕ)

′
jdx, is an operator approximating differentiation with respect to

D and B, Bij =
∫
ϕi(ϕ)jdx, is a smoothing operator projecting the result of numerical

differentiation onto the space of shape functions. H , diagonal matrix, is calculated by

Hk
ii = −λ̄+

η̄

Di

+ r2
k. (4.59)

After obtaining the value of the whole distribution function f , the next step is to compute
the derivative of f̃ with respect to λ̄. Taking derivative of the continuity equation (4.53)
arrives

fk(−A ·H +
v̄

∆r
.B) =

v̄

∆
fk−1 ·B. (4.60)

fk,λ̄(−A ·H +
v̄

∆r
.B)−A ·H,λ̄ · fk =

v̄

∆
fk−1
,λ̄
·B. (4.61)

Now the distribution function is characterized by the value of all nodes in the discretized
body. Doing the similar scheme as in getting f , the derivative of f with respect to λ̄ is
approximated by

fk,λ̄(−A ·H +
v̄

∆r
.B) = −fk ·A+

v̄

∆r
fk−1
,λ̄
·B. (4.62)

We assume that during the process to calculate f and f,λ̄, the value of λ̄ is assumed to be
given. The question is how to determine Lagrange multiplier λ̄ ([Nguyen et al., 2013]). Let
us base on the volume conservation to compute it. The assumption that the aggregate volume
is unity during the dynamic recrystallization process. Let us firstly define two functions
F (λ̄) and F (λ̄),λ̄ as follows

F (λ̄) =
Π

6

∫
D3f̄(λ̄)dDdr − 1, F (λ̄),λ̄ =

Π

6

∫
D3f̄,λ̄(λ̄)dDdr. (4.63)

Then employing Newton-Raphson method, the value of λ̄ at the current step i+1 is obtained
by

λ̄i+1 = λ̄i −
1

F,λ̄(λ̄i)
· F (λ̄i). (4.64)

It means that the value of λ̄i+1 is dependent on the value of F (λ̄) and its derivative with
respect to λ̄. However, as in Eq. (4.63), these values will be impacted on the discretized
values of f̄ . Therefore, the requirement to link the discretized values and F (λ̄) and F (λ̄),λ̄
by Simpson’s rule as below

F =
Π

6

∫ ∫
D3f̄dDdr − 1 ≈ Σi,j

Π

54
f̄(Di, rj)∆D∆rD3

iwiwj − 1,

F,λ̄ =
Π

6

∫ ∫
D3f̄,λ̄dDdr ≈ Σi,j

Π

54
f̄,λ̄(Di, rj)∆D∆rD3

iwiwj. (4.65)

Let us summarize the full description of marching algorithm
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Algorithm 2 Marching Algorithm for f̄(D, r)

Initialize values for tn+1

ε̇0
p,n+1 = ε̇p,n, λ̄0

n+1 = λ̄n and D0
max =

2

3
(λ̄0

n+1)
3
2

1

v̄
.

while convergence criterion is not satisfied do

Compute f(D, r) and f,λ̄(D, r) from Eqs. (4.62) and (4.58) for λ̄un+1

Calculate the value of λ̄

λ̄u+1
n+1 = λ̄un+1 −

F (λ̄un+1)

F,λ̄(λ̄
u
n+1)

,

where F (λ̄un+1) and F,λ̄(λ̄un+1) are calculated by Eq.(4.65) and Dmax

Du+1
max,n+1 =

2

3
(λ̄u+1

n+1)
3
2

1

v̄
.

end while

In our marching algorithm, the absolute convergence criterion has the below formulation

λ̄u+1
n+1 − λ̄un+1

λ̄un+1

≤ TOL. (4.66)

4.3.2 Marching algorithm for the distribution function f̃(s, r)

Figure 4.4: Uniformly meshed domain in s× r.

Now we deal with the distribution function which is influenced by s and r. We implement
the same steps as mentioned in the previous part. Fistly, the backward Euler method with
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respect to r and FEM with respect to s are carried out in the differential equation as same as
in the marching algorithm for f̄(D, r). It means that the first term is applied for the right-
hand side and the second for the left-hand side of Eq. (3.76)(1). The mathematical model in
Section 2.3 states that

∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄r − 1

3
r3
)) f̃] = v̄

∂f̃

∂r
. (4.67)

Performing the implicit Euler for Eq. (4.67), it has the new form of

∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄rk+1 − 1

3
r3
k+1

)) f̃k+1

]
≈ v̄

f̃k+1 − f̃k

∆r
. (4.68)

The unknown f̃ and its derivative f̃,λ̄ with respect to λ̄ at the line rk can be linearly approx-
imated based on FEM [Zienkiewicz and Taylor, 2005] as

f̃k(s, rk) ≈ fk ·ϕ, f̃k,λ̄(s, rk) ≈ f
k
,λ̄ ·ϕ, (4.69)

where fk and fk
,λ̄

are vectors containing nodal values, andϕ is a vector containing the shape
functions in variable s. Inserting Eq. (4.69) into Eq. (4.68) gives us

∂

∂s

[(
η̄

si + 1
v̄

(
λ̄rk+1 − 1

3
r3
k+1

))fk+1 ·ϕ

]
≈ v̄

fk+1 ·ϕ− fk ·ϕ
∆r

. (4.70)

Due to the fact that fk+1 is independent on s, it is possible to allow it out of the derivative.
Then we have

fk+1 ·ϕ,s

(
η̄

si + 1
v̄

(
λ̄rk+1 − 1

3
r3
k+1

)) ≈ v̄

∆r
fk+1 ·ϕ− v̄

∆r
fk ·ϕ. (4.71)

Furthermore, multiplying withϕ and integrating over the whole length ls of both sides yield

fk+1 ·
∫
ls

ϕ,s⊗ϕ ds ·Hk+1 ≈ v̄

∆r
fk+1 ·

∫
ls

ϕ⊗ϕ ds− v̄

∆r
fk ·

∫
ls

ϕ⊗ϕ ds, (4.72)

Using the definition of the smoothing operatorB, the derivative operatorA, the distribution
function value of nodes are calculated by

fk+1(−A ·H +
v

∆r
·B) =

v

∆
fk ·B. (4.73)

Let us callH a diagonal matrix with its component

Hk+1
ii =

η̄

si + 1
v̄

(
λ̄rk+1 − 1

3
r3
k+1

) ,
Hk+1
ij = 0 if i 6= j, (4.74)

where i, j = {1, · · · , n}. The derivative of fn+1 with respect to λ̄ is obtained by taking
derivative of Eq. (4.73) with respect to λ̄

fk+1
,λ̄

(−A ·H +
v

∆r
.B) = H,λ̄ · fk+1 ·A+

v

∆r
fk,λ̄ ·B, (4.75)
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whereH,λ̄ is the diagonal matrix concerning the derivative ofH with respect to λ̄ as

Hk+1
ii,λ =

ηrk+1

v
[
si + 1

v
(λ̄rk+1 − 1

3
r3
k+1)

]2 ,
Hk+1
ij,λ = 0 if i 6= j, (4.76)

As in Section 4.3.1, λ̄ is approximated by using Simpson’s rule in the volume conservation.
The assumption that the aggregate volume is unity during the dynamic recrystallization
process is provided as

π

6

∫∫
Ω

[
s+

1

v̄

(
λ̄r − 1

3
r3

)]3

f̃(s, r) dsdr = 1. (4.77)

The constraint of the preserved aggregate volume and its derivative with respect to λ̄ are in
the form of

V =
π

6

∫∫
Ω

[
s+

1

v̄

(
λ̄r − 1

3
r3

)]3

f̃(s, r) dsdr − 1, (4.78)

V,λ̄ =
π

6

∫∫
Ω

{
3
r

v̄

[
s+

1

v̄

(
λ̄r − 1

3
r3

)]2

f̃(s, r) +

[
s+

1

v̄

(
λ̄r − 1

3
r3

)]3

f̃,λ̄(s, r)

}
dsdr.

(4.79)

These constraints can be solved for the unknown λ̄ by the Newton-Raphson method as
following

λ̄l+1 = λ̄l −
V (λ̄l)

V,λ(λ̄l)
. (4.80)

The volume and its derivative with respect to λ are determined by the approximate method

V ≈ π

54

[
sj +

1

v̄

(
λ̄ri −

1

3
r3
i

)]3

f̃(sj, ri)wiwj − 1, (4.81)

V,λ̄ ≈
π

54

{
3
ri
v̄

[
sj +

1

v̄

(
λ̄ri −

1

3
r3
i

)]2

f̃(sj, ri)

+

[
sj +

1

v̄

(
λ̄ri −

1

3
r3
i

)]3

f̃,λ̄(sj, ri)wiwj

}
(4.82)
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The full marching algorithm corresponding to this version of our problem is summarized as

Algorithm 3 Marching Algorithm for f̃(s, r)

Initialize values for tn+1

ε̇0
p,n+1 = ε̇p,n, λ̄0

n+1 = λ̄n D0
max =

2

3
(λ̄0

n+1)
3
2

1

v̄
.

while convergence criterion is not satisfied do

Compute f(s, r) and f,λ̄(s, r) based on Eqs. (4.73) and (4.75) for λ̄un+1

Update the value of λ̄

λ̄u+1
n+1 = λ̄un+1 −

F (λ̄un+1)

F,λ̄(λ̄
u
n+1)

,

where F (λ̄un+1) and F,λ̄(λ̄un+1) are calculated by (4.78) and (4.79) and rmax, Dmax

ru+1
max,n+1 =

√
3λ̄u+1

n+1, Du+1
max,n+1 =

2

3
(λ̄u+1

n+1)
3
2

1

v̄
.

end while

As same as in the standard model, we use the absolute converge criterion as

λ̄u+1
n+1 − λ̄un+1

λ̄un+1

≤ TOL. (4.83)

4.3.3 Marching algorithm for f̃(s, r) and h

In this part, we will study how a marching algorithm is employed in the problem at the
microscale when the distribution function in form of f̃(s, r) and the extended nucleation
theory are applied. Now, by inserting D = s+ 1

v̄

(
λ̄r − 1

3
r3
)

into Eq. (3.135), the continuity
equation with the source function h̄ has the following form

∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄r − 1

3
r3
)) f̃] = v̄

∂f̃

∂r
+ h̄. (4.84)

The theory of h̄ is already mentioned in Section 2.3.3. Euler-Backward expression for the
right hand side gives the result as

∂

∂s

[(
η̄

s+ 1
v̄

(
λ̄rn+1 − 1

3
r3
n+1

)) f̃n+1

]
= v̄

fn+1 − fn

∆r
+ h̄n+1. (4.85)

Comparing to other cases, in this case we need one more unknown variable. This is C, the
unknown Lagrange multiplier relating to the source function. Therefore, at the microscale,
the problem are solved to get λ̄, f and C. Following the steps of marching algorithm
[Nguyen et al., 2015], the next step is to apply discretization for s and to approximate the
derivative of f̃(s, r), the differential equation has the below ansatz after simplification

fn+1(−A ·H +
v

∆r
.B) =

v

∆
fn ·B +Rn+1. (4.86)
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The derivative of distribution function fulfills the equation as follows

fn+1
,λ̄

(−A ·H +
v

∆r
.B)=R,λ̄ ·ϕ+H,λ̄ · fn+1 ·A+

v

∆r
fn,λ̄ ·B, (4.87)

where H and H,λ̄ are computed by Eqs. (4.76) and (4.74). The index form of tensor R is
given by

Rn+1
ii = h̄(rn+1, si, λ̄, C). (4.88)

As can be seen in (4.88), the source function depends on values of λ̄ and C. Let us discuss
how to compute them. These unknown parameters are determined by Newton-Raphson
method as below(

λ̄i+1

Ci+1

)
=

(
λ̄i
Ci

)
− J−1

(
λ̄i
Ci

)
· F
(
λ̄i
Ci

)
, (4.89)

where F = (F1, F2)T. Firstly, let us define the vector F

F1 =
Π

6

∫ ∫
D3f̃dsdr − 1, (4.90)

F2 =
Π

6

∫ ∫
D3h̄dsdr. (4.91)

Then this vector’s components are approximately calculated by Simpson’s rule as in the
below formulations

F1 =≈ Σi,j
Π

54
f̃(si, rj)∆s∆rD

3(si, rj)wiwj − 1, (4.92)

F2 =≈ Σi,j
Π

54
D3(si, rj)h̄(si, rj)∆s∆rwiwj. (4.93)

Moreover, J is the gradient tensor of F . Therefore, J can be computed by

J =

[
F1,λ F1,C

F2,λ F2,C

]
(4.94)

Of course, in this algorithm, we require the initial value of λ̄ and C.

Algorithm 4 Marching Algorithm for f̃(s, r) and h

Initialize values for tn+1

ε̇0
p,n+1 = ε̇p,n, λ̄0

n+1 = λ̄n and r0
max,n+1 =

√
3λ̄0

n+1, D0
max =

2

3
(λ̄0

n+1)
3
2

1

v̄
.

while convergence criteria not fulfilled do
Calculate f(s, r) and f,λ̄(s, r) based on Eq. (4.86) and Eq. (4.87) for λ̄un+1

Update the value of λ̄ and C with Eq. (4.89)
where F (λ̄un+1) and J−1

,λ̄
(λ̄un+1) are computed by Eq. (4.92), Eq. (4.93) and Eq.(4.94) and

rmax, Dmax

ru+1
max,n+1 =

√
3λ̄u+1

n+1, Du+1
max,n+1 =

2

3
(λ̄u+1

n+1)
3
2

1

v̄
.
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end while

In our marching algorithm the absolute convergence criterion as follows

λ̄u+1
n+1 − λ̄un+1

λ̄un+1

≤ TOL. (4.95)

4.3.4 Fix-point algorithm

In order to find the distribution g(p0) of grains g(p0) = C Π
2

∫
D̂(p,

√
p0)2

+p0g(p)dp, the
fix-point algorithm is applied. A point is called the fix-point of a function g(x) when the
condition, x = g(x), is fulfilled. Fix-point iteration is an iterative method. The next iterative
result is calculated as xi+1 = g(xi).

Algorithm 5 Fix-point algorithm

Choose the initial values for the initial step

while convergence criterion is not satisfied do

1. Solve differential equations to get D̂(p0, r)

2. Calculate the volume at the current step l

V =
Π

6

∫
Ω

D̂3(p0, r)g(l, p0)dp0dr. (4.96)

3. Calculate g(l + 1)

• Determine g∗(l + 1) =
∫

Π
2
D̂2(p0,

√
p0)p0g(l, p0)dp

• Calculate C(l + 1) by solving v
∫
C(l + 1)g∗(l + 1)dp0 = α

• Compute g(l + 1) = C(l + 1)g∗(l + 1)

4. Normalize by the formulation g(l + 1) = g(l + 1)/V o

5. Update k[l + 1] = [
∫
D̂(p0, r)g(l + 1)dp0dr]−1

6. Get the value of p̄(l + 1) = Π
6

∫
D̂3(p0, r)p0dp0dr

end while

4.4 Macroscopic simulation

As can be seen in the problem’s description at the macroscale, in our model we assume that
no hardening is considered and no yield function is analyzed. Moreover, another assumption
was made in Hackl-Renner model that diffusion along grain boundaries is dominant, then
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Meff = 720
(
wM||/Dπ

)
, where M|| = M⊥. The flow law multipliers for diffusion and

dislocation creep, Ad and Ap, respectively, are introduced by

Ad =
V

〈D5/Meff〉
, and (4.97)

Ap =
[6V

Π

1

〈D3/ρm〉

] 1
m
kp. (4.98)

The flow rules are rewritten as

ε̇d = Adσ
d, (4.99)

ε̇p = Ap

∥∥σd
∥∥ 1−m

m σd. (4.100)

The differential equations are transformed into an incremental form using the time dis-
cretization. The algebraic equations are evaluated at the time instant tn+1

εn+1
d = εnd + Adσ

d∆t = εnd + Zd
(
σd
)
·∆t, (4.101)

εn+1
p = εnp + Ap

∥∥σd
∥∥ 1−m

m σd∆t = εnp + Zp
(
σd
)
·∆t, (4.102)

where Zd
(
σd
)

= Adσ
d and Zp

(
σd
)

= Ap

∥∥σd
∥∥ 1−m

m σd. In Voigt-notation, the constitutive
equation is expressed implicitly as

σn+1 = σn + C · (∆εn+1 −∆εn+1
p −∆εn+1

d ). (4.103)

The residual tensor is defined as

Rσ = σn+1 − σn − C ·∆εn+1 + C · (∆εn+1
p + ∆εn+1

d ). (4.104)

Inserting (4.101) and (4.102) into (4.104) leads

Rσ = σn+1 − σn − C ·∆εn+1 + C ·
(
Zp
(
σd
)

(σd) + Zd
(
σd
)

(σd)
)
·∆t. (4.105)

We solve the equationRσ = 0 by the Newton-Raphson as follows

σk+1
n+1 = σkn+1 −

[
∂Rσ

∂σ
(σkn+1)

]−1

·Rσ(σkn+1), (4.106)

where

∂Rσ

∂σ
(σkn+1) = I + C ·

(
∂Zd(σd)

∂σ
+
∂Zp(σd)

∂σ

)
∆t, (4.107)

and I = δijeiej. By denoting

A =
∂Rσ

∂σ
(σkn+1), (4.108)

we obtain

σk+1
n+1 = σkn+1 −A−1 ·Rσ(σkn+1). (4.109)

Given the increment in strain ∆εn+1 = εn+1 − εn corresponding to an increment in time
[tn, tn+1], the state variables at time tn are also given, for example, σn. Then the corre-
sponding initial value, ∆σ0

n+1, is computed as

σ0
n+1 = σn, (4.110)

∆σ0
n+1 = −A−1

(
σ0
n+1

)
·Rσ

(
σ0
n+1

)
, (4.111)
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whereRσ

(
σ0
n+1,σ

d
n

)
is computed based on Eq. (4.104):

Rσ

(
σ0
n+1,σ

d
n

)
= σn − σn − C ·∆εn+1 + C ·

(
Zp
(
σd
n

)
+Zd

(
σd
n

))
·∆t (4.112)

= C ·
(
(Zp

(
σd
n

)
+Zd

(
σd
n

)
) ·∆t−∆εn+1

)
. (4.113)

taking the derivative of the implicit function (4.105) with respect to σ,A is obtained by

A =
[
I + C · (Ad + Ap

∥∥σd
∥∥ 1−m

m )Id + Ap
1−m
m

∥∥σd
∥∥ 1−3

m σd ⊗ σd)∆t
]
. (4.114)

Therefore a consistent tangent operator (modulus),D =
∂σn+1

∂εn+1
, reads

D =

[
I + C ·

(
∂Zd

(
σd
)

∂σ
+
∂Zp

(
σd
)

∂σ

)
∆t

]−1

· C = A−1 · C. (4.115)

Box 1: Fully implicit algorithm of numerical integration for dynamic recrystallization .

1. Compute the distribution function f(D, r), 〈D3/ρm〉 and 〈D5/Meff〉, see the
marching algorithm.

2. Given ∆εn+1 and the state variable at tn, σn, evaluate the elastic initial state
∆σ0

n+1.

3. Return-Mapping with an iterative step k

(i) Calculate the Newton step and update stress

∆σn+1k = −A−1(σ)kn+1 ·Rσ(σ)kn+1 , (4.116)

σk+1
n+1 = ∆σn+1k + σkn+1. (4.117)

(ii) Check convergence criterion:∥∥Rσ

(
σk+1
n

)∥∥ ≤ TOL. (4.118)

If this condition is fulfilled, go to step 4. If not, go to step 3.

4. Update the tangent matrix

D = A−1 · C, (4.119)

and the necessary state-dependent variables (SDV), εp, εd, the effective inelastic
strain norms together with the corresponding rate values

εp =

√
2

3
‖εp‖ and ε̇p =

√
2

3
‖ε̇p‖ (4.120)

εd =

√
2

3
‖εd‖ and ε̇d =

√
2

3
‖ε̇d‖ (4.121)

and also the converged λ̄.
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For more information about this algorithm, readers can refer to [Isfahani, 2014]. This is
time to discuss how the microscale is linked to the macroscale. The connection between
the microlevel and the macrolevel in the program code is shown as below,

Box 2: Connection of scales in the program code

Global finite element method analysis - macroscale problem

↓ ‖ ε̇p ‖

1. ‖ ε̇p ‖ is given

2. Using marching algorithm

3. Calculating 〈D3/ρm〉 and 〈D5/Meff〉

↓ 〈D3/ρm〉, 〈D5/Meff〉

Global finite element method analysis - macroscale problem

As can be seen in this simplified flow chart, the calculation at the macroscale provides the
rate of plastic strain, ‖ ε̇p ‖. The rate of plastic strain, ‖ ε̇p ‖ is understood as a given at
the microscale. Solution of the differential equation accompanied by the volume constraint
at this level results in the distribution function. From this result, the average values of
〈D3/ρm〉, 〈D5/Meff〉 are calculated by (3.2).
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5 Numerical results

During the research progress, we developed the modified theories regarding the nucleation
process and the modified version of distribution function. Now it is in turn to discuss how
these models, including a combination of a nucleation theory and of a kind of the distribu-
tion function, reacted after the numerical treatment. In this section, numerical results for
all three material models are presented and discussed. Moreover, the advantages and dis-
advantages are discussed. To verify our models, we will compare our numerical results of
our models with the existing Abaqus models. A brief introduction of Abaqus and Umat, a
user subroutine to carry out an ABAQUS/Standard the user-defined material model, will be
introduced. We will implement models by writing the Umat subroutine in Abaqus. Not only
a comparison with Abaqus models but also a comparison of the present model with existing
phenomenological ones is given. Via a creep test and a relaxation test, the differentiation
and the similarity will be clarified. A simple discretization and geometry are observed in
these tests. After numerical treatments, there will be a comparison via the total effective
creep strain-time diagram. The stress is plotted over strain. Furthermore, a cycle life of a
grain will be depicted in each case of our models to get the differences between the current
model and phenomenological models.

5.1 Methods

Abaqus is a commercial CAE software which has several subroutines to be defined by
user for different purposes. Umat subroutine can be used to define constitutive laws which
enable user to implement any arbitrary material model. In this section, we introduce the
procedure of an analysis in Abaqus using Umat.
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Figure 5.1: Typical analysis procedure in Abaqus.

A finite element procedure will be executed in Abaqus. This implementation is probably
conducted several times (steps). The initial values of the next step are the values which are
calculated in the current step. An increment into time step is used during a time span.
Then each step will be solved within the time span. In every increment, as another finite
element program, for example, FEAP, an increment in the plastic strain, εp, is reformed.
This reformation is dependent on the time increment which is denoted ∆t(dtime). The local
internal and external force vectors are calculated at every single integration point of each
element. Then the assemble force (or the global forces) is obtained and the algorithm is
repeated until the condition is fulfilled. The time will increase step by step after the step
time is gained. When the total time is finished, the implementation (the analysis) or a job
in Abaqus is ended. This algorithm is conducted and will return the new stress and tangent
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matrix whose formulations are given. One important part in Abaqus is the SDVs. These
value are needed to be updated in each step. Abaqus should be connected to Intel Fortran
and Microsoft Visual Studio.

5.2 Numerical results in the microscale

The numerical treatment was employed separately for the problem at the microscale.
Moreover, for the distribution function in form of f̄(D, r) as well as f̃(s, r), we also applied
the numerical scheme to the whole problem at two scales. The result in only the problem at
the microscale and the result after the two-scale scheme are same, then we discussed here
only one result. With the distribution function, f(p,D, r), until now, we haven’t researched
on how to further develop. This will be the next investigation. As a result, only the distinct
microscale problem is solved numerically.

Parameter Value Unit Physical interpretation

µ 60×10+9 Pa Shear modulus
b 5.34000×10−10 m Burger’s vector
ap 1.03154×10+4 - Material parameter
M⊥ 2.2×10−16 m3s kg−1 Diffusion mobility
δ 1.0×10−9 m Grain boundary thickness
γ 5.0×10−3 Jm−2 Interfacial energy
g0 5.78845×10−12 − Material parameter for nucleation function
D0 1.0×10−4 m Material parameter for nucleation function
‖ε̇p‖ 0.1407780×10−5 1/s Norm of the rate of plastic strain

Table 5.1: Material parameters for the model, f̄(D, r).

5.2.1 Results for the distribution function, f̄(D, r)

Before implementing the two-scale model, we carried out numerically the problem at
the microscale via the marching algorithm. The result of the distribution function is depicted
in Figure 5.3. Its contour lines are drawn in Figure 5.2. These contour lines illustrate the
“life cycle” of grains. Let us call the grains having small dislocation densities the young
grains. These grains have the small energy. Other grains with the large dislocation densities
are called old grains. The old grains have large energy. The “life cycle” of grains have some
stages. The first stage is the formation of grains. The small-energy grains are nucleated.
Then the grains grow up by an increase of the grain sizes. At the certain age, the grain size
will reach the maximum grain size. Their energy also gets larger. The last stage is that the
old grains will be consumed by the young grains or the newly formed grains. Lastly, the
grains will be disappeared. This “life cycle” shows a good agreement with phenomenolog-
ical ones. However, it can be shown in Figure 5.2, in contrast with the phenomenological
ones, all grains will be “born” at the same dislocation density. In the reality, different grains
will nucleate with different dislocation densities. However, in Figure 5.2, all grains are
“born” with the same value of the dislocation density. This result is unreasonable. Fur-
thermore, actually, only grains with small dislocation density participates in the nucleation
process. As sketched in Figure 5.2, even large dislocation density grains are also nucleated.
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D[m]

r[1/m]

Figure 5.2: “Life cycle” of grains. Figure 5.3: Distribution function.

Figure 5.4: A part of the distribution function, γ = 5.0×10−3.

5.2.2 Results for the distribution function, f̃(s, r)

In this part, we will discuss about the distribution function which is a function of two
variables s and r. By using a variable transformation from D to s, s is introduced . Firstly,
let me show the form of this distribution function and its contour line which depicts the
relationship between “grain size” and rescaled dislocation density. We implemented the
problem at the microscale with the set of parameters shown in the below table. With this set
of parameters, the result of distribution function and its contour line are sketched in Figure
5.4 and in Figure 5.5. Since we want to have a closer look at the distribution function, a
small part of this distribution function will be zoomed out. In order to investigate in the
distribution function, the value of each parameter will be varied so that we can see the
influence of these parameters on the distribution function. As a result, the modification of
distribution function and of “life cycle” are considered. We can see their changes when γ is
equal to 7.0 Jm−2.

As can be plotted in Figures 5.6, the small part of the distribution functions has a large
difference. Furthermore, the range of grain size for nucleation process will be bigger than
it in γ = 5.0×10−3 Jm−2. It means that less grains will be “born” (see Figre 5.7).Now let
us alter the value µ from 60.×10+9 Pa. Then this value is continously decreased again to
9.×10+8 Pa. The difference of distribution function in different values of µ will be shown
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Figure 5.5: Full distribution function, γ = 5.0×10−3.

Figure 5.6: A part of the distribution function, γ = 7.0×10−0.
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Figure 5.7: Full distribution function, γ = 7.0×10−0.

Figure 5.8: A part of the distribution function, µ = 6.×10+9.

Figure 5.9: Full distribution function, µ = 6.×10+9.
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Figure 5.10: “Life cycle” of grains, b = 5.34×10−9.

Figure 5.11: “Life cycle” of grains, b = 5.34×10−8.

in Figure 5.8. From these figures, while µ decreases, the value of distribution function
increases. In addition, responding to a reduction of µ, a raise of the number of “born” grains
can be seen in Figure 5.9. The next step is to sketch the variation if b is 5.34×10−9. When
we apply the bigger norm of the plastic strain ε̇p, with ‖ε̇p‖ = 0.1407780×10−1, in Figure
5.13, the value of distribution function is larger than in the case ‖ε̇p‖ = 0.1407780×10−5.
Moreover, Figure 5.13 already sketched how many grains are nucleated. It means that the
bigger plastic strain makes the dislocation be more active. Therefore, the disorganization of
materials will increase. This will create a good condition for nucleation process. Then there
will be more nucleated grains. In contrast to the case of plastic strain rate’s change, when
a change in diffusion mobility raises, the range of grain size in which grains are nucleated
will be smaller. This seems to match with the reality. Since diffusion mobility increases,
this prevents dislocations from moving. Thus, the movement of dislocations will be slower.
As a result, not many grains are “born” when M⊥ enlarges. Lastly, a change in material
parameter ap is employed. As same as in the case that plastic strain rate is modified, the
distribution function’s value increases when ap goes up (see Figure 5.15). The grains are
nucleated as in Figure 5.19.
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Figure 5.12: A part of the distribution function, ‖ε̇p‖ = 0.1407780×10−1.

Figure 5.13: Full distribution function, ‖ε̇p‖ = 0.1407780×10−1.

Figure 5.14: Full distribution function, M⊥ = 2.2×10−14.
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Figure 5.15: A part of the distribution function, ap = 1.03154×10+6.

Figure 5.16: Full distribution function, ap = 1.03154×10+6.

Figure 5.17: The “life cycle” of grains. Figure 5.18: Full distribution function.



88 5 Numerical results

Figure 5.19: A part of the distribution function, ap = 1.03154×10+6.

Figure 5.20: “Life cycle” of grains, the distribution function, k = 0.5 and k = 0.001.
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5.2.3 Results for the distribution function, f(p,D, r)

Due to the limitation of the previous results concerning the distribution function, f̄(D, r)
and f̃(s, r), the updated version of distribution function is proposed to prevent this limita-
tion. To implement the problem at the microscale, the set of parameters (in Table 5.2) will
be used. As can be see in Figure 5.17, this limitation disappears. Let us talk again about
the “life cycle” again. Grains with large value of dislocation densities and with small dislo-
cation densities are old grains and young grains, respectively. The young grains are formed
via an assembling of old grains. The young grains will grow further by accumulating the
high energy grains to gain the maximum grain size. Because of the highest energy, the old
grain will be vanished by consuming of the young ones. The result is shown in the contour
line as in Figure 5.17, each grain will nucleate with different grain size. Opposing to the
previous versions of distribution function, the result still has the disagreement with phe-
nomenological ones. The new model provides the more reasonable agreement. Only young
grains (with small dislocation densities) are “born” by accumulating old grains. However,
we only developed this model, the next work to apply this model to the next level will be
in the future investigated. As same as in the model with the distribution function, f̃(s, r),
the modification of material parameters will be applied to study more about the influence of
material parameters on the distribution function. Firstly, the initial value of k will be altered.
However, it is easy to see from Figure 5.20, this value plays no important role in obtaining
the value of distribution function.

Parameter Value Unit Physical interpretation

v 1.13812×1012 - Material parameter
µ 1.×10+9 Pa Shear modulus
k 0 m−1 Material parameter in Eq. 3.87
b 0.0001 m Burger’s vector
γ 0.0001 Jm−2 Interfacial energy
g0 5.78845×10−12 − Material parameter for nucleation function
D0 0.000001 m Material parameter for nucleation function
‖ε̇p‖ 0.1407780×10−5 1/s Norm of the rate of plastic strain

Table 5.2: Material parameters for the model, f(p,D, r).

As plotted in Figure 5.21, the modification in γ will make a big change in the nucle-
ation process. The maximum grain size’s value is bigger than these values in the case of
γ = 0.00001 Jm−2. The grains also disappear with higher dislocation density in γ = 0.0001
Jm−2 than in γ = 0.00001 Jm−2. While the size of small grains D0 reduces from D0 =
0.0001 to D0 = 0.000001, the maximum value of grain size during nucleation process will
increase slightly. Lastly, the change of the distribution function and the “life cycle” are
shown in Figure 5.23 and in Figure 5.24 when v and µ are changed.

5.3 Relaxation test and creep test

As discussed above, to characterize the creep test and relaxation test, the flow law,
the relationship between the rate of plastic strain and stress, will be essential. Now let us
discuss this law for diffusion creep, respectively. However, in this thesis, we consider that
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Figure 5.21: “Life cycle” of grains, the distribution function, γ = 0.0001 and γ = 0.00001.

Figure 5.22: “Life cycle” of grains, the distribution function, D0 = 0.0001 and D0 =
0.000001.
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Figure 5.23: Distribution function , v = 1.13812×1013.

Figure 5.24: Distribution function, µ = 8.×10+8 and µ = 1.×10+9.
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dislocation creep is the most influential mechanism, or εd <<< εp, then only the plastic
strain rate is analyzed here. Its flow rule is rewritten as

ε̇p = Ap
∥∥σd

∥∥(1−m)/m
σd. (5.1)

Consequently, its norm is calculated by the following equation∥∥ε̇p∥∥ = Ap

∥∥σd
∥∥ 1

m . (5.2)

By defining the effective value of the plastic strain as well as of the plastic’s train rate by

ε̇p =
√

2/3
∥∥ε̇p∥∥ = (

√
2/3)Ap

∥∥σd
∥∥ 1

m . (5.3)

When m is equal to 0.5, as a result, we obtain

√
2/3

∥∥ε̇p∥∥ =

(
2

3

)3/2

Apσ
2
vm, (5.4)

where Von-Mises stress is computed as σvm =
√

3/2
∥∥σd

∥∥. Eq.(5.4) is rewritten as

ε̇p =

(
2

3

)3/2

Apσ
2
vm. (5.5)

In the material library of Abaqus, with creep materials, we need the relationship between
the effective value of the plastic strain rate in the form of ε̇p = Aσkvm. Therefore, k and
A will be inputs in Abaqus. Since in Abaqus, there are existing models relating to rate-
dependent plastic deformation, for example, creep test. There will be reasonable to compare
our result and the Abaqus’ s result. The comparison will be shown in two distinct tests:
creep test and relaxation test. SDVS (State-dependent variables) are variables to store the
material’s behavior at the integration points at each step. Depending on each type of different
distribution functions as well as the theory of nucleation, we will have different amount of
SDVs. SDVS are the variables showing the connection of the problem at the microscale and
one at the macroscale. These values of these variables are stored in an array, namely, statev
in UMAT. In Abaqus, a plain strain element (CPE4) and linear shape functions are used.

Relaxation test

The geometry and boundary conditions of a specimen loaded by tension are shown in Figure.
5.25. Let us consider a typical rectangular cube. A rectangular cube has the length h and the
width a as can be seen in this Figure. The thickness of this cube is small enough compared
to two other sides, then it is considered to be neglected. Consequently, all the components
of strain in z direction, which is perpendicular to the plane created by x and y directions,
are neglectable. Figure 5.25(a) describes the geometry and boundary conditions for this
test. The below side AB can not move in x-direction and y-direction, except the point A.
Moreover, the point A is restricted only in y-direction. This cube should be considerable as
a bar. Furthermore, this bar is subject to the constraint concerning the given displacement,
u, as depicted in Figure 5.25.

Creep test

The geometry and boundary conditions of a tensile specimen are shown in Figure. 5.26.
As in the relaxation test, the same restriction to the point A and the base AB are applied.
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A B

Figure 5.25: Relaxation test; a) Geometry and boundary conditions; b) Applied deformation
; c) Applied strain, (from V. E.Isfahani, 2014). Images reprinted by permission.

A B

Figure 5.26: Creep test; a) geometry and boundary conditions; b) Undeformed meshed body
at t0 = 0s, c) Deformed shape. Stress is constant in the spatial space, d)
Applied pressure, (from V. E.Isfahani, 2014). Images reprinted by permission.

Moreover, the bar is subject to a time-dependent load. The creep test is analysed in three
implicit steps. The firstly explicit step is implemented since the first time when m is equal
to 0. The increment of time varies from small to large value during on step. An increment
of time step is set up automatically by ABAQUS from ∆t0 = 1.×10−4s to ∆tmax = 300s.
The total time is 1000 seconds for simulation of this test .

5.4 Numerical results in the macroscale

5.4.1 The first model results

In the first model, we use the distribution function in the form of f̃(s, r) as well as
the first theory of nucleation. Consequently, we will SDVS with 17 components which are
shown in Table 5.4. Moreover, by fitting parameters with Abaqus existing models, we ob-
tained the value set of material parameters as in Table 5.3
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Creep test

This model was implemented by Mr.Vahid Ebrahimzade. Then the short result is here dis-
cussed. We know that the main mechanism is dislocation creep. Then only this regime is
conducted in order to compare with the existing models in Abaqus. As can be seen in Figure
5.27, the total effective creep strain is nearly equal to the plastic strain.

Parameter Value Unit Physical interpretation

b 5.34×10−10 m Burger’s vector
ap 1.03154×10+4 - Material parameter
M⊥ 2.2×10−16 m3s kg−1 Diffusion mobility
λ̄ - Jm−3 Lagrange multiplier
λ 90.×10+9 Pa Lamé parameter
kp 4.8×10−29 m2+m/2N−1/ms−1 Dislocation velocity in Eq. (3.46)
m 0.5 - Dislocation velocity in Eq. (3.46)
µ 60.0×10+9 Pa Shear modulus
δ 1.0×10−9 m Grain boundary thickness
γ 5.0×10−3 − 2.0 Jm−2 Interfacial energy
g0 5.78845×10−12 − Material parameter for nucleation function
D0 1.0×10−4 m Material parameter for nucleation function

Table 5.3: Material parameters for the first model.

Definition Description
εd Creep strain due to diffusion
εp Plastic strain

ε̇d =
√

2/3 ‖ε̇d‖ Effective value of εd

ε̇p =
√

2/3 ‖ε̇d‖ Effective εd

εd =
√

2/3 ‖εd‖ Effective εd

εp =
√

2/3 ‖εp‖ Effective plastic strain
ε̇ = ε̇d + ε̇p Total creep strain rate
ε = εd + εp Total creep stran

λ̄ Lagrange multiplier
Ad Flow law multiplier for diffusion creep
Ap Flow law multiplier for dislocation creep

Table 5.4: State-dependent variables for the first model.

When the load is raised with an ascending rate, the creep strain increases. Based on Eq.
(3.46) and Eq. (3.36), it is obviously to see when stress raises, the evolution of creep strain
goes up as well. This model was carried out numerically with two different interfacial
energy. The full results were discussed in [Isfahani, 2014]. Readers who are interested in
this part, can have a look at it. The comparison of the flow law multiplier for dislocation
creep and distribution function corresponding to different strain rates, the readers can refer
to [Isfahani, 2014].
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Figure 5.27: Total effective creep strain v.s plastic strain.

Relaxation test

The relaxation test was conducted with the same set of the material parameters as in the
creep test. Now let us first discuss the change of the mean rescaled dislocation density as
well as the change of the mean grain size.
Figure 5.28 sketches the average of dislocation density, after a heavy decrease, this value
reaches slightly to a stable value. In contrary to the evolution of mean dislocation density,
the mean of grain size starts with a big increase, and then with a slighter increase. This can
be illustrated in Figure 5.28. As can be seen in Figure 5.28 and Figure 5.29, the average
of dislocation density decreases according to time while the average of grain size increases.
Moreover, the value of λ reduces regularly according to the time as in Figure ??.
The result also shows the good match of the total effective creep between Hackl- Renner
(H-R) model and the existed model in Abaqus. The evolution of other material informations
such as Von Mises stress, plastic strain, plastic strain rate, diffusion strain rate, the flow
multiplier for dislocation creep and the flow multiplier for diffusion creep, the readers can
refer to [Isfahani, 2014].

Figure 5.28: Evolution of mean rescaled dis-
location density.

Figure 5.29: Evolution of mean grain size.
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Figure 5.30: Evolution of λ.

5.4.2 The second model results

In this model, we implemented numerically for the two-scale model. For the problem at
the microscale, the distribution function differentiating each grain by grain size and rescaled
dislocation density has the form of f̃(s, r). Furthermore, the second nucleation theory is
applied in this model. Again, the information of material parameters are given. As same as
in the first model, we still have parameters: Burger’s vector, diffusion mobility, nucleation
mobility, shear modulus, grain boundary thickness, interfacial energy.

Parameter Value Unit Physical interpretation
b 5.34×10−10 m Burger’s vector
ap 1.03154×10+4 - Material parameter
M⊥ 2.2×10−16 m3s kg−1 Diffusion mobility
C - - Lagrange multiplier
λ - Jm−3 Lagrange multiplier
kp 4.8×10−29 m2+m/2N−1/ms−1 Dislocation velocity in Eq. (3.46)
m 0.5 - Dislocation velocity in Eq. (3.46)
µ 6×10+10 Pa Shear modulus
δ 1.0×10−9 m Grain boundary thickness
γ 5.0×10−3 Jm−2 Interfacial energy
g0 5.78845×10−12 − Material parameter for nucleation function
k 6.9389×10+13 - Material parameter in Eq. (3.150)

Table 5.5: Material parameters for the second model.

Creep test

Firstly, this creep test is carried out with the interfacial energy γ. In this test, we can see the
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relationship of plastic strain rate and plastic strain. As can be obtained from the flow rules,
the trend of the plastic strain rate increase when the stress gets larger. In addition, Figure
5.32 shows that the stress is constant in the spatial space.

Figure 5.31: Diffusion strain rate v.s diffusion
strain.

Figure 5.32: Evolution of Von Mises stress.

Figure 5.33: Flow law multiplier of disloca-
tion creep.

Figure 5.34: Total effective creep strain in H-
R model and in Abaqus.

In this test, we implemented the simulation with two different values of Burger’s vector,
b = 5.34×10−10 and b = 5.34×10−9. Let us discuss more about it. Figure 5.35 plotted
that the flow law multiplier of diffusion creep in the case b = 5.34×10−10 is heavily larger
then in the case b = 5.34×10−9. Thus, in Figure 5.35, this value is nearly constant when
b = 5.34×10−9. However, actually, when this value is zoomed out, it increases due to an
increased load. As same as the flow law multiplier of diffusion creep, the flow law multiplier
of dislocation creep has the bigger value if b = 5.34×10−10 than it if b = 5.34×10−9.
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Figure 5.35: Flow law multiplier of diffusion creep, b = 5.34×10−9.
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Figure 5.36: Evolution of creep strain rate,
b = 5.34×10−9.
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Figure 5.37: Flow law multiplier of disloca-
tion creep, b = 5.34×10−9.

As can be seen in Figure 5.36, the creep strain rate when b = 5.34×10−9 is larger than
in the case b = 5.34×10−10. On the contrary, the diffusion creep strain rate is much smaller
when b is changed from b = 5.34×10−10 to b = 5.34×10−9 as in Figure 5.38. Now let us
change the shear modulus.
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Figure 5.38: Evolution of diffusion creep rate, b = 5.34×10−9.
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Figure 5.39: Evolution of creep strain rate,
µ = 3×10+10.
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Figure 5.40: Evolution of diffusion creep rate,
µ = 3×10+10.
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Figure 5.41: Evolution of creep strain rate,
µ = 3×10+10.
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Figure 5.42: Evolution of diffusion creep rate,
µ = 3×10+10.
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Figure 5.43: Evolution of creep strain rate, µ = 3×10+10.
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Relaxation test

Totally different from the creep test, in relaxation test, the trend of Von Mises stress reduces
with the high rate and then after 0.5 hour, the rate is much smaller (Figure 5.44). One more
time, Figure is an evidence to show that the dislocation creep is the dominant process. The
dislocation creep is caused by the plastic strain. In Figure 5.45, the total effective creep strain
ε is approximated to the plastic strain, εp. Although the diffusion strain is small comparing
to the plastic strain, its trend is still shown in Figure 5.46. This quantity also reaches a stable
value after a big jump. The evolution of λ̄ in this model is similar to in the first model. To
end this model, as usual, to compare two models, the model proposed by Hackl-Renner and
the existing model in Abaqus, the a reasonable agreement in the total effective creep strain
is sketched in Figure 5.49. The evolution of the flow multiplier of dislocation creep is drawn
in Figure 5.50. Figure 5.48 shows the influence of plastic strain rate on the plastic strain.

Figure 5.44: Evolution of Von Mises stress. Figure 5.45: Plastic strain and total creep
strain.
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Figure 5.46: Evolution of diffusion strain.
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Figure 5.47: Evolution of λ̄.

Figure 5.48: Plastic strain rate and plastic
strain.

Figure 5.49: Total creep strain in Abaqus and
in HR.
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Figure 5.50: Flow multiplier of dislocation creep.

Now let us discuss briefly about disadvantages of two models. During the process to
implement two models, the parameters implementation was conducted. In both models, m,
has different values in the problem at the microscale and in the problem at the macroscale.
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Figure 5.51: Evolution of plastic strain.

5.4.3 The third model results

Within the third model, the standard distribution function f̄(D, r) and the third theory
of nucleation are deployed. In this model, only creep test is implemented to fit material
parameters.
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Creep test

Parameter Value Unit Physical interpretation
b 1.34×10−8 m Burger’s vector
ap 1.03154×10+4 - Material parameter
M⊥ 1.0×10−15 m3s kg−1 Diffusion mobility
Mnuc 3.86853×1010 m3s kg−1 Nucleation mobility
λ - Jm−3 Lagrange multiplier
kp 4.8×10−29 m2+m/2N−1/ms−1 Dislocation velocity in Eq. (3.46)
m 0.5 - Dislocation velocity in Eq. (3.46)
µ 9.9×10+14 Pa Shear modulus
δ 1.0×10−8 m Grain boundary thickness
γ 5.0×10−3 − 2.0 Jm−2 Interfacial energy
D0 1.0×10−4 m Material parameter for nucleation function

Table 5.6: Material parameters for the third model

Figure 5.52: Evolution of mean rescaled dis-
location density.

Figure 5.53: Evolution of mean grain size.

In this model, we implemented numerically for the two-scale model. Furthermore, the
second nucleation theory is applied in this model. Again, the information of material pa-
rameters are given. As in the first model and in the second model, we still have parame-
ters: Burger’s vector, diffusion mobility, nucleation mobility, shear modulus, grain boundary
thickness, interfacial energy. Moreover, we have one new parameter concerning nucleation
process, this is nucleation mobility. The results of the model proposed by Hackl and Renner
are presented. We executed the creep test for two specific values of the interfacial energy, γ.
Firstly, the result of the first implementation with γ = 0.810−4 is talked about. The domi-
nant regime is the dislocation creep. Then the total effective strain is nearly identical to the
plastic strain, this can be illustrated in Figure 5.57. Rurthermore, in Figure 5.61, the total
creep strain, summation of plastic strain and dislocation strain increases step by step when
the applied force raises over time. This fact can be obviously observed in Eq. (3.117) and
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Eq. (3.118). Secondly, in Figure, we can see the reasonable agreement between the total
effective creep strain of our model and of Abaqus model. We plotted the change of flow law
multiplier of dislocation, flow law multiplier of diffusion on creep test, plastic strain as from
Figure 5.54 to Figure 5.57. An interesting result is that when the plastic strain rate increases,
the flow law multipliers for diffusion creep and dislocation creep, Ad and Ap increase. The
flow multipliers Ap and Ad depend on the mean values, 〈D3/ρ〉 and 〈D5/Meff〉, obtained
from the result of micro-level. Figure 5.52 and Figure 5.53 show the change of the mean
dislocation density and the mean grain size. When plastic strain rate gets bigger, the average
of grain size is reduced. Differing from the mean grain size, the average of dislocation raise
regularly. From these evolutions, the tendency of 〈D3/ρ〉 and of 〈D5/Meff〉 is to go down.
This leads to the increase in the flow law multipliers. As stress grows, the mean rescaled
dislocation density becomes larger (see Figure 5.52). The mean grain size decreases due
to DRX (see Figure 5.53). Hence 〈D3/ρ〉 and 〈D5/Meff〉 are expected to decrease, which
means the increase in Ap and Ad. We know that the grain boundary plays an important
part in controlling the dynamic recrystallization. Therefore, we also need to investigate the
effect of interfacial energy. Then we used two different values of interfacial energy. We
implemented our model numerically with two different interfacial energy. Comparing with
the smaller interfacial energy, the average of grain size at the larger one is bigger. The aver-
age of grain size for the larger interfacial energy is larger than the average of grain size for
the smaller interfacial energy. During the grain growth process, grains with high dislocation
density are predominantly consumed. Moreover, Eq. (3.134) indicates that the nucleation
function, g doesn’t depend on the interfacial energy. The number of nucleated grains for
two cases of the interfacial energy are nearly the same. Plastic strains in two cases have
no difference as in Figure 5.60. As a result, the total effective creep strain have a slight
dissimilarity (Figure 5.61).

Figure 5.54: Evolution of Von Mises stress. Figure 5.55: Evolution of plastic strain rate.
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Figure 5.56: Diffusion strain rate v.s diffusion
strain.

Figure 5.57: Plastic strain v.s total creep
strain.
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Figure 5.58: The flow multiplier for diffusion creep.

Figure 5.59: Total effective creep strain in H-R model and in Abaqus.
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Figure 5.60: Plastic strain. Figure 5.61: Total effective creep
strain.

Figure 5.62: Diffusion strain rate v.s diffusion
strain.

Figure 5.63: Flow law multiplier for disloca-
tion creep.

Figure 5.64: Flow law multiplier for diffusion creep.
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Moreover, the simulation result shows the comparison of the total creep strain between
Hackl-Renner (H-R) model and Abaqus model (in the library of Abaqus). The good agree-
ment between two models is shown in Figure. 5.59. After the numerical implementation,
a comparison of the present model with existing phenomenological ones is conducted. In
Figure 5.65, we found that there is an exact match between the homogenized result and the
real phenomena. This match can be explained as follows. The rescaled dislocation density
increases with time due to the accumulation of dislocations during deformation the r-axis
represents time, too. Thus grains with small rescaled dislocation density are young, those
with high rescaled dislocation density are old. It can be seen in Figure 5.65 that newly
formed grains, having low energy, grow by consuming old ones which have high energy. At
a certain age, the grains have accumulated so many dislocations that they start to be con-
sumed and finally disappear completely. This match is concerning the life cycle of grains.
In contrast to reality, the result of the numerical simulation shows that grains will nucleate
at the same size. Moreover, as can be seen in Figure 5.65, there are still some nucleated
grains with the high rescaled dislocation density.
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]

Rescaled dislocation density [1/m]
Figure 5.65: Probability distribution function.





109

6 Conclusions and Outlook

The main aim of this thesis was to construct not only a mathematical model to simulate the
dynamic recrstallization phenomena in polycrytalline materials but also develop a numerical
treatment for this model. It is obvious to see that many equations of the mathematical model
were derived from the principle of the minimum for the dissipation. Therefore, a review of
this principle was conducted first. Moreover, the mathematical model was derived from the
variational analysis of evolution equations for deformation at high temperature. Hence, a
brief introduction and derivation of this variational approach was presented. The evolution
equations for grain size, dislocation density, which would be used in the problem at the mi-
croscale were obtained. The plastic strain rate and the dislocation strain rate concerning the
flow rule at the problem at the macroscale were derived as well.

After this review, the original mathematical problem at the microscale was established.
“Original” means that the distribution function which characterizes individual grains is a
function of grain size and dislocation density. However, after inserting the evolution equa-
tions of grain size and dislocation density into the mass conservation or the continuity equa-
tion, singularity problem was encountered. Thus, a demand to modify the originally mathe-
matical problem by transforming from ρ to r see (3.63) via the following relationship

r =
√
ρ. (6.1)

This version of the model was called the standard. Nevertheless, we suspected that the distri-
bution function has the larger value around the characteristic curve, D = s+ 1

v̄

(
λ̄r − 1

3
r3
)
,

then one more time, the alteration of variable was made from D to s. The distribution func-
tion would depend on ”grain size”, s and dislocation density r.

Then up to this point, we have three versions of the mathematical model. After establishing
the model, to solve these versions numerically by utilizing numerical tools such as Euler-
Backward method, finite element method, Newton-Raphson method and Simpson rule. We
require the initial value of distribution function which relates to the nucleation process. As
a consequence, three ansatzes were proposed in this thesis. At the beginning, guess for this
term was given. Afterwards, stemming from the physical phenomena, two upcoming theo-
ries were proposed.

To complete the mathematical model for dynamic recrystallization, a connection between
the problem at the microscale and the counterpart at the macroscale was given. The problem
at the macroscale was discussed in this thesis. After deriving the full problem, we presented
the numerical implementation. It was a two-scale scheme. The link between two problems
at two different scales via the average expression as

〈g〉 =

∫
Ω

gf dΩ. (6.2)

To solve our model, the numerical algorithm for both problems at two scales were estab-
lished. Distinct distribution functions and different nucleation theories, we implemented
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three combinations: the distribution function f(s, r) with the first and the second nucleation
theory, the distribution function f(D, r) with the third theory of nucleation. While for the
problem at the microscale, the marching algorithm was developed, to deal with the problem
at the macroscale, a return mapping was conducted.

To demonstrate the relevance of our model, we used the creep model which exists in the
library of Abaqus to compare with our model and to fit the material parameters via the creep
test. Lastly we judge the numerical result by a comparison of the present model with phe-
nomenological phenomena. Since we observed the disagreement between the newest model
and existing phenomenological ones, we also investigated the new direction to resolve the
problem. With the new direction, the distribution function would be a function of three vari-
ables: the neighboring dislocation density, grain size, dislocation density. At the same time,
we also derived a fixpoint algorithm to solve the problem at the microscale. In this algo-
rithm, we did not consider the volume constraint. As the result, we could see the contour
line of the distribution function or the relationship between the grain size and dislocation
density.

In the further, how to apply the new direction should be investigated. In order to see the
behavior of the materials, a comparison with laboratory experiments is also planed to be
executed. Then we will extend our model by adding the recovery term in the evolution
equation of dislocation density.



111

References

Barnhoorn, A. (2003). Rheological and microstructural evolution of carbonate rocks. Ph.
D. thesis, ETH Zürich.
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